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Background:The reduction of muscle hypertonia and spasticity, as well as an increase

in mobility, is an essential prerequisite for the amelioration of physiotherapeutical

treatments. Repetitive peripheral magnetic nerve stimulation (rPMS) is a putative adjuvant

therapy that improves the mobility of patients, but the underlying mechanism is not

entirely clear.

Methods: Thirty-eight participants underwent either an rPMS treatment (N = 19) with

a 5Hz stimulation protocol in the posterior tibial nerve or sham stimulation (N = 19).

The stimulation took place over 5min. The study was conducted in a pre-test post-test

design with matched groups. Outcome measures were taken at the baseline and after

following intervention.

Results: The primary outcome was a significant reduction of the reflex activity of

the soleus muscle, triggered by a computer-aided tendon-reflex impact. The pre-post

differences of the tendon reflex response activity were −23.7% (P < 0.001) for the

treatment group. No significant effects showed in the sham stimulation group.

Conclusion: Low-frequency magnetic stimulation (5Hz rPMS) shows a substantial

reduction of the tendon reflex amplitude. It seems to be an effective procedure to

reduce muscular stiffness, increase mobility, and thus, makes the therapeutic effect of

neuro-rehabilitation more effective. For this reason, the 5Hz rPMS treatment might have

the potential to be used as an adjuvant therapy in the rehabilitation of gait and posture

control in patients suffering from limited mobility due to spasticity. The effect observed in

this study should be investigated conjoined with the presented method in patients with

impaired mobility due to spasticity.
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INTRODUCTION

Reducing muscle hypertonia or spasticity in order to regain
independent mobility is an essential goal of a physiotherapeutical
treatment in neuro-rehabilitation. The rapid normalization of the
muscle tone is a criterion that can crucially influence the outcome
of future rehabilitation or in training programs. An increase
of hypertonia and stiffness in skeletal muscles is a common
phenomenon that is associated with considerable discomfort
or pain and refers to both chronic and acute cases, e.g., in
post-stroke rehabilitation (1), or might also occur after strength
training (2–4). Some form of intervention is, therefore, required,
in case of spasticity interferes with function, or where long-term
complications are expected (5). Based on the knowledge of the
mechanisms responsible for muscular hypertonia, one option for
patients could be a targeted treatment with repetitive peripheral
magnetic nerve stimulation (rPMS), as adjuvant therapy that
could improve the mobility of patients or athletes.

Some studies have been conducted to describe the
implications of rPMS (reducing hypertonia, spasticity, and
so forth) on spinal neuromuscular structures [for review (6)]. By
employing a pulsed magnetic stimulation of the peripheral nerve
a twitch can be triggered in a specific skeletal muscle. This twitch
contraction is achieved initially through the triggering of an
action potential in the associated motor nerve (7). The axon of
the α-motor neuron conducts the generated action potential to
the neuromuscular junction, thus triggering a twitch contraction
in the muscle. A rPMS caused muscle activation is induced
by a nerve stimulation and not by direct muscle activation
(8). Depending on the stimulation frequency, the repetitive
stimulation of the nerve can lead to muscle contraction in such
a way that the individual twitches merge on higher stimulation
frequencies. In this experiment, the magnetic stimulation was
performed at the branches of the posterior tibial nerve, which
resulted in an unfused twitch contraction of the triceps surae
muscle. The stimulation frequency was chosen to be low enough,
at five pulses per second, so that no complete merging of the
individual twitches was observed.

