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Abstract
We considered an SIS functional partial differential model cooperated with spatial
heterogeneity and lag effect of media impact. The wellposedness including existence
and uniqueness of the solution was proved. We defined the basic reproduction number
and investigated the threshold dynamics of the model, and discussed the asymptotic
behavior and monotonicity of the basic reproduction number associated with the dif-
fusion rate. The local and global Hopf bifurcation at the endemic steady state was
investigated theoretically and numerically. There exists numerical cases showing that
the larger the number of basic reproduction number, the smaller the final epidemic
size. The meaningful conclusion generalizes the previous conclusion of ordinary dif-
ferential equation.

Keywords Media impact · Functional partial differential model · Spatial
heterogeneity · Hopf bifurcation

1 Introduction

Infectious diseases can have a great impact on the development of human society as
they can negatively bring morbidity, mortality, unemployment and inequality. There-
fore, prevention and control of infectious diseases are of significance for public health
and welfare. Recent outbreaks of infectious diseases, such as Ebola, severe acute res-
piratory syndrome (SARS), the 2009 novel influenza A(H1N1) pandemic, Covid-19
have highlighted an important role played by global public health systems of surveil-
lance and response which help to quickly curb an emerging disease and reduce its
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influence on socioeconomic activities (Lau et al. 2004; Tang et al. 2012; Winters et al.
2018; Lai et al. 2020). However, the impact of infectious disease, the massive news
coverage and fast information flow on the emerging diseases are all subject to behav-
ioral changes of human trying to minimize the effect of the disease onto themselves.
In recent years, several emerging infectious diseases confirmed the existence of a
so-called behavioural immune system (Schaller 2011). For example, during the 2003
SARS and Covid-19 outbreak, people took precautionary actions such as wearing face
masks, hand-washing, avoiding public contact (Lau et al. 2004; Beutels et al. 2009;
Lai et al. 2020). Morover, the 2009 A/H1N1 influenza pandemic and Covid-19 had
induced a significant proportion of the population to adapt their behaviour and take
preventive measures such as social distancing, home isolation or school closure (Tang
et al. 2012; Lai et al. 2020).

The exact impact of media coverage can have on the infectious disease, however,
is difficult to quantify and often subject to speculation in mathematical modelling. A
number of mathematical models were developed to investigate the impact of media
coverage on the spreading and control of infectious diseases (Verelst et al. 2016; Funk
2010; Cui et al. 2008; Xiao et al. 2013, 2015; Yan et al. 2016; Tang et al. 2010;
Liu et al. 2007; Li and Cui 2009; Tchuenche et al. 2011; Sun et al. 2011; Song and
Xiao 2018, 2019). In order to characterize the media impact on disease, a media
function, decreasing in the number of infected individuals, was often included. For
example, in Liu et al. (2007), a media function βe−α1E−α2 I−α3H was introduced into
the transmission coefficient, where E, I , and H are the numbers of reported exposed,
infectious, and hospitalized individuals, respectively. Li andCui (2009) used themedia
function β1 − β2

I
m+I (or β2

I
m+I ) to reflect the reduced amount of contact rate due to

media coverage. Xiao et al. (2015) extended these media functions by assuming that
the function depends on both the case number and its rate of change, and obtained
that media impact switches on and off in a highly nonlinear fashion. Yan et al. (2016)
further extended extended a class epidemic model of SEIR type by including extra
compartment, i.e., the level ofmedia coverageM , and characterize themedia impact by
including the function e−μM with μ > 0 in the incidence. It was found that although
the media coverage itself is not a determined fact to eradicate the infection of the
disease, media coverage can greatly delay the epidemic peak and decrease severity of
outbreak (Liu et al. 2007; Song and Xiao 2019).

However, thesemodels built on ordinary differential equations ignore two important
factors: the lag effect of media impact and human mobility in heterogeneous environ-
ment. The lag of media impact are induced directly by the mass media’s response to
the disease infection, and indirectly by the time from for individuals’ response to the
media coverage such as symptomonset to hospitalization. In fact, by analyzing the case
data and media coverage on A/H1N1 in Shaanxi province in 2009, Yan et al. (2016)
obtained the correlation between the case number and media coverage, confirmed the
existence of time lags and further identified the time lags. Hence, including time delay
in the incidence rate is more reasonable. Recently, we (Song and Xiao 2018, 2019)
initially included time delay in the media function and explored the lag effect of media
impact on infectious disaes. However, human mobility in heterogeneous environment
were ignored in Song and Xiao (2018, 2019). There is increasing evidence which
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show that environmental heterogeneity and human mobility have significant impact
on the spread of infectious diseases (Cantrell and Cosner 2003; Murray 2002; Riley
2007; y Piontti et al. 2018). In recent years, numerous reaction-diffusion models have
been proposed to investigate the roles of diffusion and spatial heterogeneity on the
transmission of diseases (Allen et al. 2008; Wang and Zhao 2012; Zhao 2017; Peng
and Zhao 2012; Cui and Lou 2016; Cui et al. 2017; Deng and Wu 2016; Wu and Zou
2016; Li et al. 2017; Ge et al. 2015; Li et al. 2020). Among these works, Allen et al.
(2008) proposed a susceptible-infected- susceptible (SIS) reaction-diffusion system
cooperated with spatial heterogeneity as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dSΔS − β(x)SI

S + I
+ γ (x)I , x ∈ Ω, t > 0,

∂ I

∂t
= dIΔI + β(x)SI

S + I
− γ (x)I , x ∈ Ω, t > 0,

∂S

∂n
= ∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(1)

The main results of Allen et al. (2008) concern with the definition, monotonicity
and asymptotic properties of basic production number (R0), threshold-type results on
the global dynamics in terms of R0 and particularly the existence, uniqueness and
asymptotic behaviors of the endemic steady state (EE) as the diffusion rate of the
susceptible individuals (dS) approaches to zero. Peng and Zhao (Peng and Zhao 2012)
recently considered the same SIS reaction-diffusion model, but the rates of disease
transmission and recovery are assumed to be spatially heterogeneous and temporally
periodic. In Deng andWu (2016), Wu and Zou (2016), the authors investigated an SIS
model with mass action infection mechanism. In Li et al. (2017), Li et al. provided
qualitative analysis on an SIS reaction diffusion system with a linear source term.
Ge et al. introduced a free boundary model for characterizing the spreading front
of the disease in Ge et al. (2015). The effects of diffusion and advection for SIS
epidemic reaction-diffusion model in heterogeneous environments were studied in
Cui and Lou (2016), Cui et al. (2017). Dynamics and asymptotic profiles of endemic
steady state for two frequency-dependent SIS epidemic models with cross-diffusion
was studied in Li et al. (2020).Moreover, to grasp the impact of themedia coverage and
heterogenous environment on preventing and controlling the transmission of infectious
diseases, Ge et al. (2017) consider an SIS reaction-diffusion equation with media
impact. However, these reaction diffusion models only consider human mobility in
heterogeneous environment or the media impact without lag effect. The report delay
and response time for individuals to the current infectionwere ignored in thesemodels.

1.1 Model description

In order to investigate the lag effect of media impact and human mobility in heteroge-
neous environment on the transmission dynamics of infectious diseases, we devide the
population into two groups: susceptible (S), infected (I), and consider the following
system:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dSΔS + Λ(x) − β(x)e−m(x)I (x,t−r)SI

S + I
+ γ (x)I − α(x)S, x ∈ Ω, t > 0,

∂ I

∂t
= dIΔI + β(x)e−m(x)I (x,t−r)SI

S + I
− γ (x)I − α(x)I , x ∈ Ω, t > 0,

∂S

∂n
= ∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(2)

Here,Ω is a bounded domain inRn0 with smooth boundary ∂Ω , where n0 is a positive
integer and the homogeneous Neumann boundary conditions assumed in model (2)
mean that no population flux crosses the boundary ∂Ω . S(x, t) and I (x, t) denote the
density of susceptible and infected individuals at location x and time t , respectively.
dS and dI represent the diffusion coefficients associated with susceptible and infected
individuals, respectively. The positive Hölder continuous functions Λ(x), α(x), β(x)
and γ (x) on Ω represent the natural birth rate, the natural death rate and transmission
rate and recovery rate at x , respectively.

Media coverage and fast information flow induce a profound psychological impact
on the public, a reduction in the incidence rate at the position x , is represented by
e−m(x)I (x,t−r). Here time delay r denotes the report delay and response time for indi-
viduals to the current infection, and the positive Hölder continuous functions m(x)
stands for the weight of media effect sensitive to number of infected population at
the position x . Here we assume that people care more about the prevalence of infec-
tious disease in the place they stay, therefore we choose the media impact function
e−m(x)I (x,t−r) rather than e− ∫

Ω m(x)I (x,t−r)dx . We also point out here that the disease-
related death was not included in model (2), since, on one hand, we focus our model
on the effect of spatial heterogeneity and media impact on prevalence, incidence or
accumulated cases rather than case fatal rate of infectious disease, and the disease-
induced death rate is far smaller than recovery rate. On the other hand, we compromise
here to make further bifurcation analysis not too complicated.

