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Simple Summary: Endoscopic resection (ER) is a treatment option for clinically T1a early gastric
cancer (EGC) without suspicion of lymph node metastasis (LNM). In patients with non-curative
resection after ER, additional surgery is recommended owing to the LNM risk. However, of those
patients treated with additional surgery after ER, the actual rate of LNM was about 5–10%; that is, the
other patients underwent unnecessary surgeries. Therefore, it is crucial to estimate LNM risk in EGC
patients to determine additional management after ER. We derived a machine learning (ML) model
to stratify the LNM risk in EGC patients and validate its performance. The constructed ML model,
which showed good performance with an area under the receiver operating characteristic of 0.85 or
higher, could stratify LNM risk into very low (<1%), low (<3%), intermediate (<7%), and high (≥7%)
risk categories. These findings suggest that the ML model can stratify the LNM risk in EGC patients.

Abstract: Stratification of the risk of lymph node metastasis (LNM) in patients with non-curative
resection after endoscopic resection (ER) for early gastric cancer (EGC) is crucial in determining
additional treatment strategies and preventing unnecessary surgery. Hence, we developed a machine
learning (ML) model and validated its performance for the stratification of LNM risk in patients
with EGC. We enrolled patients who underwent primary surgery or additional surgery after ER for
EGC between May 2005 and March 2021. Additionally, patients who underwent ER alone for EGC
between May 2005 and March 2016 and were followed up for at least 5 years were included. The ML
model was built based on a development set (70%) using logistic regression, random forest (RF), and
support vector machine (SVM) analyses and assessed in a validation set (30%). In the validation set,
LNM was found in 337 of 4428 patients (7.6%). Among the total patients, the area under the receiver
operating characteristic (AUROC) for predicting LNM risk was 0.86 in the logistic regression, 0.85 in
RF, and 0.86 in SVM analyses; in patients with initial ER, AUROC for predicting LNM risk was 0.90
in the logistic regression, 0.88 in RF, and 0.89 in SVM analyses. The ML model could stratify the LNM
risk into very low (<1%), low (<3%), intermediate (<7%), and high (≥7%) risk categories, which was
comparable with actual LNM rates. We demonstrate that the ML model can be used to identify LNM
risk. However, this tool requires further validation in EGC patients with non-curative resection after
ER for actual application.

Keywords: early gastric cancer; machine learning model; risk stratification; lymph node metastasis
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1. Introduction

Early gastric cancer (EGC) describes a gastric tumor confined to the submucosa with
or without lymph node metastasis (LNM). Endoscopic resection (ER) is recommended as a
minimally invasive treatment for clinically mucosal EGC without suspicion of LNM [1–4].
In cases of non-curative resection after ER that do not satisfy the expanded criteria of
curative resection, additional surgery is recommended, considering the risk of LNM [5,6];
however, LNM is found in only 5–10% of those patients after surgery [7–10]. Therefore,
overtreatment is a concern. To address this, the recently revised guidelines excluded
piecemeal resection and a positive lateral margin from the factors of non-curative resection
after ER for which additional surgery is primarily recommended [1,4,11].

Furthermore, in Japan, patients who have non-curative resection after ER, excluding
piecemeal resection and a positive lateral margin, are classified as “endoscopic curability
(eCura) C-2”; patients in the eCura C-2 category are further stratified into low (2.5%),
intermediate (6.7%), and high (22.7%) LNM risk categories based on the eCura scoring
system [2,12,13]. In the low-risk category, there is no difference in cancer recurrence or
cancer-specific mortality between patients who undergo no additional treatment and those
who undergo additional surgery [14]. Hence, this LNM risk stratification system suggests
that additional surgery after non-curative resection may be determined on an individual
basis, considering the LNM risk, the patient’s condition, and the benefits and limitations of
additional surgery [11,12,14].

