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Abstract: In this present work, we report the deposition of cadmium selenide (CdSe) particles on
titanium dioxide (TiO2) nanotube thin films, using the chemical bath deposition (CBD) method at
low deposition temperatures ranging from 20 to 60 ◦C. The deposition temperature had an influence
on the overall CdSe–TiO2 nanotube thin film morphologies, chemical composition, phase transition,
and optical properties, which, in turn, influenced the photoelectrochemical performance of the
samples that were investigated. All samples showed the presence of CdSe particles in the TiO2

nanotube thin film lattice structures with the cubic phase CdSe compound. The amount of CdSe
loading on the TiO2 nanotube thin films were increased and tended to form agglomerates as a function
of deposition temperature. Interestingly, a significant enhancement in photocurrent density was
observed for the CdSe–TiO2 nanotube thin films deposited at 20 ◦C with a photocurrent density of
1.70 mA cm−2, which was 17% higher than the bare TiO2 nanotube thin films. This sample showed a
clear surface morphology without any clogged nanotubes, leading to better ion diffusion, and, thus,
an enhanced photocurrent density. Despite having the least CdSe loading on the TiO2 nanotube
thin films, the CdSe–TiO2 nanotube thin films deposited at 20 ◦C showed the highest photocurrent
density, which confirmed that a small amount of CdSe is enough to enhance the photoelectrochemical
performance of the sample.

Keywords: electrochemical anodization; chemical bath deposition; photoelectrochemical activity;
cadmium selenide; CdSe–TiO2 nanotube thin films

1. Introduction

Nanostructured titanium dioxide (TiO2) has been known as one of the most promising
semiconductor materials, as it has been widely used in many applications, such as photocatalysts [1–4],
photovoltaics [5–11], photoelectrochemical cells [12–15], supercapacitors [16–19], and sensors [20],
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due to its remarkable chemical, optical, and physical properties, as well as its low production cost
and lower toxicity. The electrochemical anodization method has come to light, as it is proven to be
the most facile and versatile method to synthesized TiO2 nanotube thin films due to its ability to
modify the morphology, diameter, and length of the nanotubes by varying the anodization parameters.
In addition, their unique nanoarchitecture minimizes the photo-induced charge of the recombination
loss of the carrier at the nanostructure connections, thus, maximizing photon absorption [21,22].
However, due to its wide band gap (3.2 eV for the anatase phase and 3.0 for the rutile phase TiO2),
the adsorption by the material is limited to UV wavelength [23]. Moreover, the fast electron/hole
recombination and sluggish charge transfer by the TiO2 nanotube thin films significantly demerit
the photoelectrochemical performance of this material [24]. In order to overcome the limitations,
modification, such as electrochemical reduction [25,26], metal oxide heterojunction [27,28], defect
engineering [29], and metal or non-metal doping [30–33], have been done to lower the band gap of
the TiO2 nanotube thin films and, thus, enhance the conductivity, radiation adsorption, and catalytic
activity, respectively. The deposition of small band gap semiconductor materials as a sensitizer on the
TiO2 nanotube thin films [34–36] have been proven to be an important approach in order to tune the
overall band gap of the material and improve its photoelectrochemical performance. By incorporating
these materials on the TiO2 nanotube thin films, the further enhancement of the adsorption of visible
light and fastening the charge transfer of photoexcited electrons into the TiO2 conduction band
is needed.

Cadmium selenide (CdSe) is one of most remarkable semiconductor materials in Group II–VI, that
is being used to sensitize wide band gap TiO2 nanotube thin films [23,37]. The CdSe has a lower band
edge than TiO2, thus, allowing band edge alignment, leading to efficient electron transfer. The band
edge alignment effect will improve photo-illumination absorption at visible or near-IR photons and
eventually reduce the recombination change carrier losses [38–40]. There are several methods that
have been used to incorporate CdSe on the nanostructured TiO2, which is functional under highly
controlled conditions [41–44]. Among the deposition method, chemical bath deposition (CBD) is one of
the methods that has been widely used to deposit CdSe particles on the TiO2 nanotube thin films [45].
This method becomes favourable, as it uses simple equipment and apparatus, making this method
cost-effective. Our previous report shows that by tuning the parameters of the CBD, the morphology
and other physical properties of the CdSe–TiO2 nanotube thin films can be altered, thus, enhancing
the photoelectrochemical performance of the sample [37,46]. Despite many reports on the aim to
increase the performance of CdSe–TiO2 nanotube thin films as photoelectrochemical cells, it is crucial to
study the deposition parameters, which influence the chemical and physical properties of CdSe–TiO2