It is easy to verify that βSI
S+I is a Lipschitz continuous function of S and I , therefore

we define it to be zero whenever S = 0 or I = 0. For notation convenience, we denote

g = min
x∈Ω

{g(x)}, g = max
x∈Ω

{g(x)},

where g can be Λ(x), α(x), β(x), γ (x) and m(x). Moreover, throughout this paper,
we assume
A1: S(x, 0) ≥ 0, I (x, 0) ≥ 0 for x ∈ Ω and

∫

Ω
I (x, 0)dx > 0;

A2: H+ = {x ∈ Ω|β(x) > α(x) + γ (x)} and H− = {x ∈ Ω|β(x) < α(x) + γ (x)}
are nonempty.

For further purposes, we also define two conditions as follows:
B1:

∫

Ω
βdx <

∫

Ω
(γ (x) + α(x))dx ;

B2:
∫

Ω
βdx >

∫

Ω
(γ (x) + α(x))dx .
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1.2 Steady state problems

For further purposes, we define non-negative steady state solutions of model (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSΔS̃ + Λ(x) − β(x)e−m(x) Ĩ S̃ Ĩ

S̃ + Ĩ
+ γ (x) Ĩ − α(x)S̃ = 0, x ∈ Ω,

dIΔ Ĩ + β(x)e−m(x) Ĩ S̃ Ĩ

S̃ + Ĩ
− γ (x) Ĩ − α(x) Ĩ = 0, x ∈ Ω,

∂ S̃

∂n
= ∂ Ĩ

∂n
= 0, x ∈ ∂Ω.

(3)

Here, S̃(x) and Ĩ (x) denote the density of susceptible and infected individuals, respec-
tively, at x ∈ Ω . A disease-free steady state (DFE) is a solution of (3) so that Ĩ (x) = 0
for every x ∈ Ω . An endemic steady state (EE) of (3) is a solution in which Ĩ (x) > 0
for some x ∈ Ω . By direct calculation, the disease free steady state (DFE) is

E0 := (Ñ , 0) (4)

and it is unique, where Ñ is the unique solution of

dSΔÑ + Λ(x) − α(x)Ñ = 0 in Ω; ∂S

∂n

∣
∣
∣
∂Ω

= 0.

Denote the endemic steady state (EE) by (S̃, Ĩ ). By the strong maximum principle,
any endemic steady state, (S̃, Ĩ ) are positive for any x ∈ Ω .

The rest of this paper is organized as follows. In Sect. 2, we study the wellposed-
ness, define the basic reproduction number and investigate the threshold dynamics of
model (2). In Sect. 3, we assume that dS = dI and explore the local Hopf bifurca-
tion at the endemic steady state. Section 4 is devoted to global existence of periodic
solutions. Numerical simulations are presented in Sect. 5 to graphically illustrate the
effect of delayed media impact and human mobility in heterogeneous environment on
the transmission dynamics of infectious diseases. The paper ends with a conclusion
section.

2 Wellposedness, Basic reproduction number and threshold
dynamics

Let X = C(Ω,R2) be the Banach space of continuous functions with the supre-
mum norm ‖‖X . Set Cr = C([−r , 0],X ). For any φ ∈ Cr , define ‖φ‖ =
maxθ∈[−r ,0] ‖φ(θ)‖X . Then Cr is an ordered Banach space with the cone C+

r .
Denote Y = C(Ω,R). Let T1(t) and T2(t) : Y → Y, t ≥ 0, be the semigroups

associated with dsΔ and dIΔ with the homogeneous Neumann boundary conditions,
respectively, and let Ai : D(Ai ) → Y be the generator of Ti (t), i = 1, 2. Clearly,
T (t) = (T1(t), T2(t)) : X → X , t ≥ 0, is a semigroup generated by the operator
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A = (A1, A2) defined on D(A) = D(A1) × D(A2). Then for each t > 0, T (t) :
X → X is compact and positive (see, e.g., (Smith 1995, Section 7.1 and Corollary
7.2.3)). Define F = (F1, F2) : C+

r → C+
r by

F1(φ1, φ2)(x) = Λ(x) − β(x)e−m(x)φ2(−r ,x)φ1(0, x)φ2(0, x)

φ1(0, x) + φ2(0, x)

+ γ (x)φ2(0, x) − α(x)φ1(0, x),

F2(φ1, φ2)(x) = β(x)e−m(x)φ2(−r ,x)φ1(0, x)φ2(0, x)

φ1(0, x) + φ2(0, x)

− γ (x)φ2(0, x) − α(x)φ2(0, x),

(5)

for all φ = (φ1, φ2) ∈ C+
r , x ∈ Ω. Given a function u : [−r , σ ) → X (σ > 0),

define ut ∈ Cr by ut (θ) = u(t + θ) with θ ∈ [−r , 0]. Then we can rewrite system (2)
as an abstract functional differential form:

du(t)

dt
= Au(t) + F(ut ), t > 0, (6)

with the initial condition u0 ∈ C+
r .

For further purposes to obtain thewellposedness ofmodel (2), we give the following
lemma:

Lemma 1 Du and Peng (2016) Consider the parabolic system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ui
∂t

− diΔui = fi (x, t, u), x ∈ Ω, t > 0, i = 1, . . . , l,

∂ui
∂n

= 0, x ∈ ∂Ω, t > 0,

ui (x, 0) = u0i (x), x ∈ Ω,

where u = (u1, . . . , ul), u0i ∈ C(Ω) and di > 0(i = 1, . . . , l) are constants, and
assume that, for each k = 1, . . . , l , the functions fk satisfy the polynomial growth
condition:

| fk(x, t, u)| ≤ c1

l∑

i=1

|ui |q + c2

for some nonnegative constants c1 and c2, and positive constant q. Let p0 be a positive
constant such that p0 > n

2max{0, (q − 1)} and r(u0) be the maximal existence time
of the solution u corresponding to the initial data u0. Suppose that there exists a
positive constant Cp0(u

0) such that ‖ u(·, t) ‖L p0 (Ω)≤ Cp0(u
0),∀t ∈ (0, r(u0)),

then the solution u exists for all time and there is a positive constant C∞ such that
‖ u(·, t) ‖L p0 (Ω)≤ C∞(u0),∀t ∈ (0,∞). Moreover, if there exist finite numbers
ρ and Kρ independent of initial data such that‖ u(·, t) ‖L p0 (Ω)≤ Kp0(ρ),∀t ∈
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[ρ,∞), then there is a positive number K∞(ρ) independent of initial data such that
‖ u(·, t) ‖L∞(Ω)≤ K∞(ρ),∀t ∈ [ρ,∞).

Theorem 1 For any initial value φ ∈ C+
r , system (2) admits a unique nonnegative uni-

formly bounded solutionu(t, φ)on [0,∞)withu0 = ϕ, andut (φ) := (u1t (φ), u2t (φ))

∈ C+
r for all t ≥ 0, and there exists a positive constant C1 depending on initial values

such that the solution (S, I ) ∈ X+ of system (2) satisfies

‖S(·, t)‖L∞(Ω) + ‖I (·, t)‖L∞(Ω) ≤ C1,∀t ≥ 0, (7)

and there exists a positive constant C2 independent of initial values such that for some
large time T0 > 0,

‖S(·, t)‖L∞(Ω) + ‖I (·, t)‖L∞(Ω) ≤ C2,∀t ≥ T0. (8)

Moreover, the solution semiflow, denoted by Φ(t) = ut (·) : C+
r → C+

r , t ≥ 0, has a
strong global attractor.

Proof It is easy to verify that

lim
h→0+

1

h
dist(φ(0) + hF(φ),X+) = 0, ∀φ ∈ C+

r .

By (Martin and Smith 1990, Proposition 3 and Remark 2.4), it then follows that for
every φ ∈ C+

r , system (2) admits a unique noncontinuablemild solution u(t, φ) ∈ X+
in itsmaximal interval of existence [0, σφ)withu0 = φ. Integrating the first and second
equations of (2) and adding the resulting two identities yield

d

dt

∫

Ω

(S(x, t) + I (x, t))dx ≤
∫

Ω

Λ(x)dx − α

∫

Ω

(S(x, t) + I (x, t))dx . (9)

Then the well-known Gronwall’s inequality applied to (9) asserts that there exists
some constant C0 > 0, such that

∫

Ω

(S(x, t) + I (x, t))dx ≤ C0, ∀t ∈ (0, σφ).

Set h(x, t) = I (x, t − r), t < σφ + r , system (2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ S̃

∂t
= dSΔS̃ + Λ(x) − β(x)e−m(x)h(x,t) S̃ Ĩ

S̃ + Ĩ
+ γ (x) Ĩ − α(x)S̃, x ∈ Ω, t > 0,

∂ Ĩ

∂t
= dIΔ Ĩ + β(x)e−m(x)h(x,t) S̃ Ĩ

S̃ + Ĩ
− γ (x) Ĩ − α(x) Ĩ , x ∈ Ω, t > 0,

∂ S̃

∂n
= ∂ Ĩ

∂n
= 0, x ∈ ∂Ω, t > 0.

(10)
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By (9) and (Du and Peng 2016, Lemma 2.1) (due to Le (1997)) with σ = p0 = 1,
along with the positiveness of S̃, Ĩ , we have

‖S̃(·, t)‖L∞(Ω) + ‖ Ĩ (·, t)‖L∞(Ω) ≤ C1,∀0 ≤ t < σφ + r ,

and the maximal interval of existence extends to [0, σφ + r). Reset h(x, t) = I (x, t −
r), t < σφ + 2r and repeat the above procedure again, we can obtain

‖S̃(·, t)‖L∞(Ω) + ‖ Ĩ (·, t)‖L∞(Ω) ≤ C1,∀0 ≤ t < σφ + 2r ,

and themaximal interval of existence extends to [0, σφ+2r). Repeating the procedures
yields (7) and (8).