Another area of concern is that some patients who were confirmed non-curative
resection after ER without actual LNM may be unnecessarily exposed to surgery-related
risks. The rates of postoperative complications and overall mortality after gastric cancer
surgery are 10–26% and 0.3–2.3%, respectively, and comorbidities, body mass index, and
lymph node dissection have been reported as risk factors [15–21]. In addition, the potential
for long-term health problems after gastric cancer surgery, such as reflux, gastroparesis,
gallstone, and osteoporosis, must be considered [22,23]. Therefore, it is clinically significant
to predict the LNM risk among EGC patients who undergo non-curative resection after ER
to prevent unnecessary surgery.

To stratify the LNM risk in EGC patients, we created a machine learning (ML) model
for predicting LNM risk and validated its performance.

2. Materials and Methods
2.1. Patients

We included patients who underwent surgery for EGC between May 2005 and March
2021 at Samsung Medical Center. Additionally, patients who underwent additional surgery
after ER owing to complications or non-curative resection were included. Moreover, pa-
tients who underwent ER alone for EGC without surgery between May 2005 and March
2016 were included and followed up for at least 5 years. After excluding patients with
missing data, a total of 14,760 patients who underwent surgery (n = 12,631) or ER alone
(n = 2129) were included (Figure 1). The patients were randomly divided into the develop-
ment set (70%) and validation set (30%).

2.2. Definition, Outcome, Data Sources, and Study Variables

LNM was defined based on surgical specimens of patients who underwent surgery.
In patients who underwent ER alone, regional LN recurrence was determined based on
computed tomography scans during follow-up.

The outcome consisted of establishing the ML model for predicting LNM risk in EGC
patients and validating its performance. We divided the entire cohort into a development
set (70%) for derivation of the ML model and a validation set (30%) for validation. Since
the actual target participants were patients treated with ER for EGC, the performance
of the ML model was evaluated for total patients and initial ER patients, respectively,
using three methods in the development set and validation set. First, the area under the
receiver operating characteristic (AUROC), sensitivity, and specificity of the ML model
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were analyzed. Second, we assessed whether the ML model could stratify the risk of
LNM into very low-, low-, intermediate-, and high-risk categories. In the development
set, we listed the predicted values calculated by the ML model and selected cutoffs at the
points where the actual LNM rates were 1%, 3%, and 7%. An actual LNM rate <1% was
allocated into the very low-, <3% into the low-, <7% into the intermediate-, and ≥7% into
the high-risk categories. The 3% and 7% criteria for the low-, intermediate-, and high-risk
categories were based on the previous literature [12]. Additionally, we set a very-low risk
category of predicted LNM risk with <1%. This ML model for stratifying LNM risk was
applied to the total patients and patients with initial ER in the validation set. Third, we
evaluated the ability of the ML model to discriminate patients with negligible risk of LNM
at a high-sensitivity cutoff of 100% to predict LNM. From a clinical perspective, the utility
of a risk score depends on its ability to discriminate patients at low risk for LNM, i.e., it is
ideal to identify patients who do not need surgery and those who need surgery.
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Figure 1. Diagram of patient selection.

Non-curative resection was defined as not satisfying an expanded criterion for curative
resection. The expanded criteria for curative resection were en bloc resection, negative
horizontal and vertical margins, absence of lymphovascular invasion, and one of the
following: (a) differentiated mucosal cancer without ulcerative lesions, regardless of the
tumor size; (b) differentiated mucosal cancer with ulcerative lesions that were ≤3 cm in
size; (c) undifferentiated mucosal cancer without ulcerative lesions that were ≤2 cm in
size; or (d) differentiated cancer invasion to the submucosa <500 µm from the muscularis
mucosa that was ≤3 cm in size.