The effect of a magnetic stimulation, especially on the
peripheral nerves, has been described by some authors (9–
17). Transcutaneous electrical nerve stimulation (TENS) shows
some efficacy in treating spasticity (18, 19), as measured by
a modified clinical Ashworth-scale. A significant reduction of
the muscle tone after a TENS treatment (decrease in resistive
torque) was observed (20), but it was not always associated
with a decrease in reflex activity. In contrast to TENS, magnetic
pulses can be applied painlessly to the efferent motor nerves at
higher intensities, since the cutaneous receptors and their nerves
are not stimulated to the same extent. Furthermore, rPMS can
stimulate deeper nerve structures that cannot be targeted with
TENS. It is of particular importance, in terms of a painless
use in therapeutic rPMS applications, that the activation of the

Abbreviations: ANOVA, analysis of variance; CMAPpp, compound muscle action
potential (peak-to-peak); EMG, Electromyography; rPMS, repetitive peripheral
magnetic stimulation; TENS, transcutaneous electrical stimulation; (T-reflex),
tendon reflex.

afferent sensory nerves is significantly lower with a magnetic
stimulation (21, 22). A painless treating of motor nerve structures
with a magnetic stimulation is possible. Whereas, the treating
of peripheral nerves with an electric stimulation gives rise to
significant pain symptoms (23–25). Different rPMS protocols
have been used to successfully treat skeletal muscle spasticity,
which could be defined by an increase of phasic and tonic stretch
reflex activity, depending on the velocity of the muscle stretch
(26). In an earlier study, it was found that it was possible to
improve electrophysiological measures of spasticity by using a
biphasic 12Hz rPMS protocol for 8 s, followed by a 22 s rest, for
a total of 30min stimulation (27). Stimulations with 15Hz of 3 s
duration and 30 trains, with an inter-train-interval of 2 s, with
1,350 impulses in total, and with an intensity of 60 A/µs (40%
of maximal stimulator intensity), applied to the rectus femoris
muscle (28), or the triceps surae muscle complex (29), results in
different effects.

A magnetic stimulation, with a 20Hz repetition rate, was used
by Struppler et al. (30) andMarz-Loose and Siemes (31), but with
a different amount of impulses (5,000 and 2,000, respectively),
and with different stimulation sites. A 50Hz rPMS protocol was
used to decrease spasticity (32) in six sessions, with a continuous
theta-burst of 200ms, at an inter-stimulus interval of 5 sec−1,
with a repetition rate in a 60 s train, with 900 impulses and an
intermittent theta-burst. The theta-mode consisted of 2 s trains,
repeated every 10 s, with 900 impulses (300 s). The described
intermittent theta-burst stimulation produced a cyclic activation-
relaxation of the muscle (33).

A low-frequency stimulation with 3Hz (34) was applied as
an accompanying curative treatment to physiotherapy in post-
stroke rehabilitation. This low- frequency rPMS was performed
with 600 stimuli, in a series of 3 s, followed by 3 s rest, at
a 60% intensity. All studies except one (29) reported positive
clinical or physiological effects of the rPMS treatment. Despite
these findings, the mechanisms of treating muscle tone, clonus,
and spasticity, are still poorly understood (35, 36) and they are
not ideally measurable, either mechanically (37), or by using
clinical scales (38). A study of the reflex responses provides a
quantitative representation of the effects of an rPMS treatment.
One of the central questions in this context is: “under what
conditions can the spinal motor circuits be influenced by means
of targeted magnetic pulses?” Thus, the purpose of this study
was to investigate the effect of 5Hz rPMS on the regulatory
spinal circuits. The underlying hypothesis was the following:
the researchers presumed that the application of repetitive low-
frequency pulsed magnetic fields to the peripheral nerves of the
muscle would reduce the compound muscle action potential
(CMAP) amplitudes of the tendon-reflex (T-reflex) activities of
the soleus muscle. Since the measurement of muscle stiffness
or spasticity, biomechanically encounters great difficulties, an
investigation of the peripheral reflex processes serves as a
quantifiablemarker (31). A validation of the study’s hypothesis, as
given in the present paper, opens up the possibility of introducing
rPMS, in order to treat the phenomenon of muscle hypertonia,
in a wide range of applications in physiotherapy, and in the
various forms of muscle training. To the best of the authors’
knowledge, this study is the first, which addresses the effects of
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rPMS on tendon reflex response behavior of the soleus muscle
in quantitative detail, and it provides a quantifiable parameter of
muscle relaxation.