Therefore, the solution semiflowΦ(t) = ut (·) : C+
r → C+

r is point dissipative. By
(Wu 1996, Theorem 2.2.6), Φ(t) = ut (·) : C+

r → C+
r is compact for t > r . Thus, it

follows from (Zhao 2017, Theorem 1.1.3) (see also (Hale 1988, Theorem 3.4.8) ) that
Φ(t) has a strong global attractor on C+

r . 	


2.1 Definition of basic reproduction number

For infectious disease models, the basic reproduction number, defined as the expected
number of secondary cases produced in a completely susceptible population by an
infective individual, is one of the most significant concepts in studying the trans-
mission of infectious disease (Diekmann and Heesterbeek 2000; Anderson and May
1991).More importantly, it often determines the threshold behavior formany epidemic
models. It is often the case that a disease dies out if the basic reproduction number is
less than unity and the disease is established in the population if it is greater than unity.
We refer to Diekmann et al. (1990) for the approach of next genenumbern operators
for the basic reproduction number and to Zhao (2017),Wang and Zhao (2012), Thieme
(2009), Liang et al. (2019) for related works.

We now make use of the theory developed in Liang et al. (2019) to derive the basic
reproduction number of system (2).

Lemma 2 Let μ0 denote the unique positive eigenvalue with a positive eigenfunction
corresponding to the following problem:

dIΔφ + μβ(x)φ − (α(x) + γ (x))φ = 0 in Ω; ∂φ

∂n

∣
∣
∣
∂Ω

= 0, (11)

then the basic reproduction number of system (2) satifies

R0 = 1

μ0
= sup

ϕ∈H1(Ω)
ϕ �=0

∫

Ω
βϕ2dx

∫

Ω
(dI |∇ϕ|2 + (γ + α)ϕ2)dx

. (12)
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For further purposes to study the local stability of disease-free steady state, we consider
the following eigenvalue problem:

− dIΔψ + (α(x) + γ (x) − β(x))ψ = λφ in Ω; ∂φ

∂n

∣
∣
∣
∂Ω

= 0, (13)

Let λ1 be the principal eigenvalue of (13) with the positive eigenfunction φI . Then,
we have the following properties of R0, the proof of which resembles that of (Allen
et al. 2008, Lemma 2.3) and hence is omitted.

Lemma 3 Suppose that A1 − A2 hold.

(i) R0 is amonotone decreasing function of dI withR0 → max
{

β(x)
γ (x)+α(x) , x ∈ Ω

}

as dI → 0 and R0 →
∫

Ω β(x)dx
∫

Ω(γ (x)+α(x))dx
as dI → ∞.

(ii) If
∫

Ω
βdx <

∫

Ω
(γ (x) + α(x))dx, there exists a threshold value d∗

I ∈ (0,∞)

such that R0 > 1 for dI < d∗
I and R0 < 1 for dI > d∗

I , where

d∗
I = sup

{∫

Ω
(β − γ − α)ϕ2dx
∫

Ω
|∇ϕ|2dx

∣
∣
∣ϕ ∈ W 1,2(Ω) and

∫

Ω

(β − γ − α)ϕ2dx > 0

}

;

(iii) If
∫

Ω
β(x)dx >

∫

Ω
(γ (x) + α(x))dx, we have R0 > 1 for all dI > 0;

(iv) sign(1 − R0) = sign(λ1).

2.2 Threshold dynamics

The following lemma concerned with the local stability of DFE is a direct result of
Lemma 3(iv) and we omit the proof.

Lemma 4 The disease-free steady state E0 in system (2) is locally asymptotically
stable ifR0 < 1, unstable ifR0 > 1.

Theorem 2 (i) If the basic reproduction numberR0 < 1, thenDFE is globally asymp-
totically stable.

(ii) IfR0 > 1, there exists a small positive constant ε0 such that any positive solution
of system (2) satisfies

lim inf
t→∞ ‖(S(·, t), I (·, t)) − (Ñ , 0)‖ > ε0.

Besides, system (2) admits at least one endemic steady state.

Proof See Appendix. 	
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2.3 Dynamics at the endemic steady state without delay

In this part, we assume r = 0 and dS = dI = d, and system (2) becomes the following
reaction-diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dΔS + Λ(x) − β(x)e−m(x)I (x S I

S + I
+ γ (x)I − α(x)S, x ∈ Ω, t > 0,

∂ I

∂t
= dΔI + β(x)e−m(x)I (x)SI

S + I
− γ (x)I − α(x)I , x ∈ Ω, t > 0,

∂S

∂n
= ∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(14)

Denote N = S + I , then system (14) is equivalent to the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂N

∂t
= dΔN + Λ(x) − α(x)N , x ∈ Ω, t > 0,

∂ I

∂t
= dΔI + β(x)e−m(x)I (x)(N − I )I

N
− γ (x)I − α(x)I , x ∈ Ω, t > 0,

∂N

∂n
= ∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(15)

Theorem 3 Let r = 0 and suppose thatR0 > 1 and dS = dI . Then system (2) admits
a unique endemic steady state, denoted by E1 = (Ñ − I ∗, I ∗), which is globally
asymptotically stable.

Proof By (15), we can regard N (t, x) as a fixed function on R+ × Ω and
limt→∞ N (t, ·) = Ñ . Then system is asymptotic to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ I

∂t
= dΔI + β(x)e−m(x)I (x)(Ñ − I )I

Ñ
− γ (x)I − α(x)I , x ∈ Ω, t > 0,

∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(16)

If R0 > 1, by (Zhao 2017, Theorem 3.1.5) (See also (Freedman and Zhao 1997,
Colorrary 2.2)), system (16) admits a unique positive steady state, denoted by I ∗, which
is globally asymptotically stable. Therefore, system (15) admits a unique endemic
steady state, denoted by Ê1 = (Ñ , I ∗), and by (Zhao 2017, Theorem 1.2.1 with
Remark 1.3.2) (see also (Thieme 1992, Theorem 4.1)), Ê1 is globally asymptotically
stable. Thus Theorem 4 follows. 	
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3 Local hopf bifurcation at the endemic steady state

Throughout this section, we assume thatR0 > 1, dS = dI = d and A1,A2,B1 hold,
consider the limit system of (2)

⎧
⎪⎪⎨

⎪⎪⎩

∂ I

∂t
= dΔI + β(x)e−m(x)I (x,t−r)

(

1 − I

Ñ

)

I − (γ (x) + α(x))I , x ∈ Ω, t > 0,

∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(17)

Letting Ĩ = I , t̃ = td, dropping the tilde since no confusion occurs, and denoting
λ = 1

d , τ = dr , system (17) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

∂ I

∂t
= ΔI + λβ(x)e−m(x)I (x,t−τ)

(

1 − I

Ñ

)

I − λ(γ (x) + α(x))I , x ∈ Ω, t > 0,

∂ I

∂n
= 0, x ∈ ∂Ω, t > 0.

(18)

The wellposedness (existence, uniqueness, and positivity) of solutions to systems (17)
and (18) can be obtained by similar arguments as Theorem 1, so we omit the proof
here. We refer to Su et al. (2012); Chen and Shi (2012); Chen et al. (2018); Faria et al.
(2002) for some related works on Hopf bifurcation of functional partial differential
equations.

Denote

X =
{

u ∈ H2(Ω) : ∂u

∂n
= 0, x ∈ ∂Ω

}

,Y = L2(Ω), C = C([−τ, 0],Y ).

Moreover, we denote the the complexification of a linear real-valued vector space Z
to be ZC = Z ⊕ i Z , and the positive cone of Z if it exists by Z+, the domain of a
linear operator L by D(L), the kernel of L by N (L) and the range of L by R(L).
For Hilbert space YC, we use the standard inner product < u, v >= ∫

Ω
u(x)v(x)dx .

For a nonlinear mapping F , we denote by DuF the Fréchet derivative with respect to
variable u.

For further purposes, set

L := Δ + λ∗(β − γ − α), (19)

where λ∗ is the unique positive principal eigenvalue of the following problem with
positive eigenfunctionφ under conditionsA2,B1 (Cantrell andCosner 2003, Theorem
2.4):

− Δφ = λ∗(β − γ − α)φ in Ω; ∂φ

∂n

∣
∣
∣
∂Ω

= 0. (20)
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Then the endemic steady state, denoted by Iλ, of (18) can be written as

L Iλ + (λ − λ∗)(β − α − γ )Iλ + λβ Iλ

(

e−mIλ

(

1 − Iλ
Ñ

)

− 1

)

= 0 in Ω; ∂ Iλ
∂n

∣
∣
∣
∂Ω

= 0. (21)

Note that X = N (L) ⊕ X1,Y = N (L) ⊕ Y1, where N (L) = span{φ},

X1 = X ∩ R(L) =
{

ϕ ∈ X :
∫

Ω

ϕφdx = 0

}

,Y1

= R(L) =
{

ϕ ∈ Y :
∫

Ω

ϕφdx = 0

}

.

By using the implicit function theorem, we can calculate the unique positive steady
state Iλ near λ∗, which will be used later.

