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Abstract: Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are
thought to be major drivers of antibiotic resistance spread. The present work reports a simple way
to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified
plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced
into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei.
Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed
by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-
resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single
digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis
respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from
L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to
L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for
isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge
of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids
in the spread of resistance genes via the food chain.

Keywords: antibiotic resistance; horizontal gene transfer; plasmids; tetracycline and erythromycin
resistance; artisanal cheeses; lactic acid bacteria

1. Introduction

The wide use of antibiotics in human and veterinary medicine, agriculture and aqua-
culture has promoted the appearance and spread of resistance to antibiotics, compromising
their therapeutic effectiveness [1]. Understanding the mechanisms involved in the trans-
mission of resistance is vital if we are to control its spread [2]. Efforts to stop it are certainly
needed in clinical settings, but are also vital across interconnected ecosystems involving
livestock, food, food waste, water and sewage, etc. [3–6]. Paying attention to all of these as
a whole is known as the One Health approach [7].

Antibiotic resistance genes (ARG) can spread via horizontal transfer between bacteria
that share the same habitat. Among the different mobile elements that may be involved,
plasmids are thought to be key players. Plasmids are extrachromosomal DNA molecules
that recruit the host cell machinery for their replication and copy number control [8]. The
metabolic cost of plasmid replication and maintenance can place an energetic burden on
bacterial cells [9], but plasmids can also encode traits that confer advantages to the host.
These are frequently associated with survival and adaptation to changeable environments,
including the ability to metabolize different carbon and nitrogen sources, resistance and
tolerance to heavy metals, disinfectants, antibiotics, and other environmental pollutants,
and the ability to synthesize antimicrobial agents [10–13]. By transferring beneficial traits
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within and between bacterial species, plasmids play an important role in these species’
evolution [10]. The transfer of plasmids between bacteria can occur via conjugation, trans-
duction, transformation, and vesiduction [14]. The presence of ARG-carrying plasmids,
therefore, increases the risk of the transfer of resistance [15,16]; the study of such plasmids
is crucial if the risk they pose to human health is to be understood, and if strategies to
reduce the horizontal transfer of the genes they carry are to be developed [12].

The food chain may be a major thoroughfare for the spread of antibiotic resistance from
animals to humans, particularly by consumption of fresh, little-processed, and raw-made
products [17–19]. In cheese, ARG have been identified in total microbial DNA as well as in
isolated bacteria. Genes coding for resistance to tetracycline, erythromycin, streptomycin,
aminoglycosides, chloramphenicol and virginiamycin, have all been reported [20,21], and
Southern blotting and genome sequencing have shown many of these genes to be carried
by plasmids [22–24]. Both narrow and broad host-range ARG-carrying plasmids have been
frequently detected in Gram-negative bacteria isolated from food [25,26]. However, the
abundance, diversity, and transfer capacity of ARG-carrying plasmids in Gram-positive
bacteria, and more specifically in lactic acid bacteria (LAB; the majority microbial types in
cheese), has been left largely unexplored. The plasmid complement of most LAB species is
complex, making the detection of associations between plasmids and antibiotic resistance
challenging and laborious [27,28], and certainly, high-throughput sequencing and assembly
technologies have so far failed to associate antibiotic resistance genes with plasmids in
genomic and metagenomics studies [29]. In this context, this work reports a simple method
for isolating functional plasmids that confer antibiotic resistance to LAB species. The results
provide knowledge on the prevalence and diversity of plasmids conferring tetracycline
and erythromycin resistance to cheese bacteria, and provide preliminary insight into the
role of plasmids in the spread of antibiotic resistance throughout dairy ecosystems.

2. Results
2.1. Diversity of Plasmid Profiles

Counts of resistant aerobic mesophilic bacteria and LAB were performed on Plate
Count Milk (PCM) and de Man, Rogosa, and Sharpe (MRS) agar plates, respectively, both
supplemented with tetracycline or erythromycin, from samples of Cabrales cheese at day 3
(3D; early manufacture) and day 60 (60D; end of ripening). Large counts of tetracycline-
and erythromycin-resistant bacteria were enumerated in all samples analyzed; these were
almost identical at the same sampling point. The values obtained in PCM plates ranged
from 108 to 106 ufc mL−1 at day 3 and 60, respectively. However, the level of resistant
bacteria in MRS plates were lower than in PCM plates, since in the former were observed
values from 105 ufc mL−1 during manufacture and 106 ufc mL−1 at the end of ripening.
Total plasmid DNA was isolated from semiconfluent colonies of total aerobic mesophilic
bacteria (PCM-3D and PCM-60D) and LAB (MRS-3D and MRS-60D) grown in the counting
plates. For a better comparison of the diversity, total plasmid DNA was initially digested
using restriction enzymes before visualization by gel electrophoresis. Complex patterns
of intense and weak plasmid bands were observed for all samples. Figure S1 shows an
example of the PstI and XhoI digestion patterns for the total plasmid DNA recovered from
the different samples. Although the digestion profiles obtained on PCM and MRS at 3D
sample look rather different, the number, intensity and size of the bands were similar at
60D sample.

