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Natural killer (NK) cells are involved in innate immune responses to viral infections either
via direct cytotoxicity which destroys virus-infected cells or production of immunoregu-
latory cytokines which modulate adaptive immunity and directly inhibit virus replication.
These functions are mediated by different NK subpopulations, with cytotoxicity being gen-
erally performed by CD56dim NK cells, whereas CD56bright NK cells are mainly involved in
cytokine secretion. NK functional defects are usually combined so that impaired degran-
ulation is often associated with deficient cytokine production. Innate immunity is thought
to be relevant in the control of hepatitis virus infections such as hepatitis B virus (HBV) and
hepatitis C virus (HCV), and recent findings reproducibly indicate that NK cells in chronic viral
hepatitis are characterized by a functional dichotomy, featuring a conserved or enhanced
cytotoxicity and a reduced production of interferon (IFN)-γ and tumor necrosis factor-α. In
chronic HCV infection this appears to be caused by altered IFN-α signaling resulting from
increased signal transducer and activator of transcription 1 (STAT1) phosphorylation, which
polarizes NK cells toward cytotoxicity, and a concomitantly reduced IFN-α induced STAT4
phosphorylation yielding reduced IFN-γ mRNA levels.These previously unappreciated find-
ings are compatible on the one hand with the inability to clear HCV and HBV from the liver
and on the other they may contribute to understand why these patients are often resistant
to IFN-α-based therapies.
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INTRODUCTION
Hepatitis B (HBV) and hepatitis C (HCV) viruses are the most
frequent liver pathogens responsible for chronic liver disease in
over 600 million people worldwide, leading to cirrhosis and liver
cancer, the main indications for liver transplantation (Davis et al.,
2003; Hoffmann and Thio, 2007). Although HBV infection can be
prevented by an effective vaccine, no vaccine is yet available for
HCV infection.

The natural history of HCV infection is highly variable, with
approximately 70% of the patients developing persistent infec-
tion and about 20% progressing to cirrhosis over the ensuing
decades (Thein et al., 2008). HBV virtually always persist in the
immunocompetent host as occult infection despite clinical recov-
ery (Raimondo et al., 2008) but the rate of chronic infection is
dramatically high when HBV is acquired at birth or early infancy
(Liaw and Chu, 2009). Treatment with interferon (IFN)-α may,
albeit rarely, result in viral clearance but more often patients face
life-long antiviral suppressive therapy with the potential emer-
gence of resistance and toxicity (European Association for the
Study of the Liver, 2012).

A strong innate immune response is thought to be relevant in
the achievement of the control of both viral infections. A com-
mon view is emerging from recent studies showing the existence
of a natural killer (NK) cell functional dichotomy during chronic
HBV and HCV infections, characterized by an increased cytolytic
activity coupled to reduced IFN-γ production. In this review,

we shall discuss the possible causes and consequences of such
defect.