Lemma 5 Assumed that A2,B1 hold. There exist λ∗ > λ∗ and a continuously differ-
ential mapping λ �−→ (ξλ, Aλ) from [λ∗, λ∗] to X1 × R

+ such that, for λ ∈ [λ∗, λ∗],
the unique positive steady state of (21) has the following form:

Iλ = Aλ(λ − λ∗)(φ + (λ − λ∗)ξλ). (22)

Moreover, for λ = λ∗,

Aλ∗ =
∫

Ω
(β − α − γ )φ2dx

∫

Ω
λ∗β(m + 1/Ñ )φ3dx

(23)

and ξλ∗ ∈ X1 is the unique solution of the following equation:

Lξλ∗ + (β − α − γ )φ − λ∗Aλ∗β(m + 1/Ñ )φ2 = 0, (24)

where L is defined in (19).

Proof To start with, we show that Aλ∗ and ξλ∗ are well defined. Note that

λ∗
∫

Ω

(β − α − γ )φ2dx =
∫

Ω

|∇φ|2dx,

then Aλ∗ is well defined and positive. Note that L is bijective from X1 toR(L) and

(β − α − γ )φ − λ∗Aλ∗β(m + 1/Ñ )φ2 ∈ R(L),

hence ξλ∗ is well defined.
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Substituting Iλ = Aλ(λ − λ∗)(φ + (λ − λ∗)ξλ) into (21), we see that (Aλ, ξλ)

satisfies

F(ξλ, Aλ, λ) := Lξλ + (β − α − γ )(φ + (λ − λ∗)ξλ) + λβ(φ + (λ − λ∗)ξλ)Mλ = 0,

where

Mλ = e−mIλ(1 − Iλ/Ñ ) − 1

λ − λ∗
.

It is easy to verify by standard Soblev embedding theory that F(ξλ, Aλ, λ) is a function
from X1 ×R

2 to Y . Note from (23) and (24) that F(ξλ∗ , Aλ∗ , λ∗) = 0 and the Fréchet
derivative of F with respect to (ξ, A) yields (λ∗, ξλ∗ , Aλ∗)

D(ξ,A)F(ξλ∗ , Aλ∗ , λ∗)(ψ, ε) = Lψ − ελ∗β(m + 1/Ñ )φ2.

Note that D(ξ,A)F(ξλ∗ , Aλ∗ , λ∗) is a bijection from X1 × R2 to Y , which together
with the implicit function theorem imply that there exist λ∗ > λ∗ and a continuously
differential mapping λ �−→ (Aλ, ξλ) from [λ∗, λ∗] to X1 × R+ such that

F(ξλ, Aλ, λ) = 0, λ ∈ [λ∗, λ∗].

Therefore, Aλ(λ − λ∗)(φ + (λ − λ∗)ξλ) is a positive solution of (21). 	


3.1 Eigenvalue problems

In this part, we assume λ ∈ [λ∗, λ∗], derive the eigenvalue problem relative to the
positive steady state Iλ in system (18) and investigate the existence of purely imaginary
roots. Linearizing system (18) at Iλ yields

⎧
⎪⎨

⎪⎩

∂u

∂t
= Δu + λKλu − λNλu(t − τ), x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

(25)

where

Kλ = βe−mIλ(1 − 2Iλ/Ñ ) − (α + γ ), Nλ = βme−mIλ Iλ(1 − Iλ/Ñ ).

It follows from (Wu 1996, Theorem 3.1.5) that the solution semigroup of (25) has the
infinitesimal generator Aτ (λ) given by

Aτ (λ)Ψ = Ψ̇ ,

where

D(Aτ (λ)) = {Ψ ∈ CC ∩ C1
C

: Ψ̇ (0) = ΔΨ (0) + λKλΨ (0) − λNλΨ (−τ)}
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and C1
C

= C1([−τ, 0],YC). Note that μ ∈ C is an eigenvalue of Aτ , if and only if
there exists ψ ∈ XC\{0} such that Δ(λ,μ, τ)ψ = 0, where

Δ(λ,μ, τ)ψ := Δψ + λKλψ − λNλe
−μτψ − μψ = 0. (26)

Moreover, the eigenvalues of Aτ depend continuously on τ ((Chow and Hale 1982,
Chapter 14)). It can be seen from (26) that Aτ (λ) has a pair of purely imaginary
eigenvalue μ = ±iw for some w > 0, if and only if

Δψ + λKλψ − λNλe
−iθψ − iwψ = 0 (27)

is solvable for some value of w > 0, θ ∈ [0, 2π), and ψ ∈ XC\{0}.
Solving (27) for any λ > λ∗ is still a challenging problem. In what follows, we

will solve (27) for λ ∈ [λ∗, λ∗] by using the implicit function theorem. It follows
from X = N (L) + X1 that if (w, θ, ψ) solves (27), then ignoring a scalar factor,
ψ ∈ XC\{0} can be represented as

ψ = κφ + (λ − λ∗)z, ‖ ψ ‖2YC=‖ φ ‖2YC , (28)

where z ∈ (X1)C and κ ≥ 0. Now for λ ∈ [λ∗, λ∗], substituting (22), (28) and w =
(λ − λ∗)h into (27), we obtain that (w, θ, ψ) with w > 0, θ ∈ [0, 2π), ψ ∈ XC\{0}
and ‖ ψ ‖2YC=‖ φ ‖2YC solves (27), if and only if the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1 = Lz + λKλ − λ∗(β − γ − α)

λ − λ∗
(κφ + (λ − λ∗)z)

− λNλ

λ − λ∗
(κφ + (λ − λ∗)z)e−iθ − ih(κφ + (λ − λ∗)z) = 0,

g2 = (κ2 − 1) ‖ φ ‖2YC +(λ − λ∗)2 ‖ zλ ‖2YC= 0,

(29)

is solvable for some value z ∈ (X1)C, h > 0, κ ≥ 0, θ ∈ [0, 2π). Define G :
(X1)C × R

4 → YC × R by G = (g1, g2). Then we have the following the following
results where the proof is in Appendix:

Theorem 4 Assumed that A2,B1 hold. There exist λ̃∗ > λ∗ and a continuously dif-
ferentiable mapping λ → (zλ, κλ, hλ, θλ) from [λ∗, λ̃∗] to (X1)C × R

3 such that
G(zλ, κλ, hλ, θλ, λ) = 0. Moreover, for λ ∈ [λ∗, λ̃∗],

{
G(z, κ, h, θ, λ) = 0,
z ∈ (X1)C, h ≥ 0, κ ≥ 0, θ ∈ [0, 2π)

(30)

has a unique solution (zλ, κλ, hλ, θλ).

If Theorem 4 holds true, then the following results can be directly derived.

Corollary 1 Assumed thatA2,B1 hold. For each λ ∈ [λ∗, λ̃∗], the following equation

Δ(λ, iw, τ)ψ = 0, w > 0, τ ≥ 0, ψ ∈ XC\{0}
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has a nontrivial solution (w, τ, ψ), if and only if

w = wλ = (λ − λ∗)hλ, ψ = ψλ = c(κλφ + (λ − λ∗)zλ), τ = τn = θλ + 2nπ

wλ

,

(31)

where n = 0, 1, 2, · · · , c is a nonzero constant and (zλ, κλ, hλ, θλ) is defined in
Theorem 4.

3.2 Hopf bifurcation

In what follows, we will always assume λ ∈ [λ∗, λ̃∗] for simplicity and take the delay
τ as a bifurcation parameter to investigate the stability of the positive steady state Iλ
in system (18). Particularly, we will explore the existence of local Hopf bifurcation at
Iλ for system (18). By Theorem 3, we have

Lemma 6 Assume that λ ∈ [λ∗, λ̃∗]. If τ = 0, then all eigenvalues of Aτ (λ) have
negative real parts; if τ > 0, then 0 is not an eigenvalue of λ ∈ [λ∗, λ̃∗].

We show iwλ is a simple eigenvalue ofAτn (λ) for n = 0, 1, 2 · · · in the subsequent
lemma, where τn is defined in (31). Thus by the implicit function theorem, there exists
a neighborhood On × Pn × Qn ⊂ R × C × XC of (τn, iwλ,ψλ) and a continuously
differential function (μ(τ), ψ(τ)) : On → Pn × Qn such that for any τ ∈ On , the
only eigenvalue of Aτ (λ) in Pn is μ(τ), i.e.,

Δ(λ,μ(τ), τ )ψ(τ) = 0, τ ∈ On (32)

with μ(τn) = iwλ,ψ(τn) = ψλ.

Lemma 7 Assume that λ ∈ [λ∗, λ̃∗]. Then μ = iwλ is a simple eigenvalue of Aτn (λ)

for n = 0, 1, 2, · · · , where iwλ and τn are defined as in Corollary 1.

Proof See Appendix. 	

Moreover, we have the following transversality condition:

Lemma 8 Assume that λ ∈ [λ∗, λ̃∗]. Then

Re

(
dμ(τ)

dτ

∣
∣
∣
τ=τn

)

> 0, n = 0, 1, 2, · · · .

Proof See Appendix. 	

Remark 1 Here 0 < λ̃∗ − λ∗ � 1 and the value of λ̃∗ may be chosen smaller than the
one in Theorem 4, since perturbation arguments are used in the proof of Lemma 8.