2.2. Screening of Plasmids Providing Antibiotic Resistance

Plasmid DNA from the PCM-3D, PCM-60D, MRS-3D and MRS-60D samples was in-
dependently transformed into electrocompetent cells of Lactococcus lactis NZ9000, Lactiplan-
tibacillus plantarum NC8, and Lacticaseibacillus casei LB23. Tetracycline- and erythromycin-
resistant transformants were then selected on GM17 and MRS solid media supplemented
with the required antibiotic. Overall, 54 tetracycline-resistant colonies of lactococci were
obtained with the plasmid DNA from the PCM-3D (30 colonies) and MRS-3D plates
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(24 colonies), while 13 resistant colonies were obtained using plasmid DNA from the PCM-
60D (8 colonies) and MRS-60D plates (5 colonies). Similarly, 10 and 15 tetracycline-resistant
colonies of L. casei and L. plantarum, respectively, were found; these were all obtained with
plasmid DNA from the PCM-3D sample. Finally, only five erythromycin-resistant colonies
were recovered; these were obtained in L. lactis when using again plasmid DNA from the
PCM-3D sample.

All resistant transformants were grown overnight in liquid media with antibiotics
and analyzed for the presence of plasmid DNA; after extraction and purification, plasmids
were detected in all 97 resistant colonies. Restriction analysis of plasmid DNA identified
seven digestion profiles among the tetracycline-resistant transformants, five among the
L. lactis, one each for the two Lactobacillus strains, and a single digestion profile among the
erythromycin-resistant L. lactis cells (Figure 1). This suggested the presence of an equivalent
number of different plasmid molecules, designated pTC1 to pTC7 for those providing
tetracycline resistance, and pERM1 for that providing erythromycin resistance. pTC1 was
the most widespread plasmid (found in 49 out of 92 tetracycline-resistant colonies). It was
recovered in L. lactis with plasmid DNA from all four tetracycline-grown bacteria samples.
The plasmid profile of pTC1 was the only one observed from the PCM-3D, PCM-60D
and MRS-60D samples. In addition, unique plasmid digestion profiles were also detected
among erythromycin-resistant colonies in lactococci (pERM1) and tetracycline-resistance
colonies in lactobacilli strains (pTC6 in L. casei and pTC7 in L. plantarum). In contrast, five
different plasmid profiles were obtained in Lactococcus with plasmid DNA from the MRS-
3D sample. These were detected with variable frequency among the colonies analyzed:
pTC1 (in 6 colonies), pTC2 (in 3), pTC3 (in 1), pTC4 (in 2), and pTC5 (in 12). The estimated
size of the plasmids ranged from about 4 (pTC6) to 50 (pEMR1) kbp.
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Figure 1. Restriction profiles of plasmid DNA obtained from transformants of tetracycline-resistant
Lactococcus lactis NZ9000 (a), tetracycline-resistant Lacticaseibacillus casei BL23 and Lactiplantibacillus
plantarum NC8 (b), and erythromycin-resistant L. lactis NZ9000 (c). Order: Panel (a), lanes 1 through
5, pTC1 to pTC5 digested with EcoRI; Panel (b), lanes 1 and 2, pTC6, and pTC7 digested with HindIII;
Panel (c), lane 1, pERM1 digested with PvuI and EcoRI. M, Molecular weight markers.

2.3. Antibiotic Susceptibility of Plasmid-Harboring Transformants

Transformant strains carrying the plasmids from pTC1 to pTC7 and pERM1 (repre-
sentative plasmids of all different profiles) were tested for antibiotic susceptibility against
a set of 16 antibiotics using a broth microdilution method (Sensititre) and the evaluator
strip (MICE) system and the results compared to those for the untransformed parental
strains. The results obtained are summarized in Table 1. L. lactis cells carrying tetracycline
resistance plasmids showed a MIC for this antibiotic of 128–192 µg mL−1 compared to
1 µg mL−1 of the host strain L. lactis NZ9000. Transformants harboring pTC3 and pTC5
also showed increased MICs to streptomycin (32–64 versus 16 µg mL−1) and chloram-
phenicol (16–32 versus 4 µg mL−1). The presence of plasmids in L. casei and L. plantarum
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moderately increased the MIC to tetracycline, while MIC values for other antibiotics were
unaffected (Table 1). Finally, the erythromycin-resistant L. lactis transformants showed a
MIC of erythromycin >256 µg mL−1. Additionally, they showed increased MICs of strepto-
mycin (>256 µg mL−1), neomycin (32 µg mL−1), tetracycline (>256 µg mL−1), clindamycin
(>256 µg mL−1), and quinupristin-dalfopristin (>8 µg mL−1) (Table 1).