nanotube thin films.
The CBD of CdSe used in this work could offer good controls of amount loading, size, and

uniformity of CdSe on the TiO2 nanotube thin films. Parameters, such as the temperature of the CBD,
becomes a crucial role in manipulating the thermal dislocation of the Cd complex and Se anion by
controlling the rate of ions released from the precursor, and thereby affecting the growth rate of CdSe on
the TiO2 nanotubes thin films. With increasing temperature, thermal dissociation of the CdSe precursor
is used in this study: sodium selenosulfate (Na2SeSO3) and cadmium acetate dihydrate (Cd(CH3COO)2

2H2O) will be increased significantly. Henceforth, increasing the kinetic energy and driving force of the
active precursor leads to the increase of interaction between CdSe and nanotubular structures. Last but
not least, a comprehensive study has been conducted that aims to optimize the temperature of the CBD
of CdSe on the TiO2 nanotube thin films in order to enhance their photoelectrochemical performance.

2. Experimental Section

2.1. Preparation of TiO2 Nanotube Thin Films

The TiO2 nanotube thin films were prepared by the electrochemical method of anodizing Ti foils
in a two-electrode cell at 40 V for 60 min, consisting of Ti foil as the working electrode and platinum rod
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as the counter electrode (Figure 1). The electrolyte comprised of ethylene glycol, 0.3 wt % ammonium
fluoride, and 5 wt % hydrogen peroxide. The anodized samples were rinsed with deionized (DI) water
and subsequently annealed for 4 h in the air at 400 ◦C with a heating rate of 5 ◦C/min−1, and cooled
naturally to achieve the pure anatase phase of TiO2 [35].Materials 2020, 13, x FOR PEER REVIEW 4 of 17 
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thin films. 

 

Figure 1. Schematic diagram of the preparation of TiO2 nanotube thin films and CdSe–TiO2 nanotube
thin films.
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2.2. Preparation of CdSe–TiO2 Nanotube Thin Films

The CdSe was deposited on the TiO2 nanotube thin films via CBD, as shown in the schematic
diagram in Figure 1. To prepare the 5 mM CdSe solution precursor, the selenide precursor (Na2SeSO3

solution) was prepared by mixing 0.6 M sodium sulfite with 0.2 M selenium metal powder in DI water.
The mixture was heated under reflux at 90 ◦C for 3 h to form a clear Na2SeSO3 solution. The cadmium
precursor was prepared by dissolving 0.2 M of Cd(CH3COO)2·2H2O in DI water. Then, a concentrated
ammonia solution (30%) was added into the cadmium solution slowly to adjust the pH of the solution
between 12 to 12.5. This was to prevent a reverse reaction of Cd(NH3)4

2+ to form stable cadmium
hydroxide (Cd(OH)2). Both precursor solutions were then mixed until homogenous. The annealed
anatase TiO2 nanotube thin films were soaked vertically inclined into the CdSe bath solution for
the deposition process for 1 h. The deposition temperature was varied from 20 to 60 ◦C. A digital
programmable hotplate (Torrey Pines Scientific) was used in this experiment. The temperature of the
chemical bath was set and, upon the deposition process, the solution’s temperature was checked, using
a thermometer for confirmation. Throughout the deposition process, the temperature of the chemical
bath was checked from time to time. Then, the samples were the rinsed with DI water and dried in an
oven overnight.

2.3. Characterizations

The surface and cross-sectional morphologies of the prepared samples (TiO2 nanotube thin films
and CdSe/TiO2 nanotube thin films) were investigated via field emission scanning electron microscopy
(FE-SEM, JEO JSM 7600-F, JOEL Ltd., Tokyo, Japan) while the elemental analysis was conducted using
Oxford Instruments by means of energy dispersive X-ray spectroscopy (EDX, Oxford Instruments,
Abingdon, United Kingdom) The phase transition and crystallinity of all prepared samples was studied
using X-ray diffraction (XRD, Bruker AXS D8 Advance, Bruker, Karlsruhe, Germany)and a Raman
spectrometer (Renishaw inVia, Renishaw, Wotton-under-Edge, United Kingdom)In this study, XRD was
operated using Cu Kα radiation (λ = 0.1546 nm) at a scanning rate of 2◦ min−1 over the angles 2θ = 20◦