From Corollary 1, Lemmas 7 and 8, we have the results on the distribution of
eigenvalues of Aτ (λ) for λ ∈ [λ∗, λ̃∗].
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Theorem 5 For λ ∈ [λ∗, λ̃∗], the infinitesimal generator Aτ (λ) has exactly 2(n + 1)
eigenvalues with positive real parts when τ ∈ (τn, τn+1], n = 0, 1, 2, · · · .

Then by the local Hopf bifurcation theorem for partial functional differential equa-
tions ((Wu 1996, Theorem 2.1 in Chapter 6)), Lemmas 6, 7 and 8, we obtain the
stability and associated local Hopf bifurcations of the positive steady state solution Iλ
in system (18).

Theorem 6 Assumed that R0 > 1, dS = dI = d, and A1,A2,B1 hold, and λ ∈
[λ∗, λ̃∗]. Then the positive steady state Iλ of system (18) is locally asymptotically
stable when τ ∈ [0, τ0), and unstable when τ ∈ (τ0,∞). Moreover, when τ = τn,
system (18) occurs Hopf bifurcation at the positive steady state Iλ.

If B2(
∫

Ω
βdx >

∫

Ω
(γ (x) + α(x))dx) rather than B1(

∫

Ω
βdx <

∫

Ω
(γ (x) +

α(x))dx) holds, we can similarly obtain stability and local Hopf bifurcation at the
positive steady state Iλ and the proof for B2 is slightly different from that for B1. For
B2, λ∗ = 0 and φ become constant, and L, X1,Y1 should be made some adjustment,
and other calculations are similar, so we omit the proof here.

Theorem 7 Assumed that R0 > 1, dS = dI = d, and A1,A2,B2 hold, and λ ∈
[0, λ̃∗]. Then the positive steady state Iλ of system (18) is locally asymptotically stable
when τ ∈ [0, τ0), and unstable when τ ∈ (τ0,∞). Moreover, when τ = τn, system
(18) occurs Hopf bifurcation at the positive steady state Iλ.

4 Global existence of periodic solutions

Throughout this section, we assume that R0 > 1, dS = dI = d, λ ∈ [λ∗, λ̃∗]
and study the global continuation of periodic solutions bifurcating from the point
(Iλ, τn), n = 1, 2, · · · for system (18) by using global Hopf bifurcation theorem
developed in (Wu 1996, Section 6.5). For convenience, we use the notations in (Wu
1996, Section 6.5). Let T̃ (t) be the semigroup on Y associated withΔ under Neumann
boundary condition and set AT : D(AT ) → Y to be the generator of T̃ (t). Denoting
u(·, t) = I (·, τ t), we can rewrite system (18) as the following semilinear functional
differential equation:

u̇ = τ AT u + τ f (τ, ut ), (33)

where ut (θ) = u(·, t + θ), θ ∈ [−τ, 0] and

f (τ, ut )(x) = λβ(x)e−m(x)u(x,t−1)
(

1 − u(x, t)

Ñ (x)

)

u(x, t) − λ(γ (x) + α(x))u(x, t).

It follows from (Wu 1996, Theorem 3.1.5) that the solution semigroup of (33) has the
infinitesimal generator Ãτ (λ) given by

Ãτ (λ)Ψ = Ψ̇ ,
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with

D(Ãτ (λ)) = {Ψ ∈ CC ∩ C1
C

: Ψ̇ (0) = τΔΨ (0) + τλKλΨ (0) − τλNλΨ (−1)}

and C1
C

= C1([−1, 0],YC). To state the global Hopf bifurcation theorem, similar to
(Wu 1996, Section 6.5), we define
(i) E = C(S1; X) is a real isometric Banach representation of the group G = S1 :=
{z ∈ C : |z| = 1};
(ii) Let EG := {x ∈ E : gx = x for all g ∈ G}. Then EG = X , and E has an
isotypical direct sum decomposition E = EG ⊕∞

k=1 Ek where Ek = {eikt x : x ∈ X}
for k ≥ 1
Then from (Wu 1996, Section 6.5), system (33) can be casted into an integral equation
which is continuously differentiable, completely continuous, and G-invariant. Now
we verify the three conditions H1-3 in (Wu 1996, Section 6.5).
H1: Note that Iλ ∈ D(AT ), τn ∈ R satisfies AT Iλ + f (τn, Iλ) = 0. From Lemma 6,
for any τ ≥ 0, 0 is not an eigenvalue of Ãτ (λ), hence the assumption (H1) in (Wu
1996, Section 6.5) is satisfied.
H2: When τ = τn, Ãτ (λ) has a unique pair of purely imaginary eigenvalues iwλτn ,
hence the assumption (H2) in (Wu 1996, Section 6.5) holds.
H3:Wechoose sufficiently small ε0, η0 > 0, and define the local steady statemanifold

Mλ = {(Iλ, τ, ζ ) : |τ − τn| < ε0, |ζ − wλτn| < η0} ⊂ EG × R × R+.

Then for (τ, ζ ) ∈ [τn − ε0, τn + ε0] × [wλτn − η0, wλτn + η0], iζ is an eigenvalue of
Ãτ (λ) if and only if τ = τn and ζ = wλτn fromLemma 7. This verifies the assumption
(H3) in (Wu 1996, Section 6.5). Thus by (Wu 1996, Lemma 6.5.3), (Iλ, τn, wλτn) is
an isolated singular point in Mλ.

Let μk(Iλ, τn, wλτn)(k = 1, 2, · · · ) be the generalized crossing number defined
in (Wu 1996, Section 6.5). Then from Lemma 8, if ζ(τ ) = α(τ) ± iβ(τ) are the
eigenvalues of Ãτ (λ) satisfying ζ(τn) = iwλτn , then α′(τn) > 0. This implies that
μ1(Iλ, τn, wλτn) = 1.

Then by (Wu 1996, Theorem 6.5.4), we obtains the local topological Hopf bifur-
cation for system (18) at τ = τn .

Next we consider the global continuation of the local Hopf bifurcation. Let

S :=cl{(z, τ, ζ ) ∈ E × R × R+ : u(·, t) = z(·, ωt)
is a nontrivial 2π/ζ periodic solution of system (1.4)}.

We also define the complete steady state manifold:

M∗
λ = {(Iλ, τ )} ⊂ EG × R.

Let Cn = C(Iλ, τn, wλτn) denote the connected component of S with respect to
the local bifurcation (Iλ, τn, wλτn). Then it follows from the global Hopf bifurcation
theorem ((Wu 1996, Theorem 6.5.5)) that
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Theorem 8 For each n = 1, 2, · · · ,, Cn is unbounded, i.e.,

sup{max
t∈R

|z(t)| + |τ | + ζ + ζ−1 : (z, τ, ζ ) ∈ Cn} = ∞.

Proof It follows from the global Hopf bifurcation theorem ((Wu 1996, Theorem
6.5.5)), one of the following assertions holds:
(i) Cn is unbounded; or
(ii) Cn ∩ (M∗

λ × R+) is finite and for all k ≥ 1,

∑

(z,τ,ζ )∈Cn∩(M∗
λ×R+)

μk(z, τ, ζ ) = 0,

whereμk is the k-th generalized crossing number. ByLemma8, if ζ(τ ) = α(τ)±iβ(τ)

are the eigenvalues of Ãτ (λ) satisfying ζ(τn) = iwλτn , thenα′(τn) > 0,which implies
μ1(Iλ, τn, wλτn) = 1, n = 1, 2, · · · . Thus for k = 1, we have

∑

(z,τ,ζ )∈Cn∩(M∗
λ×R+)

μ1(z, τ, ζ ) > 0.

Hence, (ii) fails and (i) holds. 	


Now we have the connected component Cn is unbounded. Therefore, if we verify
the following three assertions:
Claim one: The projection of C(Iλ, τn, wλτn) onto T -space is bounded,
Claim two: The projection ofC(Iλ, τn, wλτn) onto the τ -space does not intersect with
τ = 0,
Claim three: The projection of C(Iλ, τn, wλτn) onto z-space is bounded,
then we can conclude that the projection of C(Iλ, τn, wλτn) onto the τ -space can
be extended to ∞. Therefore, we reap the final results of global Hopf bifurcation
branches.

To start with, we prove Claim one. (31) yields that

1

n + 1
<

2π

τnwλ

< 1. (34)

If we exclude the existence of periodic solutions of period 1, then system (33) has
no periodic solutions of period 1

n for any positive integer n. Then, we can obtain the
projection of C(Iλ, τn, wλτn) onto T -space is bounded.

Lemma 9 If R0 > 1, λ ∈ [λ∗, λ̃∗], then the system (33) has no periodic solutions of
period 1.
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Proof Assume by contradiction that system (33) has periodic solutions of period 1.
Then the following system

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= τΔu + λτ

β(x)e−m(x)u(Ñ − u)u

Ñ
− λτγ (x)u − λτα(x)u, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0.

(35)

admits some periodic solution of period 1, which contradicts Theorem 3. This contra-
diction completes the proof. 	


From (Friesecke 1993, Theorem 2) (see also (Wu 1996, Section 10.2)), for small
enough τ > 0, the unique positive steady state solution Iλ is globally asymptotically
stable for all positive initial values for system (33). Thus Claim two holds.

Lemma 10 If R0 > 1, λ ∈ [λ∗, λ̃∗], then system has no positive nontrivial periodic
orbit for small τ > 0.

Now we proceed to prove Claim three. Theorem 1 yields the following lemma,
implying that the projection of C(Iλ, τn, wλτn) onto z-space has upper bound.

