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Abstract: Terahertz (THz)-detection technology has been proven to be an effective and rapid non-
destructive detection approach in biomedicine, quality control, and safety inspection, among other
applications. However, the sensitivity of such a detection method is limited due to the insufficient
power of the terahertz source and the low content, or ambiguous characteristics, of the analytes to be
measured. Metamaterial (MM) is an artificial structure in which periodic sub-wavelength units are
arranged in a regular manner, resulting in extraordinary characteristics beyond those possessed by
natural materials. It is an effective method to improve the ability of terahertz spectroscopy detection
by utilizing the metamaterial as a sensor. In this paper, a dual-band, high-sensitivity THz MM sensor
based on the split metal stacking ring resonator (SMSRR) is proposed. The appliance exhibited
two resonances at 0.97 and 2.88 THz in the range of 0.1 to 3 THz, realizing multi-point matching
between the resonance frequency and the characteristic frequency of the analytes, which was able to
improve the reliability and detection sensitivity of the system. The proposed sensor has good sensing
performance at both resonant frequencies and can achieve highest sensitivities of 304 GHz/RIU and
912 GHz/RIU with an appropriate thickness of the analyte. Meanwhile, the advantage of multi-point
matching of the proposed sensor has been validated by distinguishing four edible oils based on
their different refractive indices and demonstrating that the characteristics obtained in different
resonant frequency bands are consistent. This work serves as a foundation for future research on
band extension and multi-point feature matching in terahertz detection, potentially paving the way
for the development of high-sensitivity THz MM sensors.

Keywords: terahertz; metamaterial; dual-band sensor; high-sensitivity; refractive index

1. Introduction

Terahertz waves (0.1–10 THz) exist in the electromagnetic spectrum between mi-
crowave and infrared and have unique spectral properties within this band. They are
non-ionizing beams with low photon energy that fail to damage biomolecules when irradi-
ating samples [1–3]. Moreover, THz waves have good penetrability and can pass through
non-polar substances to detect internally [4]. Furthermore, terahertz spectroscopy can
be used to characterize macromolecules because the vibration and rotation patterns of
molecules are mostly in this frequency range [5], allowing for the generation of a distinct
“fingerprint” spectrum of many substances. Therefore, terahertz spectroscopy has potential
application in the fields of biomedicine [6], security inspection [7], and quality control [8],
with the unique advantage of being a fast, non-destructive and label-free detection method.
Nonetheless, in practice, the sensitivity and accuracy of detection are limited by the fact
that the electromagnetic response of most substances in nature to THz waves is prone to
be too weak [9,10]. In the field of agricultural products, the distinction of different kinds
of substances is of significance for ensuring the quality and safety of grain and oil. At
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present, however, it is difficult to distinguish some agricultural products using terahertz
time-domain spectroscopy directly, such as edible oils. Thus, developing an effective detec-
tion method with high sensitivity has practical significance for promoting the development
of a THz detection technique.