to 70◦. The Raman spectroscopy was operated at an excitation wavelength of 532 nm generated by
an Ar ion laser over the range of 100 to 1000 cm−1. The binding energy and chemical state of the
samples were measured and quantified with X-ray photoelectron spectroscopy (XPS, PHI Quantera II,
Physical Electronic, Minnesota, USA) with an Al cathode scan (hv = 1486.8 eV) of 100 microns and
280 eV with pass energy. The precise analysis of the features of each element was decomposed in
the Shirley background using the Voigt curve fitting function. The optical properties of the prepared
samples were recorded using a UV-Vis diffused reflectance spectrophotometer (Shimadzu UV-2700
UV-Vis, Shimadzu, Kyoto, Tokyo) from 240 to 800 nm.

2.4. Photoelectrochemical Testing

A three-electrode system composed of Pt as the counter electrode, Ag/AgCl (3 M KCl) as the
reference electrode, and the prepared samples as the working electrode were used in a 1 M KOH
aqueous electrolyte. The photoelectrochemical measurement of the prepared samples was evaluated by
linear sweep voltammetry using a potantiostat (Autolab PGSTAT 204, Metrohm, Herisau, Switzerland)
and illuminated by a 150 W Xenon lamp (Zolix LSP-X150, Zolix Instruments CO., Ltd., Beijing, China)
with a light intensity of 100 mW cm−2 focusing on the dipped part of the electrode.

3. Results and Discussion

The surface and cross-section morphologies of all the prepared CdSe–TiO2 nanotube thin film
samples deposited at various temperatures from 20 to 60 ◦C are shown in Figure 2a–d. The highly
ordered TiO2 nanotube thin films were successfully synthesized in our previous report, with an average
inner-tube diameter and tube length of 76 nm and 5.6 µm, respectively [21,47]. In this study, a clear
surface morphology change was observed for all samples as function to the chemical bath temperature.
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At a low temperature (20 ◦C), the deposition of CdSe on the TiO2 nanotube thin films was almost
negligible, as shown in Figure 2a. However, the average inner-tube’s diameter of the sample decreased
to 71 nm upon the deposition of CdSe, indicating that the nucleation process had taken place on the
sample. A low chemical bath temperature of 20 ◦C led to a low deposition rate, thus, slowing the
nuclei growth on the TiO2 nanotube thin films. As the chemical bath temperature increased to 40 ◦C,
the presence of CdSe particles was observed, with an average inner-tube diameter of 90 nm, which
partially covered the nanotubes (refer to Figure 2b). Moreover, the tube’s diameter decreased to 68 nm
upon the deposition of CdSe on the TiO2 nanotube thin films. The agglomeration of CdSe into larger
particles was observed when the chemical bath temperature increased to 50 and 60 ◦C. They were
uniformly dispersed on the surface of the nanotubes with an average diameter of 145 nm at chemical
bath temperatures of 50 ◦C and 220 nm at 60 ◦C. Furthermore, the agglomeration of CdSe covered
most of the nanotube circumferences, as shown in Figure 2c–d. The average tube diameters of the
samples were found to decrease to 57 nm (50 ◦C) and 54 nm (60 ◦C). The cross-sectional morphologies
(inset figures) showed an adhesive texture, with the presence of CdSe particles deposited throughout
the wall surface. This indicates that the deposition of CdSe took place on the top surface and the wall
surface of the nanotubes. The EDX analysis confirmed the presence of cadmium (Cd), selenium (Se),
titanium (Ti), and oxygen (O) elements in all samples, as shown in Table 1. These results supported
the observation from the FE-SEM results, as the elemental composition of Cd and Se increased as the
chemical bath temperature increased. In addition, the ratio of the Cd and Se elements in all samples
was 1:1, thereby confirming the deposition of stoichiometry CdSe on the TiO2 nanotube thin films.
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Figure 2. FE-SEM images of CdSe–TiO2 nanotube thin films deposited at chemical batch temperatures
of: (a) 20 ◦C, (b) 40 ◦C, (c) 50 ◦C, and (d) 60 ◦C, and the inset is cross-sectional view.
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Table 1. An average at % of CdSe–TiO2 nanotube thin films deposited at different chemical bath
temperatures, obtained by energy dispersive X-ray spectroscopy (EDX) analysis.