METHODS

Ethics Statement
The study was approved by the local ethics committee of the
medical faculty of the University Rostock, Germany (Identifier
No. A20160052), as required by the international standards of
the Declaration of Helsinki (39). All participants gave written
informed consent prior participation.

Participants
The study involved 38 subjects (40). Of these, 19 volunteers
participated in the treatment group (TG; 12 men/7 women),
with a mean age of 25.4 (±3.0), a mean height of 177.3 cm
(±8.9 cm), and a mean body weight of 73.3 kg (±13.5 kg). This
was while 19 subjects (14 men/5 women) participated in the
control group (CG; sham stimulation), with a mean age of 27.5
(±4.4), a mean height of 177.1 cm (±8.6 cm), and a mean body
weight of 72.3 kg (±10.0 kg). Those cases with metallic implants
were excluded from the study (41). All of the subjects were
healthy students and staff members, with unremarkable lower
extremities, both in orthopedic and neurological terms, from
whom informed consent was obtained (42). The participants
had ample opportunities to familiarize themselves with the
experiment and with the treatment.

Study Design
The investigation was conducted in a pre-test post-test design
with matched groups. To rule out every other influence on the
study and a reflex modulation beside the rPMS treatment, for
example, a response decrease in the course of the experiment
(43), we chose a control group design. In the control group, the
identical procedure was performed as in the treatment group
except the stimulator did not generate a magnetic field. The
experiment initially involved the measurement of the Achilles
tendon-reflex responses of the soleus muscle, by means of
a linear-actuator reflex hammer (fifteen measurement trials)
in a sitting position. The subjects were asked to maintain a
right angle, both at the hip and at the knee joint during the
reflex measurements. The tendon taps were applied with a time
interval of at least 10 s in between, followed by 5Hz rPMS,
based on the protocol as described below. The stimulation was
applied in a standing position to the posterior tibial nerve
in the popliteal fossa, resulting in contractions of the triceps
surae muscle. The magnetic stimulation of peripheral nerves is
somewhat unfocal. We have tried to exclude any cocontraction
with palpation of the tibial anterior muscle simultaneously. The
subjects maintained a slight tension in the stimulatedmuscle over
the entire stimulation period. In the third part of the experiment,
the subjects were re-investigated in the sitting position, in order
to ensure an identical reflex triggering. The re-examination of
the T-reflex responses of the soleus muscle was carried out as
described. Care was taken for the exact repositioning of the
participants for the post measurements. Throughout the entire

reflex measurements, complete relaxation of the soleus muscle
was carefully controlled via online electromyography (EMG).
Trials with a muscular activity >50 µV in a period of 100ms
prior to the reflex triggering were discarded. In order to check
the uniformity of the experimental conditions when triggering
the reflex responses, the impact forces were tested likewise. All
of the impact forces were evaluated according to the peak values
of the reflex hammer’s impact.

Tendon Reflex
The T-reflex excitability of the soleus muscle was probed by a
brisk mechanical impact elicited by a linear-actuator (Copley
Controls, Canton, MA 02021, USA) at the Achilles tendon, with
a thrust rod being moved in the acceleration mode. The actuator
showed perfect repeatability and produced an absolute position
accuracy of 0.35mm. The control parameters were chosen as
follows: (i) the reflex hammer (head of the thrust rod) exactly
covered a distance of 40mm from the home position to the
impact point on the Achilles tendon; (ii) the home position of
the actuator was defined by a contact of the reflex hammer at
the Achilles tendon; and (iii) the development of the maximum
impact force occurred within <12ms, triggering supra-maximal
reflexes (44). A tendon vibration due to the impact, as described
(45), could not be detected when using the brisk actuator impacts.

The T-reflex of the soleus muscle was triggered in the sitting
position, via an impact at the Achilles tendon (Figure 1). The
level of the impact force depended individually on the elasticity
of the biological structures (tendon, muscle, subcutaneous fatty
tissue), with a minimum of 40N, up to a maximum of 100N,
between the subjects. While there was some inter-individual
variability, it was possible to trigger fairly uniform impacts in
any given subject. The machine-controlled tendon taps produced
constant supra-maximal impacts and elicited constant reflex
responses. Methodologically, there was an important advantage
in investigating the muscular relaxation via the T-reflex activity,
as a measure at an interval scale level, in comparison to the
commonly used Ashworth Scale (38).