Metamaterials are compositional periodic structures of artificially engineered units
with exotic optical characteristics beyond those of natural materials [11–13]. The electro-
magnetic response of the incident wave can be adjusted by rationally designing the unit
structure to enhance the interaction between the detected wave and the measured substance
on the surface of the metamaterial, which will be more obvious when the resonant fre-
quency of the metamaterial is consistent with the characteristic frequency of the measured
substance. Recently, the maturation of the micro/nano fabrication has resulted in the rapid
development of metamaterials, and terahertz metamaterial sensors are becoming an emerg-
ing research hotspot due to their good penetration and ability to characterize biological
macromolecules of terahertz waves [14–16]. The sensing principle of terahertz metama-
terial is that changes in the surrounding permittivity caused by analytes with different
refractive indices will induce the variation of resonant peaks in the relevant transmission
spectrum [17,18]. Thus, by placing the measured substances on the sensor’s surface, in con-
tact with the metallic structural layer, we can measure and calculate the resonant frequency
shift of the transmission or reflection spectrum relative to the characteristic spectrum of
the metamaterial itself to accomplish substance identification [19–21]. Wang et al. [22]
proposed a terahertz biosensor based on all-metal metamaterial with a maximum refractive
sensitivity of 294.95 GHz/RIU and assessed this sensor’s effectiveness by detecting the
bovine serum albumin. Wang et al. [23] proposed a metamaterial biosensor, which con-
sisted of a metal elliptical split-ring resonator array with a subwavelength structure based
on flexible thin film to extend the application of flexible metamaterial in the sensor field,
which reached 243 GHz/RIU with a high Q-factor of 14.2. Furthermore, a dual-band tera-
hertz metamaterial was proposed to realize detection at two electromagnetically induced
transparency (EIT) resonances. The refractive index sensitivity was 280.8 GHz/RIU for
sensing the refractive index in the range 1.5–2 at the first EIT resonance and 201.6 GHz/RIU
for sensing the refractive index in the range 1–1.5 at the second EIT resonance [24]. With
the development of high-powered stable terahertz sources, it is more relevant than ever
to broaden the terahertz band availability for metamaterials, allowing the detection of the
substance over a wider range of frequency bands. In addition, a metamaterial sensor with
multiple resonances can realize the multi-point matching, enabling one to recognize the
specific substance at multiple frequency bands simultaneously. Therefore, these kinds of
broadband metamaterial sensors are becoming research hotspots.

In general, Q-factor (Q), refractive index sensitivity (S), and figure of merit (FOM)
are critical parameters for evaluating the sensing performance of a terahertz metamaterial
sensor [25,26]. As shown in Formula (1), the Q-factor is defined as the ratio of the resonant
frequency ( f ) to the full width at half-maximum (FWHM) of the resonant peak [27]. The
higher the Q-factor (the narrower the FWHM) is, the easier it is to distinguish the offset
of the resonant peak. In other words, the sharper the resonant peak is, the more reliably
the sensor’s detection shows. The refractive index sensitivity (S) reflects the relationship
between the resonant frequency shift (∆ f ) induced by the addition of the analytes and
the change of refractive index (∆n), and it can be calculated using Formula (2) [28]. The
FOM value is usually used to compare sensing performance under different resonant
frequency regions, which can be introduced as shown in Formula (3). A higher FOM value
indicates that the metamaterial sensor has a better sensing performance. To improve sensor
sensing performance, the resonant frequency and modulation depth of the metamaterial
can be adjusted by modifying the unit structure or the dielectric material to enhance the
electromagnetic field in a localized area, achieving a high Q-factor of resonance [29].

Q =
f

FWHM
(1)
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S =
∆ f
∆n

(2)

FOM =
S

FWHM
(3)

In this paper, a dual-band high-sensitivity terahertz metamaterial sensor (THz MM
sensor) composed of split metal stacking ring arrays arranged on a flexible substrate of
polytetrafluoroethylene (PTFE) is proposed. Such a sensor has two resonant modes within
a range of 0.2–3 THz and can achieve multi-point feature matching with the characteristic
frequency of the measured substance. The underlying mechanisms of both resonant modes
have been investigated via the analysis of surface electric/magnetic fields and current
distributions based on the electromagnetic oscillation theory. Furthermore, the sensing
performance of the proposed sensor has been calculated numerically and analyzed by
varying the refractive index and the thickness of the analyte layer. Finally, four edible
oils were chosen to validate the detection ability of the proposed terahertz metamaterial
sensor. It was shown that the THz MM sensor has a high refractive index sensitivity at both
resonance modes and can achieve effective multi-point matching to the characteristics of the
substance. The dual-band THz MM sensor will be fabricated using photolithography [30]
and applied to distinguish various oils based on their different refractive indices. According
to its high refractive index sensitivity, such a metamaterial sensor can sense the tiny changes
in refractive index, which is more valuable for trace substance detection. In the field of
agricultural products, the detection of pesticide residues and fungal toxins deserves to be
further studied.