Temperature (◦C)
Atomic Percentage (at %)

Ti O Cd Se

20 40.77 58.45 0.41 0.37
40 39.62 56.66 1.90 1.82
50 38.16 55.84 3.03 2.97
60 36.27 51.83 6.04 5.86

Figure 3 shows the XRD patterns for the CdSe–TiO2 nanotube thin films deposited at different
chemical bath temperatures at 2θ = 20◦ to 70◦. All samples exhibited an intense peak of CdSe at
2θ = 25.35◦, which corresponded to the (1 1 1) preferred orientation of a cubic phase of CdSe (JCPDS
No.: 19-0191). This peak was found to overlap with the peak of the anatase crystal plane at 2θ = 25.37◦

(1 0 1) phase. The intensity of the peak increased as function of the chemical bath temperature, which
indicated an abundancy of the CdSe and the well crystalline nature of the CdSe [44]. These results
were agreeable with the FE-SEM analysis, as the chemical bath temperature increased as the amount of
CdSe deposited onto the TiO2 nanotube thin films increased. A small peak was observed at 2θ = 49.7◦,
corresponding to a (3 1 1) plane of cubic zinc blended phase CdSe in the CdSe–TiO2 nanotube thin films
deposited at the chemical bath temperatures of 50 and 60 ◦C. However, the peak was not detected in
the CdSe–TiO2 nanotube thin films deposited at low chemical bath temperatures due to the low content
of CdSe (< 2 at % from EDX analysis) in the sample, which was too insufficient to be detected by XRD
analysis [48–50]. The single phase of TiO2 crystal indexed to anatase planes (JCPDS No.: 21–1272)
was observed at 2θ = 38.67◦, 48.21◦, 54.10◦, 55.26◦, 62.66◦, and 68.74◦, corresponding respectively to
planes (1 1 2), (2 0 0), (1 0 5), (2 1 1), (2 0 4), and (1 1 6). In addition, the peaks at 2θ = 35.1◦, 38.4◦,
40.2◦, and 53.0◦ corresponded to (1 0 0), (0 0 2), (1 0 1), and (1 0 2), and were originated from a Ti metal
substrate (JCPDS no.: 44-1294).  
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Figure 3. XRD diffraction patterns of CdSe–TiO2 nanotube thin films soaked at (a) 20 ◦C, (b) 40 ◦C,
(c) 50 ◦C, and (d) 60 ◦C in 5 mM CdSe bath solution for 1 h (A = anatase TiO2, T = Ti metal).
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The Raman spectra of the CdSe–TiO2 nanotube thin films (shown in Figure 4) further confirmed
the presence of cubic CdSe phase in the samples. The characteristic peaks of the anatase phase of TiO2

were observed at 144, 394, 515, and 636 cm−1, corresponding to Eg, B1g, A1g, and Eg vibration modes.
The Eg vibration mode was mainly caused by symmetric stretching vibration, while B1g was due to
the symmetric bending vibration, and A1g was caused by the anti-symmetric bending of O–Ti–O in
TiO2 [46,51]. A gradual decrease in the intensity of these peaks was observed with an increase of the
chemical bath temperature due to the increase of cubic CdSe content in the samples. The samples
prepared at chemical bath temperatures of 40, 50, and 60 ◦C showed presence of a Raman shift at
206 cm−1, corresponding to the first order for the longitudinal optical phonon (LO) of cubic CdSe.Materials 2020, 13, x FOR PEER REVIEW 2 of 2 
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Figure 4. Raman spectrum of CdSe–TiO2 nanotube thin films soaked at (a) 20 ◦C, (b) 40 ◦C, (c) 50 ◦C,
and (d) 60 ◦C in 5 mM CdSe solution for 1 h.