INNATE IMMUNE RESPONSES TO HCV AND HBV
In agreement with findings in many viral infections, host adap-
tive immune responses largely determine whether HCV and HBV
are spontaneously eradicated or persist (Rehermann and Nascim-
beni, 2005) although key factors in immunopathogenesis still
remain elusive. While innate immunity is thought to contribute
to the control of hepatotropic viruses, most of what is known
derives from experimentally infected chimpanzees, as they can
be studied from the onset of infection through the course of the
associated disease, with the caveat that the primate model may
not be entirely representative of the human setting. Contrary to
HBV infection in which no appreciable changes in innate immune
response genes are detected in the liver of HBV-infected chim-
panzees in the first weeks of infection, HCV seems to be able
to efficiently induce IFN-α/β-response genes and is sensitive to
IFNs in vitro (Wieland and Chisari, 2005). Yet, HCV seems to
ignore innate defense mechanisms, as it replicates almost imme-
diately after penetration into target cells, suggesting that innate
immunity does not significantly contribute to the early control of
virus infection. On the contrary, a complete clearance of HBV-
DNA has been reported during the first weeks of infection in
chimpanzee, before the onset of adaptive immunity (Guidotti
et al., 1999).
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Both HBV and HCV have developed strategies to evade the
host immune response within hepatocytes. For instance, the
NS3/4A HCV serine protease can cleave adaptor proteins such
as TIR-domain-containing adaptor-inducing IFN-β (TRIF) and
disturb binding of retinoic acid-inducible gene 1 (RIG-I) to IFN-
β promoter stimulator 1 (IPS-1) disrupting pathogen recognition
receptor (PRR) signaling, which in turn results in failure to activate
IFN regulatory factor 3 (IRF3) with consequent impaired activa-
tion of downstream target genes, including IFN-β (Meurs and
Breiman, 2007). Moreover, the HCV core protein can inhibit the
Janus kinase (JAK)-signal transducer and activator of transcrip-
tion (STAT) pathway and IFN signaling (de Lucas et al., 2005),
resulting in reduced expression of IFN-stimulated genes (ISG).
With respect to HBV proteins, both HBx and HBe can interfere
with the innate immune system, the first inhibiting RIG-I and
the melanoma differentiation-associated gene 5 (MDA5) path-
ways inducing downregulation of mitochondrial signaling (Wei
et al., 2010), and the second via blockade of the Toll-like receptor
signaling proteins TRIF-related adapter molecule (TRAM) and
MyD88-adapter like (Mal), leading to the inhibition of NFκB and
IFN-β activation (Lang et al., 2011).

HOST IMMUNOGENETIC POLYMORPHISMS AND INNATE IMMUNITY IN
VIRAL HEPATITIS
A recently recognized important host genetic factor associated
with spontaneous (Thomas et al., 2009) and treatment-induced
(Ge et al., 2009) HCV clearance is IL28B polymorphism. The
IL28B gene encodes for IFN-λ3 (Chen et al., 2006) and mem-
bers of IFN-λ family have been implicated in the killing of tumor
target cells (Kotenko et al., 2003; Sheppard et al., 2003). Inter-
estingly, although the cellular receptors of IFN-α and IFN-λ are
different (Sheppard et al., 2003; de Weerd et al., 2007), they share
the intracellular JAK–STAT signal pathway, suggesting a patho-
genetic role for this molecule in this clinical setting. However,
unfavorable IL28B single-nucleotide polymorphisms (SNPs) do
not seem to be associated with specific defects of innate immune
responses, although in one study rs12979860 IL28B TT homozy-
gosis was associated with increased expression of the NKG2A
inhibitory receptor and reduced expression of TRAIL on CD56dim

NK cells (Golden-Mason et al., 2011) suggesting a possible role
of IL28B in regulating innate immune responses in HCV infec-
tion. Moreover, Suppiah et al. (2011) have shown that IL28B
polymorphism and HLA-C alleles can have an additive effect on
NK cell responses, particularly in patients treated with IFN-α-
based therapies, confirming the concept of a combined role of
KIR/HLA-C interactions, IFN-λ, and NK cell-mediated control of
HCV infection.

Two different polymorphisms of tumor necrosis factor-α
(TNF-a) alleles have been associated with chronic HBV infection
of which one, TNF-a238A, is allegedly linked to an increased risk
in Europeans but not in Asians (Zheng et al., 2012), while another,
TNF-a857T, seems to be protective in the Asian population (Shi
et al., 2012b). A study analyzing the genetic polymorphisms of
different NK receptors showed that the SNP rs2617160 in NKG2D
was associated with susceptibility to chronic hepatitis B in a Han
Chinese population, underlying the importance of NK immune
response in the control of viral infections (Ma et al., 2010).

NK CELLS IN VIRAL HEPATITIS
Natural killer cells are an important component of innate immu-
nity, controlling viral infections either via direct cytotoxicity or
production of immunoregulatory cytokines, particularly IFN-γ
and TNFα, which modulate adaptive immunity and may directly
inhibit virus replication (Biron, 1997). These functions are appar-
ently mediated by different NK subpopulations, with cytotoxicity
being generally performed by CD56dim NK cells, the major popu-
lation of peripheral blood (PB) NK cells, whereas CD56bright NK
cells are mainly responsible for cytokine secretion. This report-
edly rigid distribution of tasks has recently been challenged as
CD56dim can mediate both functions, being able to produce large
amount of IFN-γ during the first hours after stimulation (De
Maria et al., 2011). NK functional defects are usually combined
so that impaired cytotoxicity is virtually always associated with
deficient cytokine production, however, the existence of different
regulatory pathways allows single functional alterations of one of
the two.