2. Structure Design and Simulation

A kind of terahertz metamaterial of SMSRR is proposed, which consists of a metal
layer (Au) with the electrical conductivity of δ = 4.56× 107 S/m deposited onto a PTFE
(with the relative permittivity of εr = 2.1) substrate. Figure 1a,b display the schematic
diagram and the cross-sectional view of the proposed THz MM sensor. Four rings of radius
r1 and width w are symmetrically superimposed, with a hollow circle with radius r2 in
the center and a split of width g on the right. These parameters were obtained from the
optimization process of the design. Here, the geometrical dimensions of the unit structure
in this case are p = 50 µm, r1 = 10 µm, r2 = 6 µm, w = 3 µm, g = 2 µm, h1 = 30 µm, and
h2 = 0.2 µm.
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Figure 1. (a) Schematic diagram of the proposed SMSRR; (b) cross-sectional view of the SMSRR.

CST Studio Suite 2020 software was used to study the electromagnetic responses
of the designed terahertz metamaterial and optimize the geometrical dimensions of the
SMSRR structure [22]. In the simulation, the boundary condition was set as unit cell for
X/Y directions to repeat the structure periodically in two directions, while it was set as
open for the Z direction, which refers to the perfectly matched layer (PML) condition. As
shown in Figure 1b, the terahertz transverse electromagnetic (TE) waves incident vertically
on the surface of the metamaterial from the metal side, propagating in the Z direction with
a horizontally polarized electric field (Ex) and a vertically polarized magnetic field (Hy).



Biosensors 2022, 12, 471 4 of 12

3. Results and Discussion
3.1. Resonant Mechanism

Figure 2 displays the corresponding transmission spectrum of the proposed SMSRR,
revealing two separate resonant peaks at the low frequency of f1 = 0.97 THz and the high
frequency of f2 = 2.88 THz. The FWHM values of the two resonant peaks are 123 GHz and
336 GHz, as shown in the figure. According to Formula (1), the Q-factors of f1 and f2 are
Q( f1) = 7.65 and Q( f2) = 7.87, respectively, with modulation depths of 96% and 99%.
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Figure 2. Simulated transmission spectrum of the proposed SMSRR.

The surface electric/magnetic fields and current distribution of the terahertz metama-
terial were collected at the resonant peak frequencies to elucidate the physical mechanisms
of both resonant modes. The distributions of the electric field are shown in Figure 3a,b. In
the low-frequency resonant mode ( f1), the enhanced electric field was located at the gap
of the unit structure, and the further away from the gap, the weaker the electric field was;
in the high-frequency resonance mode ( f2), the higher induced charges concentrated at
the gap and two bulges of the inner ring, forming strong electric fields to generate dipole
resonance. Figure 3c,d depict the surface magnetic fields of the metamaterial structure at
two resonant frequencies, which were symmetrically distributed with the electric fields.

Figure 3e exhibits the surface current distribution at f1, showing that the current
directions are consistent throughout the metamaterial structure. The induced charges
concentrated at the gap move to form an equivalent LC oscillation circuit are represented
in the left bottom, while the gap on the right of the unit structure can be thought of as
capacitance C, and the metallic part can be assumed as inductance L, demonstrating that
the resonance at f1 is generated by LC resonance. The frequency f1 was determined based
on the well-known resonance formula: f = 1/2π

√
LC. According to Figure 3f, at the

higher resonant frequency f2, the current direction on the left side of the ring is opposite
to that on the right side, causing the induced charges to converge at the bulges on the left
side of the inner ring, forming the electric dipole shown in the lower left of the figure. At
this point, the alternating electric field drove the dipole vibration, resulting in a dipole
resonance. Both resonant frequencies were determined by the equivalent capacitance and
inductance related to the structure of the metal unit itself [29].
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3.2. Sensing Performance

Using the terahertz metamaterial as a sensor for substance detection, the analytes
ought to be covered on the surface of the metamaterial, which causes changes in the ambient
permittivity, resulting in the resonant frequency of the metamaterial’s THz transmission
spectrum shifting. The refractive index of the analyte added can be judged by measuring
the offset of the resonance peak, and substances with different refractive indices can be
distinguished according to this. It is of necessity to investigate the sensing performance of
the dual-band THz MM sensor based on the SMSRR, aiming to improve its refractive index
sensitivity and realize its practical application.