The surface chemical state of pure TiO2 nanotube thin films and CdSe–TiO2 nanotube thin films
was investigated using XPS analysis. Figure 5 displays the XPS spectra of both samples, which mainly
consisted of Ti 2p, O 1s, Cd 3d, and Se 3d elements. Two broad peaks centered at 458.80 and 464.50 eV
are observed in Figure 4a, corresponding to the Ti 2p3/2 and Ti 2p1/2 peaks of Ti4+ in the TiO2 nanotube
thin films [39]. The intensity of both peaks gradually decreased upon the deposition of CdSe into
the TiO2 nanotube thin films, indicating the presence of CdSe in the TiO2 lattice structure. However,
the deposition of CdSe on TiO2 did not affect the Ti chemical state of the nanotubes. In contrast, the
O 1s elements showed a slight shift from 530.90 eV for the pure TiO2 nanotube thin film samples to
529.90 eV for the CdSe–TiO2 nanotube thin film samples due the strong interaction between CdSe
clusters and TiO2 nanotube thin films. The strong interaction bond between CdSe and TiO2 served as
the heterojunctions that became captives of the electron/hole pairs from the CdSe clusters [38]. Hence,
this will suppress the recombination of the electron/hole and photoelectrochemical activity.



Materials 2020, 13, 2533 8 of 16Materials 2020, 13, x FOR PEER REVIEW 9 of 17 

 

 

Figure 5. High-resolution XPS spectra of (a) Ti 2p, (b) O 1s, (c) Cd 3d, and (d) Se 3d of pure TiO2 
nanotube thin films and CdSe–TiO2 nanotube thin films. 

The optical properties of pure TiO2 nanotube thin films and CdSe–TiO2 nanotube thin films were 
carried out using a UV-Vis diffuse reflectance analysis (DRS). The adsorption spectra for both 
samples are shown in Figure 6. The adsorption edge of pure TiO2 nanotube thin films was observed 
below 400 nm due to the excitation of the electron from the valence band to the conduction band [54]. 
However, the CdSe–TiO2 nanotube thin films showed an adsorption above 400 nm, suggesting that 
more visible light was adsorbed by the sample, hence facilitating the generation of a high amount of 
carrier charge, which then enhanced the photocurrent response of the sample. The Tauc approach 
was used to determine the optical bandgap of the pure TiO2 nanotube thin films and CdSe–TiO2 
nanotube thin film samples using the equation below: ߙ ൌ ݒ଴ඥ݄ߙ െ ݒ௚݄ܧ  (1) 

where Eg is the separation between the bottom of the conduction band and the top of the valance 
band, hv is the photon energy, and n is the constant. In this case, n = ½, which follows a direct 
transition. The plot of (αhv)1/2 against hv for the pure TiO2 nanotube thin films and CdSe–TiO2 
nanotube thin films are shown in Figure 7. The band gap of pure TiO2 nanotube thin films and CdSe–

Figure 5. High-resolution XPS spectra of (a) Ti 2p, (b) O 1s, (c) Cd 3d, and (d) Se 3d of pure TiO2

nanotube thin films and CdSe–TiO2 nanotube thin films.

Figure 5c illustrates the double peak features of the Cd 3d spectra for the CdSe–TiO2 nanotube
thin film sample, suggesting the presence of Cd element in the sample, while no traces of Cd element
were observed in the TiO2 nanotube thin film sample. The precise assessment of the functions
of the spin-orbital split Cd 3d5/2 and Cd 3d3/2 were disintegrated by using the Voigt curve fitting
function within the Shirley background. Four peaks were observed, centered at 405.13 and 404.59 eV
corresponding to Cd 3d5/2, whereas the binding energy at 411.98 and 411.40 eV corresponded to Cd
3d3/2. The prominent binding energy centered at 405.13 and 411.98 eV, which was due to the core level
of Cd2+ cations of the CdSe crystal structure [41]. The additional peaks observed with lower intensities
of 405.13 and 411.98 had a weak shift in peak positions. CdO formation was also proved in CdSe, where
the core levels of the oxidation of Cd were weak at the 3d5/2 and 3d3/2 core levels [51,52]. The small
CdO volume could, therefore, be verifiable using the CBD technique from low intensity peaks with
404.59 and 411.40 bonding energy. The existence of the Se element in the CdSe–TiO2 nanotube thin
films sample was proved from the Se 3d spectra shown in Figure 5d. A broad peak centered at 54.46 eV
represented that the Se 3d3/2 characteristic was due to the Se2− anions of CdSe [53,54].