Lemma 11 For any initial value φ > 0, the solution of system (33) are uniformly
bounded.

Lemma 12 For any (z, τ, ζ ) ∈ Cn, let u(x, t) be the ω-periodic solution of system
(33) with delay τ and u is a representation of z. Then we have u(x, t) > 0 for t ∈ R

and x ∈ Ω .

Proof If (z, τ, ζ ) ∈ Cn , then we obtain from Lemma 10 that τ > 0, and from (31)
that ζ > 0. Note that (Iλ, τn, wλτn) ∈ Cn then any (z, τ, ζ ) ∈ Cn near (Iλ, τn, wλτn)

satisfies u(x, t) > 0 for t ∈ R and x ∈ Ω , where u(x, t) is an ζ -periodic solution of
(33) with delay τ and u is a representation of z. Suppose by contradiction that Lemma
12 does not hold for all (z, τ, ζ ) ∈ Cn . Then there exists a (z∗, τ ∗, ζ ∗) ∈ Cn such that
if u∗(x, t) is an ζ ∗-periodic solution of (1.4) with delay τ ∗ and u∗ is a representation
of z∗, and u∗(x∗, t∗) = 0 for some x∗ ∈ Ω and t∗ ∈ R, which by the strong maximum
principle of parabolic equations (Protter and Weinberger 1984, Chapter 3, Theorem
5, P.173) implying that u∗(x, t) ≡ 0. Thus system (33) occurs Hopf bifurcation at
u = 0. This contradiction completes the proof. 	


Finally we verify the conditionsH1-3 in the global Hopf bifurcation theorem ((Wu
1996, Section 6.5)) and finish the proof of Claims one, two, three, thus we obtain

Theorem 9 Assume that R0 > 1, λ ∈ [λ∗, λ̃∗], then for any τ > τ1 system (33) has
at least one nontrivial periodic solution.

5 Numerical simulations and discussions

In this section, we present some numerical simulations to demonstrate the analytic
results in previous sections and investigate the effect of delayed media impact and
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human motility in heterogeneous environment on the transmission dynamics of infec-
tious diseases. Particularly, we will explore the effect of delayed media impact and
human mobility on persistence and final epidemic size of infectious disease.

In epidemiology, disease persistence and epidemic size are mostly cared about.
Disease persistence is directly related to the basic reproduction numberR0 (Theorem
2). It is often the case that a disease dies out if the basic reproduction number is less
than unity and the disease is established in the population if it is greater than unity. Here
we mention that if R0 > 1 (endemic is established), we characterize the epidemic
size by

HI :=
∫

Ω

Ĩ dx;

if R0 < 1 (disease dies out), and the epidemic size is characterized by

HI :=
∫ ∞

0

∫

Ω

β(x)e−m(x)I S I

S + I
dxdt . (36)

Note that if R0 < 1, then I (x, t) is exponentially decay to zero. Thus

HI =
∫ ∞

0

∫

Ω

β(x)e−m(x)I S I

S + I
dxdt < ∞

and well defined. Here we mention that for R0 > 1, we can not calculate the total
infection anymore since it will tend to infinity, and we use HI := ∫

Ω
Ĩ dx to represent

epidemic size. The definition is motivated by population size in ecology theory (Lou
2006).

Throughout this section, we fixed Ω = (0, 1) and the total population Ñ as 1,
then I (x, t) represents the fraction of infected individuals at the position x . Here we
mention that some parameters fixed in this section is purposely for demonstrating our
theoretical results, such as the occurrence of local Hopf bifurcation.

5.1 The effect of humanmobility in heterogeneous environment

By Lemma 3, we obtain that R0 is a monotone decreasing function of dI with

R0 →
∫

Ω βdx
∫

Ω(γ (x)+α(x))dx
as dI → ∞. On one hand, the basic reproduction number

in spatial heterogeneous model is bigger than spatial homogeneous model, which
implies spatial heterogeneity enhance the disease persistence. On the other hand, it
seems nonintuitive that the bigger the diffusion rate, the smaller the basic reproduc-
tion number. An explanation is that the diffusion pattern is medical resources oriented,
since diffusion has no effect on transmission rate (β(x)).

For spatial homogeneous ordinary differential models, it is often the case that the
bigger the basic reproduction number R0, the larger the epidemic size. Thus R0 is
also a commonly used measure of the effort needed to control an infectious disease.
However, for model with human mobility in heterogeneous environment, the situation
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Fig. 1 (a) The epidemic size HI of system (2) with respect to dI under R0 < 1. Parameters are fixed as
(37). (b) The epidemic size HI with respect to dI underR0 > 1 Parameters are fixed as (38)

may change. In what follows, we will show that the case that the larger the basic
reproduction number R0, the larger the epidemic size, may be not true.

The following two special case shows that the smaller the basic reproduction num-
ber, the larger the epidemic size under the conditionR0 < 1 andR0 > 1, respectively.
Fix other parameters and let d change

r = 0,Ω = (0, 1), dS = 0.2, λ = 2 + 0.01 sin(2πx), α = 0.2 + 0.01 sin(2πx),

β(x) = 2(3 + sin(2πx)), γ = 2(4 + sin(πx))(day−1),

α = 0.1(1 + cos(2πx))(day−1),m(x) = 0. (37)

and

r = 0,Ω = (0, 1), dS = 0.2, λ = 2 + 0.01 sin(2πx), α = 0.2 + 0.01 sin(2πx),
β(x) = 2(5 + sin(2πx)), γ = 1(day−1),

α = 0.1(1 + cos(2πx))(day−1),m(x) = 0
(38)

By Lemma 3, the basic reproduction number is decreasing in dI , however Fig.
1 (a) and (b) shows that the epidemic size is increasing in dI under R0 < 1 and
R0 > 1, respectively, which to some extent shows that the epidemic size may be
a decreasing function of the basic reproduction number. We mention here that two
numerical examples are special cases and the results are not general. Actually, for
the SIS reaction diffusion model (1) proposed in Allen et al. (2008), larger R0 may
not imply larger population size. One can see some theoretical results on this issue
from epidemiology perspective in Gao (2020) and ecology perspective in Lou (2006).
The epidemic model includes natural birth rate and the infection of newly increment
population induces Hi > 1.

5.2 The effect of delayedmedia impact

In this part, we focus the simulations on system (17) for simplicity. We fixed the
parameters as
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Fig. 2 Solutions of system (17) showing that (A) the endemic steady state is asymptotically stable for
r = 6.4 < r0 ≈ 6.4, and (B) the bifurcated periodic solution is feasible for r = 6.8 > r0 ≈ 6.4.
Parameters are fixed as (39)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

40

I

20

x
403020

r(day)
100 0

Fig. 3 Bifurcation diagram describing the dynamics of system (17) as r increases. Parameters are fixed as
(39)

Ω = (0, 1), d = 0.001, Ñ = 1, β(x) = 0.4(x + 1), γ = 0.25(day−1),

α = 0.1(day−1),m(x) = 10(1 + sin(πx)).
(39)

By direct calculation we obtain that R0 = 1.1 and the bifurcation point r0 ≈ 6.4. It
can be observed from Fig. 2(A) that the endemic steady state is asymptotically stable
for r = 6 < r0 ≈ 6.4 and from Fig. 2(A) that the bifurcated periodic solution is
feasible for r = 6.8 > r0 ≈ 6.4. Further, we plotted the bifurcation diagram by using
the delay r as the bifurcation parameter (shown in Fig. 3).

By direct calculation from (39), the local basic reproduction number of system (17)
R(x) := β(x)/(γ (x)+α(x)) < 1 at 0 < x < 0.65 and the basic reproduction number
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with respect to the spatial homogeneous environment (
∫

Ω
β(x)dx <

∫

Ω
(γ (x) +

α(x))dx) is smaller than one. However, Fig. 3 shows that for system (17), disease
persists in any place and when the delay is large, disease oscillates at any place, which
implies spatial heterogeneity enhances disease persistence and oscillation, making
disease prediction and control much harder.

6 Conclusions

In this paper, we consider an SIS (suspected-infected-suspected) functional partial
differential equation model cooperated with spatial heterogeneity and delayed media
impact. The psychological impact ofmedia coverage and rapid information flow on the
public is depicted by the reduction in incidence rate at location x , which is expressed
as a media function e−m(x)I (x,t−r) with x depending on location. r is the delay of
mass media impact on infectious disease and it may directly means the mass media
response time, or indirectly means individual response time to media reports, such as
the time from symptom onset to hospitalization.

We first show the wellposedness of the model including the existence and unique-
ness of the solution, and that the solution semiflow is point dissipative, so a global
attractor follows. Then we define the basic reproduction number of the system, and
prove that when the basic reproducing numberR0 < 1, the disease-free steady state is
globally asymptotically stable; whenR0 > 1, the disease is uniformly persist. We find
that the basic reproduction number has nothing to do with the media impact param-
eters (m(x)) and the lag effect (r ), but only related to the diffusion rate. This shows
that the delayed media impact does not affect the disease persistence, but the human
mobility does. The asymptotic behaviors and monotonicity of the basic reproduction
number with respect to the diffusion rate of the infected individuals are studied. The
theoretical results show that the basic reproduction number in the spatial heteroge-
neous environment is larger than that in the spatial homogeneous environment, and
when the diffusion rate of the infected individuals is small, even if the basic repro-
duction number in the space homogeneous environment is less than one (the disease
is eliminated), the basic reproduction number is still greater than one under spatial
heterogeneous environment.