Force Measurement
The force was measured during the impact that triggered the
entire measuring process. The triggering threshold was 7N, as
accurately defined by the home position of the linear actuator.
The reflex hammer fixed at the head of the thrust rod of the
programmable linear actuator was equipped with a piezoelectric
force sensor (Type 9011A, Kistler Instruments, Winterthur,
Switzerland) and it measured the impact force at the Achilles
tendon. The force-sensor data was prepared for the online
presentation by using a Kistler charge amplifier type 5037A.
The constant and comparable triggering of the reflex responses
required an exact repositioning of the impact point at the tendon.

Electromyography—Recording and
Sampling
The reflex responses were recorded by using a bipolar montage
(46) of the cup-electrodes (HELLIGE baby-electrodes; GE
medical systems, Milwaukee, USA), with an electrode area of
about 12 mm2 (Ag/AgCl) and an inter-electrode distance of
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FIGURE 1 | The sketch shows the subject had a fixed sitting position. The subjects were seated comfortably upright, with a knee angle and a foot angle each of 90◦.

The left foot was fixed with two stirrups on a tempered (30◦C) footplate. The upper leg was secured at the topside; the arm and head positions were kept constant

during the whole experiment. The reflex-triggering hammer (right side) was equipped with a force sensor, in order to record the impact forces at the muscle-Achilles

tendon-complex.

20mm, placed longitudinally over the belly of the lateral soleus
muscle. The skin preparation procedures were applied before
the electrode application, i.e., cleaning the skin with alcohol
and hair-removal before the positioning of the electrodes. An
electrode gel (HELLIGE, GE medical systems, Milwaukee, USA)
was used to ensure optimal skin-electrode contact. The electrodes
and the twisted wires were fixed to the skin with adhesive tape.
The surface electromyograms were recorded with a custom-
made differential-amplifier (x1000 amplification, input resistance
16G�). The signals were recorded with a DAQ-Card 6024
(National Instruments, Austin, Texas, USA) at a 12-bit resolution
and at a sampling rate of 10,000/s, using the DIAdem 8.1
(National Instruments, Ireland) signal processing program. The
movement artifacts in the EMG were filtered with a Butterworth
2nd-order high-pass filter with a cut-off frequency of 5 Hz (47).

Magnetic Stimulation
The pulsed magnetic stimulation was carried out with a
Magpro 30+ stimulator with the Mag-Option (MagVenture,
Skovlunde, Denmark—formerly Medtronic) and a parabolic
coil type MMC-140, with the convex side being used. The
stimulator generated biphasic symmetric pulses, with a duration
of 280 µs, and a magnetic flux density of a maximal 4.5 Tesla.
The stimulation protocol that was chosen from preliminary
tests was performed with a stimulus intensity of 60% of the
maximum stimulator output, corresponding to a current flux
of 94 A/µs. The stimulation intensity was the same for each
subject and was clearly visible above the motor threshold. The
stimulation was carried out with bursts of 15 stimuli each, at 5
stimulations per second, and with 750 pulses in total. The interval
between the trains was 3 s with 50 trains, and the stimulation
lasted 5min. The same procedure (coil positioning, stimulation,
and the like) was conducted in the sham group, but without
exposure to pulsed magnetic fields.

Data Analysis
The peak-to-peak compound muscle action potential (CMAPpp)
amplitude of the lateral site of the soleus muscle was recorded
to characterize the reflex activity. The changes in CMAPpp were
measured at the baseline condition and immediately after the
magnetic stimulation or the sham stimulation. The CMAPpp
amplitude measurements were made from the stationary EMG
data (Butterworth high-pass filter). The algorithm added the
absolute amplitude values from the lowest negative peak and the
highest positive peak. In order to check the uniformity of
the experimental conditions when triggering the reflex responses,
the impact forces were observed online during each trial.