Several studies focused on circulating NK cells in viral hep-
atitis B and C, examining their phenotype and correlating those
parameters to NK cell function yielding in many cases diverg-
ing data in chronic HCV infection, with some ex vivo studies
suggesting that reduced NK cell frequencies did not affect sponta-
neous or cytokine-induced cytolytic effector function (Morishima
et al., 2006; Golden-Mason et al., 2008; Oliviero et al., 2009;
Dessouki et al., 2010) while others showed instead deficient NK
cytolytic activity (Meier et al., 2005). Similar discrepancies were
also observed in HBV studies, in which reduced cytotoxicity and
cytokine production (Sun et al., 2012) or intact cytotoxicity and
decreased plasmacytoid dendritic cell (pDC)-induced IFN-γ pro-
duction by NK cells were both recently observed (Shi et al., 2012a).

The reasons for such controversial findings are not immediately
apparent, although they may be due, in part, to the heterogeneity
of patients, for which some investigators attempted to control by
performing an extended phenotypic and functional analysis in a
substantial number of unselected patients and healthy donors.

NK CELL FUNCTIONAL DICHOTOMY
In our own comprehensive study involving a sizeable number
of patients with chronic HCV infection (Oliviero et al., 2009)
we have shown increased frequencies of NKG2D- and NKG2C-
expressing NK cells in HCV- and HBV-infected patients, respec-
tively, and a decrease in the frequency of NK cells expressing
KIR3DL1 in chronic HCV infection, supporting the concept of
a phenotype skewed toward activation in this setting. In line
with phenotypic data, NK cells from HCV positive patients
responded well to cytokine stimulation displaying normal or
increased cytolytic activity, while HBV patients showed a vari-
able cytolytic response. However, in both groups, there was a
major functional defect characterized by deficient NK cell IFN-
γ and TNF-α production, suggesting the existence of a functional
dichotomy, featuring enhanced or normal cytolytic activity and
reduced cytokine production. Our data are in agreement with
those of other studies in chronic HCV (Ahlenstiel et al., 2010;
Dessouki et al., 2010) and HBV infections (Peppa et al., 2010;
Tjwa et al., 2011). The mechanisms responsible for this defective
NK function have not been completely clarified yet but available
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evidence suggests that NK cells are polarized toward cytotoxicity
in chronic HCV infection (Oliviero et al., 2009; Ahlenstiel et al.,
2011; Edlich et al., 2012) whereas in HBV infection it may be influ-
enced by viral load and necroinflammation (Oliviero et al., 2009;
Zhang et al., 2011).

Because the antiviral effect produced by cytokines is more
efficient than single target cell lysis, the dysfunctional cytokine
secretion shown here may be an important mechanism contribut-
ing to virus persistence. The fundamental importance of IFN-γ
in the control of viral infections has indeed been shown in sev-
eral studies which demonstrated it to be a powerful non-cytolytic
mechanism of viral clearance from infected hepatocytes (Guidotti
et al., 1999; Guidotti and Chisari, 2001). In line with this, the
functional NK cell defect described above for chronic hepatitis
C has been interpreted as a consequence of chronic exposure
to HCV-induced IFN-α leading to chronic liver inflammation
via cytotoxic mechanisms but not to viral clearance because of
insufficient IFN-γ production (Ahlenstiel et al., 2010). Mechanis-
tic insights into the cause of a reduced IFN-γ secretion by NK cells
in this setting comes from recent studies indicating altered IFN-α
signaling resulting from increased IFN-α-stimulated STAT1 phos-
phorylation, which polarizes NK cells toward cytotoxicity, and
a concomitantly reduced IFN-α-induced STAT4 phosphorylation
yielding reduced NK cell IFN-γ mRNA levels (Miyagi et al., 2010;
Edlich et al., 2012).