Table 1. Minimum inhibitory concentration (MIC) of 16 antibiotics to the plasmid-free Lactococcus lactis NZ9000, Lacticas-
eibacillus casei LB23, and Lactiplantibacillus plantarum NC8 and their plasmid-containing transformed derivatives.

Species/Strain
Minimum Inhibitory Concentration (µg mL−1)

Gm Km Sm Nm Tc Em Cl Cm Am Pc Va Q-da Lz Tm Ci Rif

Lactococcus lactis
NZ9000 1 4 16 4 1 0.12 0.12 4 0.25 0.5 0.5 4 2 >64 16 64

L. lactis pTC1 1 4 16 4 128 0.06 0.12 4 0.25 0.25 0.25 4 2 >64 16 32
L. lactis pTC2 0.5 4 16 2 128 0.06 0.06 4 0.25 0.25 0.5 4 2 >64 16 32
L. lactis pTC3 0.5 4 64 2 128 0.06 0.12 32 0.25 0.25 0.5 4 1 >64 16 64
L. lactis pTC4 1 4 16 4 128 0.06 0.12 4 0.25 0.25 0.25 4 2 >64 16 32
L. lactis pTC5 1 4 32 2 192 0.12 0.12 16 0.25 0.25 0.5 4 2 >64 16 64

L. lactis pEMR1 1 4 >256 32 >256 >256 >256 8 0.25 0.25 0.5 >8 2 >64 16 64
Lacticaseibacillus

casei BL23 2 16 8 4 2 0.06 0.03 4 1 0.5 >128 0.5 1 1 1 0.12

L. casei pTC6 1 32 16 2 32 0.25 0.06 8 0.5 1 >128 2 4 0.5 32 8
Lactiplantibacillus
plantarum NC8 0.5 16 32 1 32 0.12 1 8 0.25 2 >128 2 4 8 32 2

L. plantarum pTC7 0.5 16 16 0.5 64 0.25 1 8 0.25 2 >128 1 4 16 64 2
Key of antibiotics: Gm, gentamicin; Km, kanamycin; Sm, streptomycin; Nm, neomycin; Tc, tetracycline; Em, erythromycin; Cl, clindamycin;
Cm, chloramphenicol; Am, ampicillin; Pc, penicillin G; Va, vancomycin; Q-da, quinupristin-dalfopristin; Lz, linezolid; Tm, trimethoprim;
Ci, ciprofloxacin; Rif, rifampicin. Grey-shaded boxes highlight the plasmid-associated increased MICs obtained in the transformants.

2.4. Detection of Tetracycline and Erythromycin Resistance Genes

The presence of tetracycline and erythromycin resistance genes in the plasmids respon-
sible for the increased MICs to these antibiotics in host strains was initially evaluated by
conventional PCR. Genes coding for ribosomal protection proteins conferring tetracycline
resistance were amplified by PCR using the universal pair of primers DI-DII, and plasmid
DNA from the tetracycline-resistant L. lactis transformants as a template. Subsequent
gene-specific PCR analysis for the tetracycline resistance genes tet(W), tet(M), tet(S), tet(O),
tet(K), and tet(L) showed positive amplification only when targeting tet(S) gene. This result
was further confirmed by sequencing of the amplicons. Surprisingly, no amplification was
ever obtained when DNA of the tetracycline-resistant lactobacilli transformants was used
as a template. While the presence of several genes conferring erythromycin resistance
(ermA, ermB, ermC, ermF, and mefA) were assessed, positive amplification was just obtained
when using gene-specific primers for ermB and plasmid DNA from erythromycin-resistant
L. lactis as a template. This gene codes for a methyltransferase which confers resistance
to macrolides, lincosamides and streptogramins (the MLS phenotype), which might thus
explain the high MIC value for clindamycin.