Data were collected retrospectively from the electronic medical records, including
age, sex, number of tumors, tumor location (upper third, middle third, and lower third),
size (mm), gross type (non-depressed and depressed), differentiation (well, moderate,
signet, and poor), Lauren classification (intestinal, diffuse, and mixed), depth of invasion
(lamina propria, muscularis mucosa, submucosal invasion <500 µm from the muscularis
mucosa (SM1), and submucosal invasion ≥500 µm from the muscularis mucosa (SM2/3)),
lymphatic invasion, venous invasion, and perineural invasion.

2.3. Establishment of the Machine Learning Model

The ML model was implemented using 3 methods to produce an optimal model based
on the development set (70%): logistic regression, support vector machine (SVM), and ran-
dom forest (RF). We constructed the ML model in the cohort of total patients and patients
with initial ER, respectively. This design considered our actual target as EGC patients who
were feasible ER. A randomized search algorithm with fivefold nested cross-validation
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in the development set was conducted for hyperparameter optimization of each method.
The algorithm was optimized by randomly searching the given hyperparameter space
1000 times using the development set (Table S1). We selected this search algorithm rather
than grid or Bayesian search algorithms because these three methods are fast enough to
search all given spaces and have relatively few hyperparameters. The best hyperparameters
in a model were chosen when the model had the highest AUROC. The performance of the
models with the best hyperparameters was evaluated in the validation set (30%). We de-
fined the weighted factors of 14.0 through the imbalanced rate of the classes. We confirmed
the feature importance as permutating a specific variable 100 times. We publicly opened
the codes and models at https://github.com/YeongChanLee/Predict-LNM (accessed on
21 February 2022).

2.4. Statistical Analysis

Baseline characteristics were compared between the development and validation sets
and presented as means (standard deviation) and frequencies (%) for continuous and
categorical variables, respectively. The performance of the ML model was evaluated using
AUROC, sensitivity, and specificity. The sensitivity and specificity were derived using
Youden’s index. The risk probability was calculated for the stratification of LNM risk based
on the logistic regression, RF, and SVM analyses in the development set. Predicted LNM
risk was classified into very low-, low-, intermediate-, and high-risk categories according
to the actual LNM rate with a cutoff <1%, <3%, and <7%. We analyzed whether the
categories of predicted LNM risk correlated with the real LNM rate. As a subanalysis, the
performance of the ML model was compared with the eCura system as a clinical model
in cases defined as non-curative resection after ER for EGC in the validation set, using
AUROC, net reclassification improvement (NRI), and specificity at a high-sensitivity cutoff
of 95%. The ML model was developed using Scikit-learn 0.24.1 and Python 3.8.5. Statistical
analyses were performed using R (version 3.5.1, Vienna, Austria).

3. Results
3.1. Baseline Characteristics

A total of 14,760 patients were eligible for analysis; 10,332 patients were randomly
sorted into the development set and 4428 into the validation set. LNM was found in
794 of 10,332 patients (7.7%) in the development set and 337 of 4428 patients (7.6%) in
the validation set. The baseline characteristics of the development and validation sets are
shown in Table 1. They were comparable in most variables, including age, sex, number of
tumors, size, gross type, differentiation, Lauren classification, depth of invasion, lymphatic
invasion, venous invasion, and perineural invasion. However, the middle-third of the
stomach was the most frequent tumor location in the development set whereas the lower-
third of the stomach was the most frequent tumor location in the validation set (p = 0.013).

https://github.com/YeongChanLee/Predict-LNM
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Table 1. Baseline characteristics of the development set and validation set.