We prove the existence of local Hopf bifurcation at the endemic steady state state
with time delay as the bifurcation parameter and the global Hopf bifurcation theorem
is used to prove the global continuation of periodic solutions. Here wemention that we
can only obtain the existence of pure imaginary roots of eigenvalue equation in a small
range of susceptibility diffusion coefficient by using implicit function theorem. Our
theoretical and numerical results show that the lag effect of media impact may lead to
the periodic oscillation of disease, which brings great challenges to the prevention and
control of disease. Moreover, spatial heterogeneity not only makes the disease more
likely to persist, but also makes the disease more prone to periodic oscillation and the
oscillation places becomes larger, which makes disease harder to prevent and control.
Human mobility in spatial heterogeneous environments makes the disease situation in
different regions interact with each other. The prevention and control of this disease
is no longer an independent matter of each region, but needs overall planning.
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In epidemiology, for the spatially homogeneous ordinary differential epidemic
model, a general conclusion is that the larger the basic reproduction number, the more
people will eventually be infected. Therefore, the basic reproductive number can be
used as an important indicator to control of infectious disease, assess the potential for
disease invasion and persistence, to predict the extent of an epidemic, and to infer the
impact of interventions and of relaxing control measures. However, the utility of R0
may be overstated. One misconception is that the reproductive number is enough to
tell us how large an epidemic will be. For spatial epidemic model, the relationship
between basic reproduction number and epidemic size is more subtle and complex.
Smaller basic reproduction number may induce larger epidemic size. It may not be
effective to control the basic reproduction number of the disease alone. This poses a
greater challenge for more effective prediction and control of infectious diseases.
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National Natural Science Foundation of China(NSFC, 11631012(YX)). The authors would like to thank
the referees for kind help to review the paper.

Appendix

Proof of Theorem 2

Wefirst prove (i) by constructing a Lyapunov functional and applying LaSalle’s invari-
ance principle ((Hale 1969, Theorem 1); (Zhao 2017, Theorem 1.1.1)) for infinite
dimensional dynamical systems. Recall that system (2) defines a dynamical system
on C+

r , and Φ(t) is the solution semiflow of system (2) on C+
r , i.e., Φ(t)ϕ = ut (ϕ),

t ≥ 0, where u(t, ϕ) is the unique solution of system (2) with u0 = ϕ. By (Wu 1996,
Theorem 2.2.6), Φ(t) = ut (·) : C+

r → C+
r is compact, and for each ϕ ∈ C+

r t > r ,
the orbit of ϕ under Φ(t) has compact closure in C+

r .
For any ψ ∈ C+

r , define the functional

L(ψ) =
∫

Ω

ψ2(0)φI dx,

where φI is the positive eigenfunction corresponding to the principal eigenvalue λ1
of the problem (13). For an arbitrary solution u(t, ϕ) of (2), we obtain

d

dt
L(ut (ϕ)) =

∫

Ω

ItφI dx

=
∫

Ω

(

dIΔI + β(x)e−m(x)I (x,t−r)SI

S + I
− γ (x)I − α(x)I

)

φI dx

=
∫

Ω

(

β(x)I

(
e−m(x)I (x,t−r)S

S + I
− 1

)

− λ1 I

)

φI dx . (A.1)
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Therefore, d
dt L(ut (ϕ)) ≤ 0, which implies that L(ψ) is a Lyapunov functional on C+

r
relative to the system (2).

Next define

L̇(ϕ) := d

dt
L(ut (ϕ))

∣
∣
∣
t=0

and S = {ϕ ∈ C+
r |L̇(ϕ) = 0},

where u(t, ϕ) is the unique solution of (2) with initial condition u0 = ϕ ∈ C+
r . By

(A.1), we have S = {ϕ ∈ C+
r |ϕ2 = 0} and S is invariant under Φ(t). Thus by the

LaSalle invariant principle ((Hale 1969, Theorem 1)), we obtain limt→∞ I (·, t) = 0.
By (Zhao 2017, Theorem 1.2.1 with Remark 1.3.2) (see also (Thieme 1992, Theorem
4.1)), we have limt→∞ S(·, t) = Ñ .

For (ii). We appeal to the theory of uniform persistence theory developed in Zhao
(2017); Magal and Zhao (2005). Denote

U0 := {(ϕ, φ2) ∈ C+
r |φ2(0) �= 0}; ∂U0 := C+

r \U0.

Then C+
r = U0 ∪ ∂U0, U0 and ∂U0 are relatively open and closed subsets of U ,

respectively, and U0 is convex. Let Φ(t)(s0, i0) = (S(·, t), I (·, t)) be the unique
solution of system (2) with the initial value (s0, i0) ∈ C+

r for any t > 0. By Theorem
1, Φ(t) has a global attractor.
Step 1. We have Φ(t)U0 ⊂ U0 for all t > 0. This is a direct result of the strong
maximum principle for parabolic equations.
Step 2. Let A∂ be the maximal positively invariant set for Φ(t) in ∂U0, i.e.

A∂ := {(s0, i0) ∈ C+
r |Φ(t)(s0, i0) ∈ ∂U0, t ≥ 0}.

It is easy to verify that A∂ = {u0 = (s0, i0) ∈ C+
r |i0 = 0}. Denote ω((s0, i0)) as the

ω-limit set of (s0, i0) in C+
r (see Zhao (2017)) and

Â∂ = ∪{(s0,i0)∈A∂ }ω((s0, i0)).

It can be seen that Â∂ = {E0 = (Ñ , 0)}. Thus, {E0} is a compact and isolated invariant
set for Φ(t) restricted in A∂ .
Step 3. We prove that there exists some constant ε1 > 0 independent of initial values
such that

lim sup
t→∞

‖Φ(t)(s0, i0) − (Ñ , 0)‖ > ε1.

Assume, on the contrary, that for any ε2 > 0, there exists some initial value (s∗
0 , i

∗
0 )

such that

lim sup
t→∞

‖Φ(t)(s∗
0 , i

∗
0 ) − (Ñ , 0)‖ ≤ ε2

2
. (A.2)
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Given any small ε3 > 0 and let λ1(ε3) be the unique principal eigenvalue of the
following eigenvalue problem with a positive eigenfunction ψI :

−dIΔψI − β(x)e−m(x)ε3(Ñ − ε3)

Ñ + 2ε3
ψI + (γ (x) + α(x))ψI

= λψI in Ω; ∂ψI

∂n

∣
∣
∣∂Ω = 0.

Note that limε3→0 λ1(ε3) = λ1 < 0, where λ1 is the principal eigenvalue of eigen-
value problem (13). Therefore, we can choose ε3 such that λ1(ε3) < 0. Since ε2 is
arbitrary, choose ε2 = ε3. By (A.2), there exists T0 > 0 such that |S∗ − Ñ |, I ∗ ≤ ε3
for any x ∈ Ω, t ≥ T0. By the strong maximum principal of parabolic equations,
S∗(·, t), I ∗(·, t) > 0 for all t > 0. Then we can find a small positive constant c∗ such
that I ∗(x, T ) ≥ c∗ψI . It is easy to verify that I ∗(x, t) is a supersolution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ Î

∂t
= dIΔ Î + β(x)e−m(x)ε3(Ñ − ε3)

Ñ + 2ε3
Î − (γ (x) + α(x)) Î , x ∈ Ω, t > T ,

∂ Î

∂n
= 0, x ∈ ∂Ω, t > T ,

Î (x, T ) = c∗ψI ,

(A.3)

and c∗e−λ1(ε3)(t−T )φI is the unique solution to system (A.3). Note that λ1(ε3) < 0,
therefore I ∗(x, t) ≥ c∗e−λ1(ε3)(t−T )ψI → ∞ uniformly in Ω as t → ∞. This
contradiction finishes the proof of Step 3.

The result of Step 3 implies that {E0} is an isolated invariant set for Φ(t) in C+
r ,

and WS({E0}) ∩ U0 is an empty set, where WS({E0}) is the stable set of {E0} for
Φ(t).

Finally, by Steps 1-3 and (Zhao 2017, Theorem 1.3.1), Φt is uniformly persistent
with respect to (U , ∂U0). Moreover, by (Zhao 2017, Theorem 1.3.7), (2) admits at
least one endemic steady state.

Proof of Theorem 4

Before proving Theorem 4, we give three lemmas which will be used to conclude our
assertion. To start with, we give estimates for solutions of (27).

Lemma A.1 If (wλ, θλ, ψλ) is a solution to (27) with wλ > 0, θλ ∈ [0, 2π) and
ψλ ∈ XC\{0}, then

λ sin(θλ)

∫

Ω

Nλ|ψλ|2dx − wλ

∫

Ω

|ψλ|2dx = 0. (A.4)

Moreover, wλ

λ−λ∗ is bounded for λ ∈ [λ∗, λ∗].

123



Analysis of a diffusive epidemic system… Page 27 of 33 17

Proof It follows from substituting (wλ, θλ, ψλ) into (27), multiplying (27) byψλ, and
integrating the result by part over Ω that

−
∫

Ω

|∇ψλ|2dx + λ

∫

Ω

Kλ|ψλ|2dx − λe−iθλ

∫

Ω

Nλ|ψλ|2dx − iwλ

∫

Ω

|ψλ|2dx = 0,

which implies (A.4). Moreover, we obtain

wλ

λ − λ∗
= λ sin(θλ)

∫

Ω
Nλ|ψλ|2dx

(λ − λ∗)
∫

Ω
|ψλ|2dx ≤ λ∗ max(βm)(‖ φ ‖∞ +(λ − λ∗) ‖ ξλ ‖∞).