2.5. Sequencing, Assembly and Annotation of Plasmids

Representative plasmids of the different digestion patterns were selected for entire
sequencing. High quality reads were assembled, annotated, and analyzed. After assembly,
a single plasmid molecule was detected for all antibiotic-resistant plasmid patterns except
for that of pTC6, the profile of which consisted of two plasmid molecules (pTC6.1 and
pTC6.2). The overall G+C content of the plasmids ranged from 30.6% to 34.3% for those
recovered in L. lactis, and from 34.3% to 39.5% for those in lactobacilli species. Table S1
shows the ORFs identified in each of the plasmids and the putative biological function of
their deduced proteins. The majority of ORFs showed high homology with genes located on
the plasmids or the chromosome of the Lactococcus species. However, some ORFs showed
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homology to genes found in other Lactobacillales species, such as Streptococcus parauberis,
Enterococcus faecalis, Enterococcus faecium, etc. Further, a minority of the deduced amino acid
sequences shared homology with proteins from Listeria monocytogenes, Staphylococcus aureus,
and Bacillus licheniformis, such as (respectively) an ATP-dependent helicase (pTC4-ORF23
and pTC5-ORF22; Table S1), a replication initiation factor domain-containing protein (pTC5-
ORF 30; Table S1), and a hypothetical protein (pTC1-ORF12; Table S1). Additionally, a
region of pERM1 encompassing ORF3, ORF4 and ORF5 showed homology (respectively)
to genes from Tissierella pigra, Halanaerobiaceae bacterium and Alkalibaculum bacchi.

2.6. Tetracycline Resistance Plasmids

Nucleotide sequence analysis identified two modules in pTC1. The first covered
88% of the molecule and proved to be very similar (98% nucleotide identity) to a plasmid
region of S. parauberis SPOF3K (CP025421.1), which also harbors a Tet(S)-encoding gene.
Besides tet(S), this module accommodates genes coding for two replication proteins of the
RepB family, and four ORFs encoding proteins involved in conjugation and mobilization
(Figure 2; Table S1). The second module showed high homology (98% nucleotide identity)
to segments of plasmids such as, among others, pLd10 (MG813924.1), pUL8B (CP016705.1)
and pAH82 (AF243383.1) of L. lactis subsp. lactis, and pNZ4000 (AF036485.2) and pJM3A
(CP016737.1) of L. lactis subsp. cremoris.

A major part of pTC2 (∆ORF2 to ORF11) was identical to the first module of pTC1;
this includes the tet(S) gene and the region encoding replication and mobilization functions.
The pTC1 and pTC2 are of about the same size and differ only in a few genes encoding
putative recombinases and hypothetical proteins (Figure 2; Table S1).

pTC3 was organized into three different modules. The whole plasmid shares (with
minor rearrangements) high homology with the entire sequence of the lactococcal plasmids
p158F (CP016690.1) and pHP003 (AF247159.1). Beyond tet(S), the plasmid contained genes
associated with chloramphenicol (cat; ORF26) and streptomycin (str; ORF31) resistance.
The region containing the three antibiotic resistance genes is highly homologous to a
segment flanked by two IS6-like transposases of pK214 (X92946.1). pTC3 also contained
ORFs encoding three complete and two partial replication proteins of the RepB and RepC
families and eight proteins associated with mobilization (Figure 2; Table S1).

At 42,318 bp, pTC4 was the largest plasmid recovered from the tetracycline-resistant
transformants. Structurally, it was organized as an apparent mosaic resulting from the
fusion of segments of a variety of L. lactis plasmids, including fragments from pK214, pS127
(CP061323.1), p001F (CP053672.2), pLP712 (FJ649478.1), pC41 (AP018500.1), and pA12-4
(LT599053.1). Some regions of pTC4 showed strong identity to others from plasmids
of Lactococcus garvieae (pNUF18; LC316979), Macrococcus cannis (pKM0218; MF477836.1),
S. aureus (plasmid I; LT799381.1), Carnobacterium divergens (pMFPA43A1505B; LT984412.1),
and E. faecium (e.g., pV24-4 [CP036155.1] and pA6521_3 [CP061820.1]). This agrees well
with the presence of seven IS-like elements in the pTC4 molecule (Figure 2; Table S1). Two
such IS flanked the region harboring tet(S). Among other accessory genes, ORFs coding
for the synthesis and secretion of a bacteriocin of the lactococcin family were also noted
(Table S1).