Variable Development
(n = 10,332)

Validation
(n = 4428) p Value a

Age † 58 ± 11 58 ± 11 0.413
Gender 0.789

Male 6697 (65) 2881 (65)
Female 3635 (35) 1547 (35)

tumors 512 (5) 201 (5)
Location 0.013

Upper 1083 (11) 483 (11)
Middle 4773 (46) 1929 (44)
Lower 4476 (43) 2016 (45)

Size (mm) † 27 ± 18 27 ± 18 0.645
Gross type 0.823

Non-depressed 2568 (25) 1109 (25)
Depressed 7764 (75) 3319 (75)

Differentiation 0.999
Well 1214 (12) 523 (12)
Moderate 4053 (39) 1741 (39)
Signet 2315 (22) 989 (22)
Poorly 2750 (27) 1175 (27)

Histologic type by
Lauren 0.122

Intestinal 5198 (50) 2271 (51)
Diffuse 3867 (38) 1666 (38)
Mixed 1267 (12) 491 (11)

Depth of invasion 0.983
Lamina propria 2568 (25) 1114 (25)
Muscularis mucosa 3767 (37) 1612 (37)
SM1 1069 (10) 455 (10)
SM2/3 2928 (28) 1247 (28)

Lymphatic invasion,
present 1571 (15) 682 (15) 0.780

Venous invasion,
present 154 (2) 72 (2) 0.588

Perineural invasion,
present 232 (2) 96 (2) 0.817

† Mean ± standard deviation presented for continuous variables. Values are expressed as n (%); unless otherwise
specified. a p-value calculated using Student’s t-test for continuous variables or Pearson’s chi-square test for
categorical variables for overall data. SM1: submucosal invasion <500 µm from the muscularis mucosa; SM2/3:
submucosal invasion ≥500 µm from the muscularis mucosa.

3.2. Derivation of the Machine Learning Model

In the development set, LNM was found in 794 of 10,332 patients (7.7%) in the total
patients, and in 42 of 2320 patients (1.8%) in patients with initial ER. The derivatated
ML model showed good to excellent performance in the development set; in the total
patients, logistic regression was AUROC (95% CI), 0.86 (0.85–0.88); sensitivity, 0.80; and
specificity, 0.76; RF was AUROC (95% CI), 0.95 (0.94–0.95); sensitivity, 0.91; and specificity,
0.86; and SVM was AUROC (95% CI), 0.87 (0.85–0.88); sensitivity, 0.79; and specificity,
0.78. In patients with initial ER, logistic regression was AUROC (95% CI), 0.88 (0.83–0.92);
sensitivity, 0.86; and specificity 0.82; RF was AUROC (95% CI), 0.95 (0.93–0.97); sensitivity,
0.93; and specificity, 0.88; and SVM was AUROC (95% CI), 0.88 (0.83–0.92); sensitivity, 0.93;
and specificity, 0.73 (Figure 2).
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Figure 2. AUROC of the ML model for the prediction of LNM in the development set (total
number = 10,332, number of patients with initial ER = 2320).

In the development set, LNM risk was predicted using the ML model (logistic re-
gression, RF, and SVM), and the cutoff for the categories of very low, low, intermediate,
and high risk was set as the value of the actual LNM rate of <1%, <3%, and <7% in the
total patients and initial ER patients, respectively (Table 2). As an example, in the total
patients, LNM risk was stratified using logistic regression into very low (<1%)-, low (<3%)-,
intermediate (<7%)-, and high (≥7%)-risk categories, and the cutoff was determined by the
actual LNM rate. Each category showed a real LNM rate of 0.2%, 1.4%, 4.1%, and 18.4%
(Table 2).

Table 2. Determination of the cutoff for stratification of LNM risk based on the predictive value of the
ML model and actual LNM rate in the development set. (A) Total patients. (B) Patients with initial ER.

(A) Total Patients (n = 10,332) and LNM (n = 794)

Logistic regression

n of patients n of LNM Rate (%) Risk probability Risk category

1863 3 0.2 <1% Very low
3105 42 1.4 ≥1% to <3% Low
1656 67 4.1 ≥3% to <7% Intermediate
3708 682 18.4 ≥7% High

Random forest

n of patients n of LNM Rate (%) Risk probability Risk category

5589 2 <0.1 <1% Very low
1859 24 1.3 ≥1% to <3% Low
412 18 4.4 ≥3% to <7% Intermediate

2472 750 30.3 ≥7% High

Support vector machine

n of patients n of LNM Rate (%) Risk probability Risk category

2277 5 0.2 <1% Very low
2691 35 1.3 ≥1% to <3% Low
1656 65 3.9 ≥3% to <7% Intermediate
3708 689 18.6 ≥7% High
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Table 2. Cont.