Materials 2020, 13, 2533 9 of 16

The optical properties of pure TiO2 nanotube thin films and CdSe–TiO2 nanotube thin films
were carried out using a UV-Vis diffuse reflectance analysis (DRS). The adsorption spectra for both
samples are shown in Figure 6. The adsorption edge of pure TiO2 nanotube thin films was observed
below 400 nm due to the excitation of the electron from the valence band to the conduction band [54].
However, the CdSe–TiO2 nanotube thin films showed an adsorption above 400 nm, suggesting that
more visible light was adsorbed by the sample, hence facilitating the generation of a high amount of
carrier charge, which then enhanced the photocurrent response of the sample. The Tauc approach was
used to determine the optical bandgap of the pure TiO2 nanotube thin films and CdSe–TiO2 nanotube
thin film samples using the equation below:

α =
α0
√

hv− Eg

hv
(1)

where Eg is the separation between the bottom of the conduction band and the top of the valance band,
hv is the photon energy, and n is the constant. In this case, n = 1

2 , which follows a direct transition.
The plot of (αhv)1/2 against hv for the pure TiO2 nanotube thin films and CdSe–TiO2 nanotube thin
films are shown in Figure 7. The band gap of pure TiO2 nanotube thin films and CdSe–TiO2 nanotube
thin films were estimated from the intersection of the baseline with the tangent line of the sharply
decreasing region of the spectra. It was noted that the band gap of the pure TiO2 nanotube thin films
was 3.20 eV, while the band gap of the CdSe–TiO2 nanotube thin films was 2.81 eV. It was well known
that the CdSe bulk sample band gap was 1.74 eV. Typically, the band gap of CdSe varies with the
deposition method and deposition parameters, and is also attributed due to the changes in the film
composition and structural defects. In this case, the large band gap of the CdSe–TiO2 nanotube thin
films corresponded to the low amount of CdSe on the TiO2 nanotube thin films, as discussed in the
EDX results.
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Figure 6. Absorption patterns for (a) CdSe–TiO2 nanotube thin films subjected to 20 ◦C soaking
temperature and (b) pure TiO2 nanotube thin films.
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nanotube thin films.

A photoelectrochemical analysis of pure TiO2 nanotube thin films and CdSe–TiO2 nanotube thin
films deposited at chemical bath temperatures from 20 to 60 ◦C was performed using linear sweep
potential voltammetry with applied potential from −1 to 1 V versus Ag/AgCl in a 1 M KOH aqueous
electrolyte. Figure 8 shows the Jp-V curves for all samples. Upon irradiation, the photocurrent density
of CdSe–TiO2 nanotube thin films deposited at 20 ◦C showed the highest photocurrent density value at
1.70 mA cm−2, which was 17 % higher than the pure TiO2 nanotube thin films (1.45 mA cm−2). However,
the CdSe–TiO2 nanotube thin films deposited at higher chemical bath temperatures exhibited a decrease
in photocurrent density, with 1.1 mA cm−2, 1.8 mA cm−2, and 0.5 mA cm−2 for the samples deposited
at temperatures of 40, 50, and 60 ◦C, respectively. The obtained photocurrent density was much higher
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compared to other TiO2 thin film-based photoelectrochemical cells that were reported earlier: Gd@TiO2

NRA (~0.51 mA cm−2) [30], TiO2/g-C3N4 (~0.85 mA cm−2) [55], TiO2/WO3 (~1.00 mA cm−2) [56],
and CdSe–TiO2 (~1.6 mA cm−2) [57].Materials 2020, 13, x FOR PEER REVIEW 12 of 17 
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Figure 8. The jp-V characteristic curves of CdSe–TiO2 nanotube thin films soaked at different
temperatures of CdSe precursor: (a) 20 ◦C, (b) pure TiO2 nanotubes thin film, (c) 40 ◦C, (d) 50 ◦C,
and (e) 60 ◦C.

The obtained results indicated that the low loading of CdSe on the TiO2 nanotube thin films was
sufficient to enhance the photocurrent density of the sample. Furthermore, the CdSe–TiO2 nanotube
thin films deposited at a temperature of 20 ◦C showed a clear surface morphology without any clogged
nanotubes. Therefore, the sample experienced better ion diffusion, thus, enhancing the photocurrent
density of the sample. Generally, the CdSe species in the sample acted as an effective electron acceptor,
which generated an energy band below the conduction band of TiO2. Thus, the photogenerated
electrons from TiO2 will be captured by the CdSe species due to the interpretation of inter-band states
with key redox potential, or surface states within the corresponding energetic position. In contrast,
in pure TiO2 nanotube thin films, the photo-induced electron in the conduction band was trapped
for the recombination with holes. In this study, excessive loading of the CdSe species on the TiO2

nanotube thin films exhibited poor photocurrent density. As discussed in the FE-SEM results, the
CdSe–TiO2 nanotube thin films deposited at temperatures of 40 to 60 ◦C displayed agglomerated CdSe
particles, where they mostly covered the TiO2 nanotube thin film circumstances and led to poor ion
diffusion throughout the nanotubes during the photocurrent analysis. This condition prevented the
electron transport throughout the sample and resulted in low photocurrent density [58,59]. Thus,
the enhancement of photocurrent density under solar illumination was ascribed to the optimum
content of the CdSe species incorporated into the lattice of TiO2.