Statistics
The effects of the 5Hz rPMS on the measurements of the spinal
tendon reflex excitability were compared in the treatment group
and the control group, using a mixed design analysis of variance
(ANOVA) with between the group effects and the repeated-
measure effects of time as the main factor. The data was analyzed
by SPSS version 20.0 for Windows (SPSS Inc., Chicago, IL, USA).
All of the values in the text, and figures, are expressed as mean±

SD. A P < 0.05 was considered significant.

RESULTS

The reflex response behavior of the skeletal musculature after
the rPMS was measured in terms of the tendon tap triggered
CMAPpp amplitude values. The CMAPpp amplitudes decreased
after 5Hz rPMS stimulation in the treatment group (Figure 2).

The ANOVA for repeated measures showed a significant
interaction between the time and group [F(1, 36) = 16.789;
P ≤ 0.001; ηp² = 0.318]. The post-hoc analysis with a
Bonferroni adjustment demonstrated that the CMAPpp
amplitude significantly decreased after the 5Hz rPMS treatment
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FIGURE 2 | A raw data set of one subject shows the effect of before (left) and after (right) the rPMS. Each graph shows 15 peak-to-peak superimposed compound

muscle action potential (CMAPpp) curves that were induced by a reflex hammer impact on the Achilles tendon. Mean CMAPpp amplitudes were ∼4.2mV at baseline

and ∼3.5mV after the rPMS in this subject.

FIGURE 3 | Changes in the compound muscle action potential (CMAPpp) size

before the repetitive peripheral magnetic stimulation (rPMS) and post

stimulation. The dashed line represents the control group (CG) and the

continuous line indicates the treatment group (CG). Each bar corresponds to

the SD value. Note that the reflex responses significantly decreased in size

only after the rPMS in the treatment group. ***Denotes a significant difference

between pre- and post-test (***P ≤ 0.001) in CG.

when compared to the baseline measurements (P ≤ 0.001).
The CMAPpp amplitudes of the treatment group were 2.13 ±

1.54mV in the pre-test and 1.63 ± 1.30mV in the post-test,
which meant a reduction of 23.7% (Figure 3). In contrast, the
CMAPpp amplitudes of the control group revealed no significant
differences (P ≤ 0.390) from the pre-test (2.30± 1.45mV) to the
post-test (2.26± 1.40mV) and the change rates were−1.74%.

DISCUSSION

The present paper demonstrates that a repetitive magnetic nerve
stimulation (rPMS) with 750 stimuli at a stimulation frequency
of 5Hz reduces the T-reflex response of the soleus muscle. After
the rPMS treatment, a substantial and significant reduction in
the normalized CMAPpp amplitude after triggering the Achilles
tendon reflex by −23.7% was found, in contrast to the control
group (−1.74%). The pulsed magnetic stimulation of the muscles
acted on the control state of the neuromuscular circuits; the

reduction in the CMAP amplitude was apparently attributed to
a significantly decreased excitation of the T-reflex triggered α-
motor neurons. This means that the rPMS treatment of a muscle
reduces a significant number of α-motor neurons from the
triggering of an action potential. Presynaptic and/or postsynaptic
processes may have influenced this.

The reason for the occurrence of such reflex inhibition
after the treatment must remain unclear at this time since
the functional processes of rPMS have not yet been fully
explored. It is not known, for example, whether the effects of
the magnetic stimulations take place via an orthodromic or an
antidromic stimulation of the peripheral nerves. In the first case
(orthodromic), the stimulation could directly act on the axons
of the α-motor neurons and in the second case (antidromic),
with a partial inactivation of the axon hillock. Alternatively, the
stimulation could act on the axons of statically or dynamically
oriented γ-motor neurons, or the muscle spindles, which would
then induce secondary and indirect effects via spindle sensitivity
changes. In the latter case (antidromic motor nerve stimulation),
a reflex change via activation of a Renshaw inhibition is
conceivable but not likely (48). Some investigations are hinting
and speaking in favor of an effect being exerted on the γ-motor
regulatory circuits by the magnetic stimulation, also influencing
the tonus part of the γ-motor sensory system. This could, in
part, explain the researchers’ previous results (29), where no
critical reduction of H-reflex activity was found after the rPMS,
in accordance with the findings of Goulet et al. (19), who likewise
found no substantial reduction of H-reflex activity after a TENS.