(B) Initial ER(n = 2320) and LNM (n = 42)

Logistic regression

n of patients n of LNM Rate (%) Risk probability Risk category

1492 1 0.1 <1% Very low
368 5 1.4 ≥1% to <3% Low
92 3 3.3 ≥3% to <7% Intermediate

368 33 9.0 ≥7% High

Random forest

n of patients n of LNM Rate (%) Risk probability Risk category

1722 0 0 <1% Very low
322 4 1.2 ≥1% to <3% Low
46 2 4.4 ≥3% to <7% Intermediate

230 36 15.7 ≥7% High

Support vector machine

n of patients n of LNM Rate (%) Risk probability Risk category

1491 1 0.1 <1% Very low
136 2 1.5 ≥1% to <3% Low
445 15 3.3 ≥3% to <7% Intermediate
206 24 10.4 ≥7% High

LNM, lymph node metastasis.

3.3. Validation of the Machine Learning Model

In the validation set, LNM was found in 337 of 4428 patients (7.6%) in the total patients,
and in 24 of 1016 patients (2.4%) in patients with initial ER. In the validation set, the ML
model showed a good performance in the total patients and patients with initial ER. In total
patients, logistic regression was AUROC (95% CI), 0.86 (0.84–0.88); sensitivity, 0.80; and
specificity, 0.75; RF was AUROC (95% CI), 0.85 (0.83–0.87); sensitivity, 0.82; and specificity,
0.72; and SVM was AUROC (95% CI), 0.86 (0.84–0.88); sensitivity, 0.69; and specificity,
0.85. In patients with initial ER, logistic regression was AUROC (95% CI), 0.90 (0.86–0.94);
sensitivity, 0.92; and specificity, 0.77; RF was AUROC (95% CI), 0.88 (0.82–0.92); sensitivity,
0.92; and specificity, 0.74; and SVM was AUROC (95% CI), 0.89 (0.85–0.93); sensitivity, 0.92;
and specificity, 0.78 (Figure 3).

In the validation set, logistic regression and SVM showed the possibility of stratifying
the risk of LNM for total patients and patients with initial ER. The predicted LNM risk was
correlated with the actual LNM rate. In the total patients, the actual LNM rate according to
the very low-, low-, intermediate-, and high-risk categories was 0.1%, 1.6%, 4.8%, and 17.7%
based on logistic regression and 0.1%, 1.6%, 4.2%, and 18.1% based on SVM, respectively. In
patients with initial ER, the actual LNM rate according to the very low-, low-, intermediate-,
and high-risk categories was 0.2%, 2.5%, 0.0%, and 11.9% based on logistic regression
and 0.2%, 1.7%, 4.5%, and 13.0% based on SVM, respectively. In contrast, in the analysis
using RF, the actual LNM rate was 1.3%, 6.3%, 7.4%, and 23.1% of the total patients and
0.4%, 5.0%, 10.0%, and 12.0% of patients with initial ER, which was higher than that of the
predicted category of LNM risk (Table 3).
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Table 3. Risk stratification of LNM by the ML model and the actual rate in the validation set. (A)
Total patients. (B) Patients with initial ER.