An analyte layer with a fixed thickness of t = 6 µm was placed on top of the dual-
band THz MM sensor. Figure 4a,b show the terahertz transmission spectra obtained by
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changing the refractive index (n) of the analyte layer from 1.0 to 1.3 with a step length of
0.05 at the resonant frequencies f1 and f2, respectively. The resonant frequencies exhibited
different degrees of redshift as the value n increased, and the substances to be measured
with differing refractive indices were identified based on the value of frequency shift.
Figure 4c depicts the frequency shift of the sensor as a function of the refractive index for
both resonant modes. The position of the resonance peaks shifted approximately linearly
with the increment of value n. The slopes of the fitting curves represent the refractive
index sensitivity of the sensor, which were S( f1) = 271 GHz/RIU for resonance 1 and
S( f2) = 823 GHz/RIU for resonance 2, respectively. Compared with the results in recent
literature [31,32], the proposed dual-band THz MM sensor had higher refractive index
sensitivity in both resonant frequency bands, allowing one to distinguish analytes with
similar refractive indices.
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Figure 4. The transmission spectra of the THz MM sensor at (a) f1 and (b) f2 with changing n from
1.0 to 1.3; (c) resonance frequency shift of the sensor as a function of n and the linear fitting results.

To further investigate the influence of analytes on the refractive index sensitivity of
the proposed sensor, different thicknesses of the analyte layer (from 2 to 22 µm with the
step length of 4 µm) were numerically simulated. Figure 5a,b exhibit the relationship
between the resonant frequency shift and the refractive indices for different thickness
analytes at resonant frequencies f1 and f2, respectively. As shown in the figures, the
sensitivity increased from 188 GHz/RIU to 271 GHz/RIU for resonance 1 and from 573
GHz/RIU to 823 GHz/RIU for resonance 2 when the value of t was changed from 2 to 6 µm.
Namely, as the thickness of the analyte layer increased, the refractive index sensitivity of the
sensor significantly increased. However, after t ≥ 10 µm, this increase in refractive index
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sensitivity was no longer evident and even decreased, because the analyte thickness was
beyond the range of distance that electromagnetic resonance affected, which alternatively
affected the sensing performance of the sensor. Thus, it was necessary to select a suitable
analyte thickness during detection, which was of practical significance for improving the
sensitivity of the sensor.
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In order to obtain a quantitative description of the sensing performance, the refractive
index sensitivity and the FOM value of the proposed THz MM sensor were calculated
according to Formulae (2–3). FOM value is regularly used to compare the sensing perfor-
mance of a sensor in different frequency bands. The narrower the FWHM of the resonant
peak was, the less likely that the terahertz spectra of different substances overlapped,
and the more accurate the detection results were. Figure 5c depicts the effect of analyte
thickness on the FOM value of the sensor; since the FOM value was higher for resonance 2,
the sensor performed better overall at frequency f2 than at frequency f1. Table 1 displays
the performance parameters of the THz MM sensor at f1 and f2 with varying analyte
thicknesses, showing that both resonant bands had better performance when t = 18 µm.
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Table 1. Performance of the proposed THz MM sensor with different analyte thicknesses.