Thus w
λ−λ∗ is bounded for λ ∈ [λ∗, λ∗]. 	


By similar arguments as Lemma 2.3 in Busenberg and Huang (1996), we get the
following result:

Lemma A.2 If z ∈ XC and < φ, z >= 0, then | < Lz, z > | ≥ μ2 ‖ z ‖2YC , where μ2
is the second eigenvalue of operator −L.

We prove that G(z, κ, h, θ, λ) = 0 is uniquely solvable for λ = λ∗.

Lemma A.3 The following equation

G(z, κ, h, θ, λ∗) = 0, z ∈ (X1)C, h > 0, κ ≥ 0, θ ∈ [0, 2π) (A.5)

admits a unique solution (zλ∗ , κλ∗ , hλ∗ , θλ∗), where

κλ∗ = 1, θλ∗ = π

2
, hλ∗ =

∫

Ω
λ∗mβAλ∗φ

3dx
∫

Ω
φ2dx

and zλ∗ ∈ (X1)C is the unique solution of

Lzλ∗ + (β − γ − α − λ∗βAλ∗(m + 2/Ñ )φ)φ + iλ∗mβAλ∗φ
2 − ihλ∗φ = 0,

(A.6)

where L is defined in (19).

Proof It follows from the second equation of (A.5) that κ = κλ∗ = 1. Substituting
κ = 1 and λ = λ∗ into g2 = 0 yields

g2 = Lz + (β − γ − α − λ∗βAλ∗(m + 2/Ñ )φ)φ − e−iθλ∗mβAλ∗φ
2 − ihλ∗φ = 0,

which implies

⎧
⎪⎪⎨

⎪⎪⎩

λ∗
∫

Ω

mβAλ∗φ
3dx sin(θ) = h

∫

Ω

φ2dx,

λ∗
∫

Ω

mβAλ∗φ
3dx cos(θ) = 0.
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Therefore, θ = θλ∗ = π
2 , h = hλ∗ =

∫

Ω λ∗mβAλ∗φ3dx
∫

Ω φ2dx
. Moreover, it is easy to verify

that

(β − γ − α − λ∗βAλ∗(m + 2/Ñ )φ)φ,−λ∗mβAλ∗φ
2 − hλ∗φ ∈ Y1.

Thus, g1(z, κλ∗ , hλ∗ , θλ∗ , λ∗) = 0 has a unique solution zλ∗ satisfies (A.6). 	

Now we proceed to prove Theorem 4.

Proof let T = (T1, T2) : (X1)C × R
3 → YC × R be the Fréchet derivative of G with

respect to (z, κ, h, θ) at (zλ∗ , κλ∗ , hλ∗ , θλ∗ , λ∗), i.e.,

T (z, κ, h, θ) = Lz + κφ[β − γ − α − λ∗βAλ∗(m + 2

Ñ
)φ + iλ∗mβAλ∗φ − ihλ∗ ]

− ihφ + θλ∗mβAλ∗φ
2,

T2(r) = 2r ‖ φ ‖2YC .

Note that T is a bijection from (X1)C×R
3 to YC×R. Thus it follows from the implicit

function theorem that there exist λ̃∗ > λ∗ and a continuously differentiable mapping
λ → (zλ, κλ, hλ, θλ) from [λ∗, λ̃∗] to (X1)C ×R

3 such that G(zλ, κλ, hλ, θλ, λ) = 0.
Now it remains to prove the uniqueness. We only need to verify that if

G(z, κ, h, θ, λ) = 0 with zλ ∈ (X1)C, κλ, hλ > 0, θλ ∈ [0, 2π), then

(zλ, κλ, hλ, θλ) → (zλ∗ , κλ∗ , hλ∗ , θλ∗)

as λ → λ∗ in the norm of XC × R
3. To start with, we show zλ is bounded in (X1)C.

Note that Aλ and ‖ξλ‖∞ are bounded for λ ∈ [λ∗, λ̃∗]. By Lemma A.2 and similar
arguments in (Busenberg and Huang 1996, Theorem 2.4), we can obtain that there
exist M1, M2 > 0 such that

λ2‖zλ‖2YC ≤ | < Lzλ, zλ > | ≤ M1‖φ‖YC‖zλ‖YC + M2(λ − λ∗)‖zλ‖2YC .

Therefore, if λ̃∗ is sufficiently small, zλ is bounded in YC for λ ∈ [λ∗, λ̃∗]. Then zλ is
also bounded in (X1)C. Moreover, it follows from Lemma A.1 and (29) that κλ, hλ, θλ

are bounded for λ ∈ [λ∗, λ̃∗], which together with the boundedness of zλ in (X1)C
implies that {(zλ, κλ, hλ, θλ) : λ ∈ [λ∗, λ̃∗]} is precompact in YC × R

3. Then, there
exists a subsequence {(zλn , κλn , hλn , θλn )} is convergent in YC × R

3 for λn → λ∗
as n → ∞. Taking the limit of the equation L−1g1(zλn , κλn , hλn , θλn , λn) = 0 as
n → ∞, we can see from Lemma A.3 that

(zλn , κλn , hλn , θλn ) → (zλ∗ , κλ∗ , hλ∗ , θλ∗)

in (X1)C × R
3 as n → ∞. Thus we obtain the uniqueness and complete the proof. 	
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Proof of Lemma 7

It follows from Corollary 1 that N (Aτn (λ) − iwλ) = Span{eiwλθψλ}. If ϕ ∈
N (Aτn (λ) − iwλ) ∩ N (Aτn (λ) − iwλ)

2, then

(Aτn − iwλ)ϕ ∈ N (Aτn − iwλ) = Span{eiwλθψλ}

Therefore, there exists a constant a such that

(Aτn − iwλ)ϕ = aeiwλθψλ,

which implies

{
ϕ̇(θ) = iwλϕ(θ) + aeiwλθψλ, θ ∈ [−τn, 0],
ϕ̇(0) = Δϕ(0) + λKλϕ(0) − λNλϕ(−τn).

(A.7)

We can obtain from the first equation of (A.7) that

ϕ(−τn) = ϕ(0)e−iwλτn − aτne
−iwλτnψλ; ϕ̇(0) = iwλϕ(0) + aψλ,

which together with the second equation of (A.7) yields

Δϕ(0) + λKλϕ(0) − λNλ(ϕ(0)e−iwλτn − aτne
−iwλτnψλ) − iwλϕ(0) − aψλ = 0,

i.e.,

Δ(λ, iwλ, τn)ϕ(0) = aψλ(1 − λNλτne
−iθλ). (A.8)

Multiplying (A.8) by ψλ and integrating over Ω by parts yield that

a
∫

Ω

|ψλ|2(1 − λNλτne
−iθλ)dx = 0. (A.9)

For (A.9), taking the limit λ → λ∗, we have

θλ → π

2
, τn(λ − λ∗) → π/2 + 2nπ

hλ∗
,

ψλ → φ,
λNλ

λ − λ∗
→ λ∗mβAλ∗φ in XC.

Thus a = 0 can obtained from

∫

Ω

ψ2
λ(1 − λNλτne

−iwλτn )dx =
∫

Ω

φ2
(

1 + i
π/2 + 2nπ

hλ∗
λ∗mβAλφ

)

dx

+o(λ − λ∗) �= 0.
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Therefore,

N (Aτn − iwλ)
k = N (Aτn − iwλ), k = 2, 3, · · · , n = 0, 1, 2, · · · .

Thus μ = iwλ is a simple eigenvalue of Aτn (λ) for n = 0, 1, 2, · · · .

Proof of Lemma 8

It follows from differentiating (32) with respect to τ at τ = τn that

Δ(λ,μ, τ)ψ ′ + λNλψe−μτμ = dμ

dτ
(1 − λτNλe

−μτ )ψ.

Then multiplying by ψ and integrating over Ω by parts yield

Re

(
dμ

dτ

)

= Re

(∫

Ω
(1 − λτNλe−μτ )ψ2dx
∫

Ω
λNλψ2e−μτ vdx

)

= Re

( ∫

Ω
ψ2dx

∫

Ω
λNλψ2e−μτμdx

− τ

μ

)

.

Let τ = τn . Recalling that μ(τn) = iwλ,ψ(τn) = ψλ, thus we obtain

Re

(
dμ

dτ

∣
∣
∣
−1

τ=τn

)

= Re

( ∫

Ω
ψ2

λdx∫

Ω
iλNλψ

2
λe

−iwλτnwλdx

)

.

Moreover, taking the limit λ → λ∗, we have

wλ

λ − λ∗
→ hλ∗ , τn(λ − λ∗) → π/2 + 2nπ

hλ∗
,

ψλ → φ,
λNλ

λ − λ∗
→ λ∗mβAλ∗φ in XC.

Therefore, we have

(λ − λ∗)2Re
(
dμ

dτ

∣
∣
∣
−1

τ=τn

)

=
∫

Ω
φ2dx

∫

Ω
λ∗mβAλ∗φ3hλ∗dx

+ o(λ − λ∗) > 0.

This completes the proof.
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