(A) Total Patients (n = 4428) and LNM (n = 337)

Logistic regression

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 801 1 0.1
≥1% to <3% Low 1335 21 1.6
≥3% to <7% Intermediate 708 34 4.8

≥7% High 1584 281 17.7

Random forest

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 2403 30 1.3
≥1% to <3% Low 793 50 6.3
≥3% to <7% Intermediate 176 13 7.4

≥7% High 1056 244 23.1

Support vector machine

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 978 1 0.1
≥1% to <3% Low 1138 19 1.6
≥3% to <7% Intermediate 678 30 4.2

≥7% High 1297 287 18.1

(B) Patients with Initial ER (n = 1016) and LNM (n = 24)

Logistic regression

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 656 1 0.2
≥1% to <3% Low 160 4 2.5
≥3% to <7% Intermediate 40 0 0

≥7% High 160 19 11.9
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Table 3. Cont.

(B) Patients with Initial ER (n = 1016) and LNM (n = 24)

Random forest

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 756 3 0.4
≥1% to <3% Low 140 7 5.0
≥3% to <7% Intermediate 20 2 10.0

≥7% High 100 12 12.0

Support vector machine

Risk probability Risk category n of patients n of LNM Rate (%)

<1% Very low 655 1 0.2
≥1% to <3% Low 59 1 1.7
≥3% to <7% Intermediate 191 9 4.5

≥7% High 87 13 13.0

In the total patients in the validation set, the specificities of the ML model at the
high-sensitivity cutoff of 100% were 49%, 46%, and 49% in the logistic regression, RF, and
SVM analyses, respectively. In patients with initial ER, the specificities of the ML model at
the high-sensitivity cutoff of 100% were 71%, 57%, and 70% in the logistic regression, RF,
and SVM analyses, respectively (Figure 4).
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In the validation set, as a subanalysis in the patients with non-curative resection after
ER for EGC, LNM was found in 21 of 362 patients (5.8%). The AUROC of the ML model
was 0.76, 0.73, and 0.75 in the logistic regression, RF, and SVM analyses, respectively, and
the AUROC of the eCura system was 0.72. Logistic regression (NRI, 0.46) and SMV (NRI,
0.21) improved the performance compared to the eCura system. The specificities of the
ML model at the high-sensitivity cutoff of 95% were 39%, 38%, and 38% in the logistic
regression, RF, and SVM analyses, respectively, which were higher than the specificity of
9% for the eCura system (Figure S1).

4. Discussion

Here, we demonstrated the utility of an ML model for predicting the LNM risk in EGC
patients. In the validation set, the AUROC of each ML model showed a good performance,
ranging from 0.85 to 0.90. Furthermore, each ML model could stratify the LNM risk as very
low, low, intermediate, and high risk, and those stratified groups showed a consistent actual
LNM rate. In addition, these showed specificities of about 0.50 or higher at a matched
sensitivity of 100%, indicating that it could discriminate patients with negligible risk of
LNM while identifying the patients who needed surgery owing to the LNM risk with 100%
sensitivity. This tool can easily be applied in clinical practice to categorize the LNM risk and
identify patients with negligible LNM risk under the assumption of maximum sensitivity.
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Non-curative resection after ER for EGC patients is a clinical concern. Physicians
determine further strategies under careful consideration, accounting for the patient’s co-
morbidities associated with surgical risk and individual preference, and the characteristics
of the tumor and surgical procedure. Despite additional surgery owing to non-curative
resection after ER, the rate of LNM is only 5–10%; hence, among the patients with non-
curative resection, it is clinically significant to identify patients at low risk of LNM to
prevent unnecessary surgery. The current guidelines have been revised to address these
issues and recommend a more detailed strategy after non-curative resection [1,2,4,11]. In
the JGCA guidelines (5th edition), among the factors of non-curative resection, piecemeal
resection or a positive lateral margin is defined as eCura C-1, and other factors are described
as eCura C-2. Based on these classifications, physicians can determine the appropriate
therapeutic options, such as additional ER or coagulation for patients in eCura C-1. For
eCura C-2, the eCura scoring system was built based on large-scale data and stratifies LNM
risk as low (0–1 point), intermediate (2–4 points), or high (5–7 points) [11,12]. In patients
with the low-risk category, there is no difference in cancer recurrence or cancer-specific
mortality between patients who receive no additional treatment and those who undergo
additional surgery [14]. Similarly, reports that investigated LNM risk in patients with early
colon cancer after ER were conducted to prevent unnecessary surgery or excess treatment
using the AI system and clinical guidelines [24–27]. This reflects the necessity for detailed
guidance on additional strategies through the stratification of LNM risk in EGC patients
with non-curative resection after ER; therefore, this study has clinical significance.