Mechanism Study of CdSe–TiO2 Nanotubes via CBD Method

CBD consists of two important steps, which are the nucleation process and particle growth.
This method is based on the formation of the solid phase from a precursor solution. During the
deposition process, the first stage corresponds to the initiation of the critical nuclei of the species.
In this study, a bath solution with a Cd2+ and Se2− precursor was used to deposit CdSe on the TiO2
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nanotube thin films. The mechanisms of the CdSe formation during the CBD have been described
in our previous report [37]. Cd(CH3COO)2·2H2O will form a Cd complex with ammonia solution to
finally form Cd2+.

Cd(CH3COO)2 + 2NH4OH→ Cd(OH)2 + 2NH4(CH3COO) (2)

Cd(OH)2 + 4NH2OH↔ Cd(NH3)4
2+ + 2OH+ + 4H2O (3)

Cd(NH3)4
2+
↔ Cd2+ + 4NH3 (4)

In addition, Na2SeSO3 will hydrolyze in the solution to produce Se2-, as presented below:

Na2SeSO3 + OH− → Na2SO4 + HSe− (5)

HSe− + OH− → Se2− + H2O (6)

The Cd(NH3)2
2+ then reacts with Se2- to form a CdSe species to be deposited on the TiO2 nanotube

thin films.
Cd(NH3)4

2+ + Se2−
→ CdSe + 4NH3 (7)

The formation of CdSe and the deposition of the species on the TiO2 nanotube thin films will
occur simultaneously in the chemical bath. The rate of deposition will depend on the deposition
parameters, such as chemical bath temperature, pH, precursor’s concentration, and deposition time.
The CdSe nuclei will form and initiate the deposition process on the TiO2 nanotube thin film surfaces.
During this stage, the metastability of the precursor solution system is not affected by the emerging
nuclei. As the deposition process progresses, the intermediate stage, which comprises a combination
process of growth of the existing CdSe particles, and the initiation of additional nuclei will reduce
the metastability of the precursor solution system. These processes will resume until the end of the
deposition process.

Figure 9 shows a simple schematic diagram representing the carrier transfer processes between
CdSe and the TiO2 nanotubes, which can aid the understanding of the PEC mechanism. When the solar
light illuminates, both TiO2 and CdSe harvest photons and generate electron-hole pairs. The conduction
band (CB) of CdSe is more positive than the TiO2 nanotubes, therefore, the photo-induced electrons
in the CB of CdSe will transfer to the CB of the TiO2 nanotubes and further move along the TiO2

nanotubes, to the external circuitry [40,59,60]. Simultaneously, the left holes in the valance band (VB)
of TiO2 will transfer to the VB of CdSe. Therefore, this results in a parallel array of rapid transfer
pathways for carrier transportation. The band gap narrowing, which improvises the visible light
absorption, will provide more sites that can slow down the recombination of charge carriers [50,51,61].
The holes migrating to the surface of CdSe will react with the electrolyte at the interface between the
photoanode and the electrolyte [59]. Based on the aforementioned scenario, CdSe has two advantages:
first, CdSe enhances the photon-induced charge separation rate by widening the response spectrum
compared with the TiO2 nanotubes; second, the heterojunction that anchors CdSe on the surface of
the TiO2 nanotubes provides additional channels for the separated charge transportation thanks to
the specific band potential distribution and the charge transfer property, so that the recombination
probability decreases, which results in a higher PEC performance of the sample. In short, the PEC
properties of the CdSe–TiO2 nanotubes are demonstrated to be controllable through the chemical bath
deposition’s temperature.
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controlling the chemical bath temperature. The particle size and CdSe loading on the TiO2 nanotube
thin films were controlled by varying the chemical bath temperature from 20 to 60 ◦C. The CdSe–TiO2

nanotube thin films showed an excellent photo response in the visible light region, thus, facilitating
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