As outlined above, different mechanisms would be responsi-
ble for defective IFN-γ production in chronic hepatitis B, with
IL10 playing a causative role in this context (Peppa et al., 2010).
Interestingly, the inhibitory effect of IL10 is only transient during
acute hepatitis B and is particularly evident in the early stage of
infection when viral replication reaches its acme. Of note, IL10
blockade restores NK cell ability to produce IFN-γ in actively
replicating HBV-infected patients. Even more interestingly, IL10
inhibits IFN-γ production but has no effect on cytotoxicity. In
addition, HBV interferes with pDC–NK crosstalk reducing IFN-
γ secretion by NK cells, without affecting their cytotoxic ability
(Woltman et al., 2011). It is interesting to note that in chronic
HBV infection both pDC and IL10 interfere with cytokine pro-
duction only, while sparing cytotoxic function. Another inhibitory
molecule found to be upregulated on NK cells during CHB
is the T cell immunoglobulin- and mucin-domain containing
molecule-3 (Tim-3), which may also impair both NK cell functions
(Ju et al., 2010).

Whether the findings obtained with PB NK cells are rele-
vant to the liver compartment where immune-mediated chronic
inflammation actually takes place remains to be elucidated.

LIVER-INFILTRATING NK CELLS IN CHRONIC HCV AND HBV
INFECTION
Intrahepatic (IH) NK cells in humans have attracted the interest
of many investigators. Several studies in chronic HBV and HCV
infections emphasized differences between the IH and PB com-
partments (Bonorino et al., 2009; Oliviero et al., 2009; Ahlenstiel
et al., 2010). In those studies, a larger proportion of IH NK cells
express activation molecules and TNF-related apoptosis-inducing
ligand (TRAIL) compared with the PB compartment and this led
many to advocate it as a proof of a pathogenetic role for NK in

liver necroinflammation (Dunn et al., 2007; Ahlenstiel et al., 2010).
However, the vast majority of studies in humans lack functional
evaluation of IH NK cells and, therefore, it is impossible to know
whether phenotypic changes actually mirror alterations in IH NK
cell cytolytic potential or cytokine production. Recent data from
our laboratory, for which appropriate IH NK cell controls were
obtained for the first time from subjects who agreed to donate a
liver tissue fragment during laparoscopic cholecystectomy, showed
instead that ex vivo isolated IH NK cells from patients with chronic
HCV infection displayed reduced degranulation ability compared
to controls with apparently conserved NKG2D-mediated IFN-
γ production. This apparent discrepancy with data of PB NK
cells should be weighed against the fact that a different proto-
col was used to stimulate NK for cytokine production. Indeed,
because a significant enrichment of NKG2D-expressing NK cells
was observed in HCV-infected patients, which suggests a role for
this activating receptor in recognition of HCV-infected hepato-
cytes, we used ULBP-1, one of the NKG2D ligands as stimulus
(Varchetta et al., 2012). Even allowing that different stimulation
protocols may have influenced data on NK cytokine secretion, it
is still unclear why the cytolytic defect is apparently restricted to
IH NK cells. It may be that the peculiar liver environment plays
an important role in this process. Indeed, selected NK cell pop-
ulations can accumulate inside the liver, as it has recently been
shown (Kramer et al., 2012), which can display a unique function-
ality. Moreover, the relatively impaired IH NK cytotoxic function
detected in our study may have different explanations related to the
liver compartmentalization of the virus which may have a direct
inhibitory effect on NK cell function. For instance, it is known that
HCV is able to inhibit NK cells by interaction between the E2 pro-
tein and CD81 (Crotta et al., 2002; Tseng and Klimpel, 2002) and
that the HCV core protein induces upregulation of MHC-I on hep-
atocytes (Herzer et al., 2003) and the HCV peptide 35–44 stabilizes
the expression of HLA-E on liver cells inhibiting NKG2A-mediated
cytolysis (Nattermann et al., 2005). It has been shown that IH lev-
els of IL10 determine an immunosuppressive environment both
in mice (Lassen et al., 2010) and humans (Accapezzato et al., 2004)
and, in agreement with the aforementioned, it has been reported
that IH, HCV-specific IL10-producing, non-classical regulatory
CD8+ T cells may prevent liver damage during chronic infec-
tion (Accapezzato et al., 2004; Abel et al., 2006). This, coupled to
exhaustion induced by continuous receptor engagement (Tripathy
et al., 2008; Bolanos and Tripathy, 2011) would eventually lead to
defective cytolytic function.