Much of the pTC5 sequence (77%), including its tet(S)-associated gene, was shown to
be almost identical (99%) to that of pTC4. The differential region in pTC5 (from ORF26 to
ORF37) was flanked by two transposases and comprised genes involved in resistance to
streptomycin and chloramphenicol (Figure 2; Table S1). This antibiotic resistance-dedicated
region was very similar to a section of pTC3.
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Figure 2. Drawn to scale genetic maps of the tetracycline resistance plasmids recovered in Lactococcus lactis, pTC1 through
pTC5. Arrows indicate the position, direction and length of the open reading frames (ORFs) identified. The position of
tet(S), str and cat genes are highlighted in red. Color code of the ORFs: red, antibiotic resistance genes; yellow, genes
involved in replication; green, insertion sequences and genes involved in mobilization; white, genes encoding other or
unknown functions.
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pTC6.1 and pTC6.2 showed 100% nucleotide identity to, respectively, pWCFS101
(CR377165.1) and pWCFS102 (CR377164.1) from L. plantarum WCFS1. These plasmids repli-
cate by a rolling circle mechanism, in agreement with their respective prototypes, pC194 and
pMV158, to which they bear homology. Apart from genes coding for replication-associated
proteins, only ORFs coding for hypothetical proteins were detected. No tetracycline resis-
tance determinants were identified (Figure 3, Table S1).
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Finally, the sequence of pTC7 showed only a five-nucleotide difference to that of
plasmid p256 from L. plantarum DSM 20174 (AJ62894.1). It is worth noting the presence in
pTC7 of ORFs encoding proteins involved in plasmid maintenance (ORF12 and ORF13),
but not in replication initiation functions. Again as in pTC6.1 and pTC6.2, ORFs coding
for dedicated proteins involved in tetracycline resistance were absent in pTC7 (Figure 3;
Table S1).

2.7. Erythromycin Resistance Plasmids

pERM1, the single plasmid recovered from the erythromycin-resistant L. lactis trans-
formants, was organized into several modules bound by IS elements (Figure 4; Table
S1). Besides ermB, a functional tet(S) was also identified in the pERM1 sequence. The
module encoding ermB (ORF33) and tet(S) (ORF29) genes showed strong nucleotide ho-
mology to a conserved set of structures identified in the chromosome of Mammaliicoccus
sciuri GDK8D6P (CP065792.1) and Streptococcus dysgalactiae NTUH_1743 (EF682209.1), as
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well as in plasmids of Macrococcus canis (pKM0218; MF477836.1), Lactococcus raffinolactis
(pLraf_19_4S_1; CP050535.1), C. divergens (pMFPA43A1405B; LT984412.1), and L. lactis
(pUC08B; CP016727.1). In contrast, the module harboring other resistance genes, namely
streptomycin (str), quinupristin-dalfopristin (Vgb), tunicamycin (tmrB), and aminoglyco-
sides (ant[6]-Ia and vat), showed no significant homology with sequences deposited in
the NCBI database. The remaining modules, which include ORFs coding for proteins
involved in replication and conjugal transfer, proved to be identical to others from pS127
(CP061323.1) and pMRC01 (AE001272.1) in L. lactis.
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2.8. Nucleotide Sequence of tet(S) and Its Flanking Regions

All six plasmids carrying the tet(S) gene (pTC1 to pTC5 and pERM1) shared an
identical block of 3062 bp (Figure 5). This core region started 988 bp upstream of the ATG
position of tet(S) and ended 133 bp downstream of its stop codon. Within these blocks, a
single nucleotide transversion (C to A) in the sequence of pTC1 was noted, and a single
nucleotide transition (C to T) in pERM1 (Figure 5). The tet(S) gene contains 1941 nucleotides
with the capacity to encode a protein 646 amino acids long; the Tet(S) protein coded by all
these plasmids was identical.
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3. Discussion

Plasmids enable bacteria to recruit accessory traits, including resistance to antibiotics,
that confer selective advantages in terms of colonization, development or persistence in dif-
ferent environments [10]. Plasmids, and thus resistances, can be spread via horizontal gene
transfer events such as conjugation and mobilization to neighboring partners, causing real
risks to human health if they reach pathogenic or opportunistic bacteria [30]. The presence
of antibiotic resistance determinants in plasmids carried by food-associated bacteria are
thought to pose the greatest risk of resistance spreading along the food chain [17].

Resistant strains and resistance genes can be detected via phenotypic and genetic
surveys, respectively [31,32]. Some resistance genes have been identified and located to
plasmids [24], and even isolated and characterized [33,34]. However, the assignment of
resistances to plasmids can be challenging and laborious, requiring studies on transference
and mobilization by conjugation [26,35–37], hybridization analysis [24,36,38], and the loca-
tion of resistance genes by analysing assembled plasmids sequences [39–41]. Furthermore,
currently-in-use high-throughput sequencing and assembly technologies have failed to
associate antibiotic resistance genes with plasmids in genomic and metagenomics stud-
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ies [29]. The present work, however, reports a simple method of retrieving plasmids able
to replicate in specific hosts and capable of conferring resistance to a particular antibiotic.
These plasmids can then be fully characterized at the phenotypic and genetic levels.