The strength of this study is that it is the first to develop an ML model to predict LNM
in patients with EGC and validate its good performance. Furthermore, our study was based
on a large sample size and investigated three models (logistic regression, RF, and SVM) to
develop an optimal ML model. Considering that the target participants were patients who
underwent ER for EGC, the performance of the ML model was verified not only for the
total patients but also the patients who received ER as the initial treatment for EGC. In our
study, the very low-risk group had an LNM rate of <1%. This is a stricter category than
the classifications of previous reports that defined a low risk of LNM as <3%, including
nomograms and the eCura system for predicting LNM in EGC patients [11,28]. In addition
to the variables included in the nomogram and the eCura system, our ML model was
constructed based on various variables, including the number of tumors, tumor location,
Lauren classification, perineural invasion, age, sex, gross type, tumor size, differentiation,
depth of invasion, lymphatic invasion, and venous invasion [12,28]. Moreover, we utilized
the ability of the ML model to comprehensively interpret various factors by subdividing
the data of the variables assessed in previous reports [12,28]. For example, the depth of
invasion was subdivided into the lamina propria, muscularis mucosae, SM1, and SM2/3.

We evaluated the performance of the ML model using clinically relevant outcomes. In
estimating LNM risk in patients with non-curative resection after ER for EGC, achieving a
high sensitivity to predict LNM is essential for long-term outcomes. Furthermore, there is
a need to identify patients at low risk for LNM to prevent unnecessary surgery. Our ML
model showed specificities of 49% in the total patients and 71% in the patients with initial
ER at the high-sensitivity cutoff of 100%. When examining only patients with non-curative
resection after ER, our ML model showed specificities ranging from 38% to 39% at the
high-sensitivity cutoff of 95%, which is significantly increased compared to the specificity
of 9% for the eCura system. The sensitivity of 95% was set based on the highest sensitivity
achieved by the eCura system. Therefore, the ML model has great clinical potential in that
it had better specificity than the eCura system at a high-sensitivity cutoff, despite there
being no significant difference in the value of AUROC.

This study had several limitations. First, there may be selection bias due to the exclu-
sion of missing data and the study’s retrospective nature; however, this study was designed
to develop the ML model, including major factors without missing data. Second, this was a
single-center study, and the results need to be validated in other institutions. In addition,
it is necessary to validate the performance of the ML model in patients undergoing non-
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curative resection after ER for EGC. Through this additional validation, we can anticipate
the improved version of the ML model by reinforcement learning and suggest that the ML
model can be a valuable tool in clinical applications. Third, most of the variables included
in our ML model are based on the pathology after ER. For estimation of LNM risk, several
major variables, such as lymphatic invasion, vertical margin, and the depth of invasion,
could not be assessed by endoscopy alone. Fourth, the comparison of long-term survival
was not analyzed according to the stratification of LNM risk, as there were some cases with
insufficient follow-up because the follow-up ended in March 2021.

In conclusion, the ML model showed good performance in the prediction and strat-
ification of LNM risk in patients with EGC. Based on this finding, we suggest that the
ML model has the potential to be a clinically useful tool for estimating LNM risk among
patients with non-curative resection after ER.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14051121/s1, Figure S1: Performance of the ML model
and eCura system for predicting LNM in patients with non-curative resection after ER. AUROC,
area under the receiver operating characteristic; NRI, net reclassification index. Table S1: Best
hyperparameters selected from the search algorithm.
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