The functional cytotoxic defect observed was mirrored by a
unique phenotype characterized by increased expression of acti-
vating (NKp46, NKG2D) receptors in the face of reduced TRAIL
and CD107a expression, compared with controls (Varchetta et al.,
2012). These findings indicate dysfunctional IH NK cell cyto-
toxicity associated with TRAIL downregulation in chronic HCV
infection, which may contribute to virus persistence. Interest-
ingly, contrary to healthy donors, PBMC NK cells from HCV-
infected patients fail to upregulate TRAIL and CD107a when
exposed to culture-derived HCV (HCVcc), suggesting an acces-
sory cell-dependent, direct effect of the virus on TRAIL-mediated
cytotoxicity (Varchetta et al., 2012). The importance of the role
of TRAIL in chronic HCV infection is further emphasized by
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FIGURE 1 | Proposed mechanisms responsible for NK cell functional dichotomy in chronic hepatitis C infection. Details are discussed in the text.

evidence that TRAIL is upregulated at the gene level in patients
who have successfully responded to IFN-α treatment (Stegmann
et al., 2010) and by data showing upregulation of this molecule on
NK cells from healthy donors following IFN-α exposure in vitro
(Ahlenstiel et al., 2010). These previously unappreciated findings
are compatible on the one hand with the inability to clear HCV
from the liver and on the other with occasional resistance to IFN-
α-based therapies. A pathogenetic role for TRAIL has also been
suggested in chronic HBV infection, which is characterized by a
typically multifaceted clinical expression. Indeed, during periodic
reactivation of liver necroinflammation associated with ALT flares,
TRAIL was found to be upregulated on NK cells in the blood and
in the liver and responsible for hepatocyte apoptosis following
induction by IFN-α (Dunn et al., 2007). However, another study
showed that HBV core protein blocks TRAIL ligand DR5 expres-
sion on hepatocytes leading to the inhibition of TRAIL-induced
apoptosis (Du et al., 2009), suggesting the presence of a common
mechanism of TRAIL-mediated control of virus spread in the liver
in both HCV and HBV infection.

However, few studies have analyzed the human IH NK cell phe-
notype and function during chronic hepatitis B (Bonorino et al.,
2009; Ju et al., 2010) and only one (Zhang et al., 2011) included
IH NK cells from healthy donors, showing that IH NK cells are

activated and hypercytolytic in this setting. New studies on IH NK
cell function are needed to confirm these data and to define the
role of this population in CHB.

CONCLUDING REMARKS
Available evidence indicates that impaired IFN-γ secretion is
a reproducible feature of chronic hepatotropic viral infections.
While mechanistic insights are by and large lacking in HBV,
this defect appear to be caused by NK cell polarization toward
cytotoxicity in HCV. A possible sequence of events is depicted
in Figure 1. Hepatocytes and pDC would release substantial
amounts of IFN-α as a consequence of chronic HCV infection
which will preferentially stimulate STAT1 rather than STAT4 phos-
phorylation, resulting in reduced IFN-γ synthesis and secretion,
upregulation of several NK cell activating receptors and leading
to predominantly cytolytic activity. This functional dichotomy
would eventually result in the inability to eliminate HCV while
maintaining continuous liver inflammation. It is clear that the
mechanism hypothesized here only relates to innate immunity
and that cross-talk with adaptive immune responses should play a
major role in this setting. Nevertheless, it does provide an attractive
hypothesis for HCV persistence based on reproducible findings
from several groups working in the field.
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