Thickness/µm S(f1)/GHz·RIU−1 S(f2)/GHz·RIU−1 FOM(f1)/RIU−1 FOM(f2)/RIU−1

2 188 573 1.53 1.57
6 271 823 2.20 2.25
10 295 893 2.40 2.44
14 290 898 2.36 2.45
18 304 912 2.47 2.49
22 292 907 2.37 2.48

Comparison with previously published metamaterial sensors using transmission
spectra is essential. Li D. et. al [31] designed a sensor consisting of a metallic microsize
circular ring gap patterned on the quartz substrate with a refractive index sensitivity of 29
GHz/RIU at 0.286 THz and 74 GHz/RIU at 0.850 THz, which was used in the frequency
range of 0.2–1 THz. Zhu L. et. al [24] proposed a kind of metamaterial with refractive
index sensitivity of 280.8 GHz/RIU at 0.89 THz and 201.6 GHz/RIU at 1.56 THz. The
first resonance was suitable for sensing the refractive index of an analyte from 1 to 2,
but the second resonance was only suitable for sensing the refractive index from 1 to 1.5,
since further enhancement of the refractive index for the analyte raised the overall loss of
metamaterial and degraded the performance of the second resonance band. In contrast, the
proposed sensor in this paper has the following advantages: firstly, the two resonances are
far apart and thus the sensor has a wider working frequency band of 0.2–3 THz; secondly,
the refractive index sensitivity of the two resonances achieves 304 GHz/RIU at resonance 1
and 912 GHz/RIU at resonance 2, respectively, which is superior to previous works [24,31],
making the sensor easier to identify kinds of substances with similar refractive indices;
finally, both resonances can be used for sensing the refractive index between 1 and 2,
enabling one to identify a specific substance at multiple frequency bands simultaneously,
which can better meet the specificity of the substances to be measured.

3.3. Application Analysis

To demonstrate the sensing potential of the proposed dual-band THz sensor, four
types of edible oils were used in the simulation experiment: corn oil (εcorn = 1.33), peanut
oil (εpeanut = 1.83), soybean oil (εsoybean = 2.21), and canola oil (εcanola = 2.73). Since
the permittivity ε is proportional to the refractive index n as ε = n2 [17], the reference
refractive index (nre f ) of these kinds of oils were calculated: corn oil (ncorn = 1.153), peanut
oil (npeanut = 1.353), soybean oil (nsoybean = 1.486), and canola oil (ncanola = 1.652). The
thickness of the analyte layer was set to 18 µm based on the numerically calculated results
of the sensing performance shown in Table 1.

The ability of the sensor to distinguish different analytes was validated first. Fig-
ure 6a,b show the THz transmission spectra of the proposed THz MM sensor at the reso-
nant frequencies f1 and f2. The resonant peaks of the various types of oil had significantly
red-shifted compared with the reference resonant peak of the air (ε = 1), and the larger the
permittivity of the oil being measured was, the more pronounced the shift of the resonance
peak. Table 2 shows the transmission spectra analysis results for various types of edible oil,
with air as a reference analyte. The rows of f1 and f2 are the frequencies of different analytes
at resonances 1 and 2 (e.g., the resonant frequencies of corn oil were 0.90 and 2.71 THz,
while they were 0.75 and 2.30 THz for canola oil). As a result, it was possible to determine
the type of oil being measured based on the resonant frequency of the transmission spectra.
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Table 2. Analysis results of the transmission spectra for edible oils detection using the proposed
dual-band sensor.

Parameters Reference Values Corn Oil Peanut Oil Soybean Oil Canola Oil

ε 1 1.33 1.83 2.21 2.73
nre f 1 1.153 1.353 1.486 1.652

f1/THz 0.9568 0.9009 0.845 0.802 0.7504
f2/THz 2.8832 2.7112 2.5607 2.4489 2.2984

∆ f1/THz 0 0.0559 0.1118 0.1548 0.2064
∆ f2/THz 0 0.172 0.3225 0.4343 0.5848

S( f1)/GHz·RIU−1 304
S( f2)/GHz·RIU−1 912

n( f1) 1 1.184 1.368 1.509 1.678
n( f2) 1 1.189 1.354 1.476 1.641

In order to further verify that the proposed sensor can achieve multi-point feature
matching at different frequency bands, the refractive indices n( f1) and n( f2) of each oil
sample at different resonant modes were calculated by using Formula (4) according to
the resonant peak offset of their transmission spectra, and compared with their standard
refractive index nre f .