Although ARG-carrying plasmids might be extracted and purified from bacteria as
they are naturally found in cheese, the present work involved preliminary enrichment
with antibiotics to provide proof of concept. Tetracycline and erythromycin were selected
due to their extensive use as therapeutic agents and as growth promoters in Europe until
banned in 2006 [42]. Further, resistance to these two antibiotics has already spread in dairy
environments [21,43] and certainly among LAB species [44,45].

Overall, five plasmids replicating in L. lactis ranging in size from 11 to 42 kb were found
to confer resistance to tetracycline. Although tet(S), tet(M), tet(O), tet(W), tet(L), and tet(K)
have previously been detected in dairy LAB [21,22,43,46], only tet(S) was detected in the
tetracycline-resistant plasmids characterized in the present study. In a previous functional
metagenomics study, tet(A), tet(M), tet(S) and tet(L) were found throughout Cabrales
manufacture and ripening [22]. The presence of distinct tetracycline resistance genes
in different cheese batches can be explained by the great heterogeneity of the microbial
populations in cheeses made from raw-milk. A larger copy number of the plasmids carrying
tet(S) —a possibility not assessed in the present study— might help mask other tetracycline
resistance genes. Despite finding only tet(S), at least five different L. lactis plasmids carrying
the gene were detected, suggesting the wide spread of tet(S) across lactococcal plasmids.
In contrast, a single plasmid encoding erythromycin resistance was retrieved in the same
species, which suggests ermB to be less abundant than tet(S) in cheese.

Sequence analysis revealed the presence of RepB family proteins in all L. lactis plas-
mids, suggesting they follow a theta-type replication mechanism [47], their replicons
belonging to different theta-replicating plasmid families. Although no genes encoding
replication proteins were detected in pTC7 from L. plantarum, a theta-type mode of repli-
cation has been proposed for its closest relative, p256 [48]. Plasmids with such a mode
of replication are more stable than those that use the rolling circle mechanism. Further,
large numbers of theta-replicating plasmids can coexist in a single cell [28,49–51], which
agrees well with the high prevalence of these replicons in cheese bacteria. Nevertheless,
theta-replicating plasmids have a narrow host range, sometimes a single species or a few of
close relative species [52]. In agreement with this, in this work, the same plasmid DNA pool
was electroporated into three species, but plasmids carrying dedicated resistance genes
were only recovered from L. lactis, the species that allows replication. The same plasmids,
and thus the same resistance genes, were retrieved from samples on day 3 and day 60, even
though the bacterial populations and their associated resistances were different, see [22,53].
The likely existence of resistance plasmids in other cheese-borne bacteria demands other
types of bacterial species be used as a host, including Enterococcus spp., Staphylococcus spp.,
Streptococcus spp., and Escherichia coli, all of which have been reported important in the
spread of antibiotic resistance in cheese [22,53–56].

Numerous IS- and transposase-related sequences were identified delimitating the
different modules of the plasmids, or even flanking distinct functional blocks within the
modules. A mosaic plasmid structure bound by IS has been recognized as paramount for
maintaining the plasticity necessary for LAB to adapt to the dairy environment [57,58].
This type of structure may help alleviate the energetic costs of hosting large plasmids and
complex extrachromosomal elements [59,60]. The modular structure argues in favor of a
common pool of exchangeable blocks, which could offer bacteria a changing plasmid com-
plement, even under similar genetic backgrounds [61]. In this respect, the blocks harboring
tet(S) proved to be almost identical to regions of the S. parauberis plasmid SPOF3 [62] and
of pK214 from L. lactis K214 [63]. Indeed, the block harboring the chloramphenicol and
streptomycin resistance genes was identical to a region of pK214 [63]. Similarly, the block
encoding ermB was very similar to another in M. canis pKM0218 [64]. The surrounding
regions of tet(S) were also identical in pTC1 through pTC5 and pERM1, which strongly
suggests a recent horizontal transfer from a common source. The presence of such blocks



Int. J. Mol. Sci. 2021, 22, 7801 11 of 17

in different plasmids, and in plasmids from different species and genera, further suggests
that these blocks are the real spreadable elements, with plasmids the preferred host in
L. lactis [2,9,11,28,58].

Increased MICs for some antibiotics have largely been attributed to non-specific
mechanisms such as reduced antibiotic uptake, reduced cell permeability, the thickness
and compactness of the cell wall, defective cell wall autolytic systems, and the presence
of multidrug resistance transporters [65,66]. Although none of the proteins encoded by
ORFs from pTC6.1-pTC6.2, or pTC7 could be assigned any of these functions, it cannot be
ruled out that the moderate tetracycline resistance provided to L. casei and L. plantarum is
associated with one or more of the above mechanisms.