Thus, the sensory system’s sensitivity appeared to decrease
markedly. It is reasonable that this may be the explanation
for the efficacy of an rPMS treatment. It is likely that the
influence exerted by the magnetic stimulation of the tibial
nerve caused a sensitivity reduction of the γ-motor regulatory
circuit (see Figure 4). However, a conclusive differentiation
among the possibilities as mentioned above would necessitate
pharmacological interventions, which are impossible to obtain in
healthy human subjects.

These findings might have a specific implication for clinical
use, as there is varying evidence for the existing physiotherapeutic
and pharmacological treatment approaches in the therapy of
spastic syndrome. It is described in the literature, for instance,
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FIGURE 4 | The diagram shows the spinal circuitry that was possible involved

γ-motor neurons (γ-MN), α-motor neurons (α-MN), Ia afferents (Ia), Ib afferents

(Ib), or presynaptic mechanism (PSI), by near-muscle magnetic nerve

stimulation. However, at this time, no conclusions can be reached about the

mode of action of the magnetic stimulation on the spinal neuronal structures.

that there is a basically positive effect of a physiotherapeutical
intervention (49), which is on the one hand, superior to a drug
treatment alone, because of the side effects (50), but on the other
hand, this still needs to be further investigated. Furthermore,
anti-spastic drugs can improve spasticity on corresponding scales
(e.g., on a modified Ashworth Scale), but the treatment is often
not associated with an improvement in everyday activities. There
was also no significant improvement in the gait parameters,
as a result of the Botulinum toxin type A injection into the
calf musculature (51, 52). In a combination with physiotherapy
(53) or TENS (54, 55), positive effects were reported, which in
turn, is still not sufficient for an unequivocal recommendation.
However, in addition to controlled studies with a large number of
subjects, systematic investigations of the dose-effect relationships
of the various intervention combinations are lacking. Against this
background, there is still room for new therapeutical methods.
Based on this study’s results, rPMS could indeed have a promising
effect as an adjunct to other therapeutical methods. The duration
of the outcome in healthy subjects and patients, the impact in a
combination with other treatment approaches, and the usability
and the feasibility in a clinical setting, should all be evaluated
conjoined for a potential translation of rPMS into clinical practice
with a quantitative tendon reflex measurement.

This study has some limitations. The stimulation of a
peripheral nerve structure is not very focal. We used a large
magnetic coil over the popliteal fossa, which limits specificity of
stimulation in the posterior tibial nerve. It can not be ruled out
that this peripheral stimulation causes further nerve structures to
be excited. For this reason, we took care of the exact stimulation
response and the fact that antagonistic muscles do not co-
contract during the stimulation also. However, we cannot exclude
subliminal influences on surrounding nerve structures (56). We
only investigated healthy subjects, so it would be valuable to
further verify whether the T-reflex is also altered in patient
populations and whether that change is consistent with the
positive effects found in the clinical assessments performed in
earlier studies (34).

CONCLUSION

The results have demonstrated that the T-reflex was reduced
after 5Hz rPMS. This relaxing effect on the musculature
was investigated in this experiment indirectly, by using the
Achilles tendon reflex to represent the decrease in excitability
of the α-motor neurons or the presynaptic effects. The
artificial relaxation of the skeletal musculature has excellent
practical benefits in a wide variety of fields. The use of
rPMS in physiotherapy and neuro-rehabilitation is an important
area where it can have significant effects; the therapeutical
advances in spasticity and muscle hyperreflexia may also be
achievable. In addition, the skeletal musculature tone can
be reduced significantly after muscle training through an
rPMS procedure.
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