noil = 1 + ∆n = 1 +
∆ f

S( f )
(4)

where ∆ f is the shift of the resonant peak caused by the addition of the edible oil sample,
which is shown in rows ∆ f1 and ∆ f2 of Table 2, and ∆n is the variation of the refractive
index in comparison to nair = 1. S( f ) represents the refractive index sensitivity, which was
previously calculated in Table 1.

As shown in Table 2, the refractive indices of the measured oil, n( f1) and n( f2), are
similar and close to the standard value nre f . Take peanut oil as an example: the n( f1)
and n( f2) are 1.368 and 1.354 at mode f1 and f2, respectively, and the standard refractive
index is 1.353. In other words, the characterization results of the transmission spectra in
both detection frequency bands can be used to distinguish the types of measured samples,
implying that the available discrepancy information obtained by using the proposed
dual-band senor for substance detection is doubled when compared with the single-band
sensor. Currently, most studies on edible oil spectroscopy detection rely on data from
post-processing methods to improve detection accuracy [33,34] but fail to collect more
characteristic information during the detection process. In turn, the proposed dual-band
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terahertz metamaterial sensor can realize multi-point feature matching to achieve high
sensitivity and the rapid detection of edible oils, which has a certain reference value for
practical applications such as edible oil adulteration detection or gutter oil identification,
mainly attributed to the extended detection frequency range and increased number of
resonant peaks.

In addition, compared with the spectral analysis results for peanut oil, soybean oil, and
canola oil, although the refractive indices of corn oil calculated in both detection bands can
be tested with each other, they are still significantly different from the standard refractive
indices (n( f1) = 1.184, n( f2) = 1.189, and nre f = 1.153). This is because the proposed
sensor has different detection accuracies for analytes in different refractive index ranges. It
can be observed that the analytical results of corn oil with nre f = 1.153 are not as accurate
as those of other edible oils with nre f ∈ [1.35, 1.65]. Therefore, further research on tunable
sensors that can simultaneously accommodate multiple analytes needs to be carried out
based on current work.

4. Conclusions

A dual-band high-sensitivity THz MM sensor based on SMSRR was proposed for
sensing applications in the frequency range of 0.1–3 THz, with significant resonant peaks
in both bands of 0.1–1 THz and 2–3 THz. The SMSRR structure exhibited electromagnetic
response with a Q-factor of 7.65 at 0.97 THz with a modulation depth of 96%, and 7.87
at 2.88 THz with a modulation depth of 99%. The sensing performance of the THz MM
sensor was numerically simulated by sensing the analytes with various refractive indices
for different analyte layer thicknesses. As a result, the best refractive index sensitivities of
S( f1) = 304 GHz/RIU and S( f1) = 912 GHz/RIU were achieved with an analyte thickness
of 18 µm and with corresponding FOM values of 2.47 and 2.49. By analyzing the terahertz
transmission spectra of four edible oils obtained using this metamaterial sensor, it was
illustrated that the characterization information of the measured edible oil obtained at
the two resonant frequencies basically matched each other, and that different kinds of
samples were distinguished according to the shift value of the resonant frequencies. In
comparison to most conventional sensors with a single resonant frequency, the proposed
sensor achieved multi-point feature matching, allowing one to characterize identical sam-
ples at different frequencies, thereby improving the selectivity and sensitivity of detection.
Thus, broadening the terahertz detection band and accomplishing multiple resonances are
important research directions for terahertz sensing technology. In conclusion, this work
establishes a theoretical foundation for the fabrication of a high-sensitivity terahertz sensor,
which is of significance for the development of terahertz detection methods.
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