Selection for tetracycline and erythromycin resistance was pursued, but genes confer-
ring resistance to other antibiotics were also identified, namely streptomycin, quinupristin-
dalfopristin, tunicamycin, chloramphenicol, and aminoglycosides. These genes, either
on plasmids or in the chromosome, have been repeatedly detected in LAB species and
strains [23,63,67,68]. Linkage in the same chloramphenicol and streptomycin resistance
cluster might allow co-selection to explain the maintenance of resistance to these antibiotics,
and possibly to others [69]. The linkage and ensuing co-selection of antibiotic resistance and
adaptive biological functions has been hypothesized by many authors [59,70–73]. However,
in the present work, no feature that would help LAB develop and compete in the milk
environment (lactose utilization, proteinase activity, phage resistance, etc.) was envisioned
in any of the resistance plasmids. The maintenance and transfer of resistance plasmids in
the dairy environment appears, thus, to be promoted by the presence of antibiotic residues
in milk [74–76], although it might also be explained by plasmid-encoded addictive mech-
anisms [77] or host chromosomal adaptations reducing any associated biological costs,
resulting in no selection against a plasmid’s loss [58,78,79].

4. Materials and Methods
4.1. Lactic Acid Bacteria Strains and Culture Conditions

L. lactis NZ9000 was grown under aerobic conditions in M17 medium (Biokar, Beau-
vais, France) supplemented with 1% glucose (GM17) at 32 ◦C for 24–48 h. L. plantarum
NC8 and L. casei BL23 were cultured in de Man, Rogosa, Sharpe medium (MRS) (Merck,
Darmstadt, Germany) at 32 ◦C for 24–48 h. Agar plates were obtained by supplementing
the respective broth media with 2% agar (Merk).

4.2. Cheese Sampling

Samples of Cabrales cheese were taken during the manufacturing (3 days) and ripen-
ing (60 days) stages of production, homogenized in a Stomacher (Seward, Worthing, UK)
with 2% (w/v) sodium citrate (Merck), and serially diluted in Ringer’s solution (Merck).
Aerobic mesophilic bacteria and LAB resistant to tetracycline and erythromycin were
enumerated by plating the dilutions on Plate Count Milk (PCM; Merck) and MRS agar,
respectively, supplemented with tetracycline (25 µg mL−1) or erythromycin (25 µg mL−1)
(both from Merck). Plates were incubated at 32 ◦C (PCM) or 37 ◦C (MRS) for 48 h. Colonies
showing semi-confluent growth were harvested, suspended in Brain Heart Infusion (BHI)
broth (Merck) without antibiotics, supplemented with 25% glycerol, and stored at −80 ◦C.

4.3. Plasmid Isolation and Transformation

Plasmid DNA from antibiotic-resistant bacteria was extracted from 200 µL of their
frozen cell suspensions. These suspensions were first centrifuged, washed with sterile
phosphate-buffered saline (PBS; Merck), and then suspended in 200 µL of the suspension
buffer supplied with the High Pure Plasmid Isolation Kit (Roche, Basel, Switzerland).
Lysozyme (20 mg mL−1), mutanolysin (20 U) and lysostaphin (50 µg mL−1) (all from Sigma-
Aldrich, St. Louis, CA, USA) were added to the suspensions. Cells were incubated at 37 ◦C
for 1 h, and the plasmid DNA extracted and purified following the above kit’s protocol.
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Electrocompetent cells of L. lactis NZ9000, L. plantarum NC8 and L. casei LB23 were
prepared according to Holo and Nes [80]. Plasmid DNA (1–2 µg) was introduced into
75 µL of electrocompetent strains using a Gene Pulser apparatus (Bio-Rad, Richmond, CA,
USA) following standard protocols for Gram-positive bacteria. After electroporation, cells
were suspended in 1 mL of fresh media and incubated at 32 ◦C for 2–4 h. The cells were
then plated onto appropriate media supplemented with 25 µg mL−1 of either tetracycline
or erythromycin and incubated under the above conditions.

Plasmid DNA from antibiotic-resistant colonies was extracted and purified following
the procedure of O’Sullivan and Klaenhammer [81]. To facilitate lysis, transformants
were grown in GM17 (L. lactis) or MRS (L. casei and L. plantarum) supplemented with
40 mM of DL-threonine (Merck). Plasmids were digested with restriction endonucleases as
recommended by their supplier (Takara, Saint-Germain-en-Laye, France), and the resulting
profiles visualized under UV light after electrophoresis in 1% agarose gels stained with
GreenSafe Premium (NZYTech, Lisboa, Portugal).

4.4. Minimum Inhibitory Concentrations of Antibiotics

The minimum inhibitory concentrations (MIC) of 16 antibiotics in the untransformed
parental and resistant transformants were assayed by microdilution using Sensititre EU-
LACBI1 and EULACBI2 plates (Trek Diagnostic Systems, East Grinstead, UK). Briefly,
individual colonies were suspended in a sterile saline solution until reaching a density
corresponding to McFarland standard 1 (≈108 cfu mL−1). The suspension was then diluted
1000-fold in IsoSensitest (IST) broth (Oxoid, Basingstoke, UK) (for Lactococcus) or LSM
medium (90% IST + 10% MRS) (for lactobacilli), and 100 µL of this suspension placed in
each well of the Sensititre plates. These were then incubated under aerobic conditions at
32 ◦C for 48 h. MICs were defined as the lowest concentration at which no visible growth
was observed. For some antibiotics, the concentration range of the plates was too small
to determine the actual MIC; in such cases, the MICE system (Oxoid) was used following
the manufacturer’s recommendations. In short, a sterile cotton swab was immersed into a
sterile saline solution as above (McFarland standard 1) and used to inoculate IST or LSM
agar plates. A MICE strip of the required antibiotic was placed on the plates, and incubated
as above. The MIC was determined as the first concentration at which the inhibition halo
contacted the antibiotic strip.

4.5. PCR Detection of Tetracycline and Erythromycin Resistance Determinants

The presence of tetracycline and erythromycin resistance genes was first investigated
by standard PCR. Genes coding for ribosomal protection proteins conferring tetracycline
resistance were targeted with the pairs of universal primers DI-DII [82] and Tet1-Tet2 [83],
as well as with specific primers for tet(W) [84], tet(M), tet(S), and tet(O) [85]. Tetracycline
resistance genes coding for the efflux pumps, tet(K) and tet(L), were also searched for
using gene-specific primers [85]. The presence of erythromycin resistance genes was tested
using specific primers for ermA, ermB, ermC [86], ermF [87], and mefA [88]. Amplicons were
purified, sequenced, and their sequences compared to those in the NCBI database using the
BLASTn tool (https://blast.ncbi.nlm.gov/Blast.cgi, accessed on 20 July 2021). The primer
sequences, PCR conditions and expected amplicon sizes are listed in Table S2.

4.6. Whole Plasmid DNA Sequencing, Assembly and Annotation

Purified DNA from plasmids showing different restriction patterns were sent for se-
quencing to Eurofins Genomics (GATC Biotech, Constance, Germany). Individual libraries
were constructed using the SPRIworks Fragment Library System I Kit (Beckman Coulter,
Brea, CA, USA) and pair-end sequenced (2 × 150 bp runs) in a HiSeq sequencer (Illumina,
San Diego, CA, USA). Quality-filtered reads, trimmed or non-trimmed depending on
the plasmid, were de novo assembled in contigs using SPAdes v3.6.2 software [89], with
a k value of 127 and employing the only-assembler settings. The plasmidSPAdes algo-
rithm [90], which uses coverage as a parameter to remove chromosomal contigs, was also

https://blast.ncbi.nlm.gov/Blast.cgi
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used for assembly. When plasmids were not merged into a single molecule after assembly,
primers were designed based on the end of the contigs, used in PCR reactions, and the
sequences of the amplicons employed to join the segments. The Vector NTI program (Invit-
rogen, Carlsbad, CA, USA) was used to align the sequences of contigs and PCR amplicons.
The same program was used for open reading frame (ORF) prediction. Deduced protein
sequences larger than 50 amino acids were compared to those in the NCBI’s non-redundant
protein database and manually analyzed using BLASTp.

5. Conclusions

In conclusion, plasmids conferring tetracycline and erythromycin resistance that
were capable of replicating in LAB species were detected in Cabrales cheese-associated
bacteria. For L. lactis, PCR and sequence analysis revealed tet(S) and ermB to be involved
in tetracycline and erythromycin resistance, respectively. Non-specific plasmid-mediated
tetracycline resistance in lactobacilli species was also observed. The detected plasmids were
mosaic structures of modules bound by IS elements, the separate modules harboring genes
coding for replication, mobilization, and antibiotic resistance functions. The detection of the
same module in different plasmids suggests the existence of efficient module-exchanging
mechanisms in LAB. The nucleotide identity of tet(S) and its flanking sequences together
indicate the spread of this determinant across the cheese ecosystem to be recent. The
present results reveal the potential of the procedure used in this work to detect plasmids
carrying antibiotic resistance in cheese.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22157801/s1, Figure S1: Gel electrophoresis of total plasmid DNA, Table S1: Open
reading frame (ORF) analysis of tetracycline (pTC1 through pTC7) and erythromycin (pERM1)
resistance plasmids. Table S2: Primers and PCR conditions utilized in this study, as well as amplicon
size expected of the tetracycline and erythromycin resistance genes targeted.
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