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A study on the impact of the users’ 
characteristics on the performance 
of wearable fall detection systems
José Antonio Santoyo‑Ramón1, Eduardo Casilari‑Pérez2* & José Manuel Cano‑García2

Wearable Fall Detection Systems (FDSs) have gained much research interest during last decade. In 
this regard, Machine Learning (ML) classifiers have shown great efficiency in discriminating falls and 
conventional movements or Activities of Daily Living (ADLs) based on the analysis of the signals 
captured by transportable inertial sensors. Due to the intrinsic difficulties of training and testing 
this type of detectors in realistic scenarios and with their target audience (older adults), FDSs are 
normally benchmarked against a predefined set of ADLs and emulated falls executed by volunteers 
in a controlled environment. In most studies, however, samples from the same experimental subjects 
are used to both train and evaluate the FDSs. In this work, we investigate the performance of 
ML-based FDS systems when the test subjects have physical characteristics (weight, height, body 
mass index, age, gender) different from those of the users considered for the test phase. The results 
seem to point out that certain divergences (weight, height) of the users of both subsets (training ad 
test) may hamper the effectiveness of the classifiers (a reduction of up 20% in sensitivity and of up 
to 5% in specificity is reported). However, it is shown that the typology of the activities included in 
these subgroups has much greater relevance for the discrimination capability of the classifiers (with 
specificity losses of up to 95% if the activity types for training and testing strongly diverge).

Falls among elderly are a cause of major concern for health systems. According to the World Health Organization 
(WHO)1, around 646,000 mortal falls occur each year in the world, while 37.3 million falls are severe enough to 
require medical attention. Most of these accidents are suffered by adults older than 65 years. Only in USA, 27.5% 
of adults aged over 65 years reported at least one fall in 20182. As a result of falls, 5 to 11% of older individuals 
experience serious injuries, including hip fractures, subdural hematomas or/and severe tissue or head injuries3. 
A long lie on the floor after a fall without receiving medical assistance is directly associated to a dramatic increase 
of the mortality rate, hospitalization and care home admissions4. In this context, it is not surprising that fall 
detection systems (FDSs) built on wearable devices have attracted great interest from the scientific community 
in the field of telemedicine and remote monitoring of biosignals.

In contrast with context-aware and video-based alternatives, systems based on wearables may benefit from 
the widespread popularity and low-cost of these devices, while providing an almost-ubiquitous tracking that 
does not interfere with the privacy of the final users. One key and controversial aspect in the development of a 
wearable FDS is the procedure followed for its evaluation5. Due to the understandable and inherent difficulties 
of testing these detectors in a real environment with older patients, fall detection algorithms are typically gauged 
with movements generated by a group of experimental subjects.

FDSs are binary pattern recognition systems, trained or designed to discriminate activities of daily living 
(ADL) from violent or agitated movements that can be identified as falls. Although they can also include other 
types of sensors (such as barometers, magnetometers or heart rate monitors), almost all wearable FDSs proposed 
in the literature base their detection decision on the analysis of the signals captured by accelerometers and, in 
some cases, gyroscopes, which are commonly integrated in the same IMU (Inertial Measurement Unit). In this 
way, the datasets used for the evaluation of the FDSs are generated by conducting a series of experiments, in 
which a group of volunteers execute a predefined and structured set of ADLs (climbing stairs, walking, running, 
lying down, etc.) and various types of falls (trips, slips, crashes, collapses, etc.) while transporting an IMU in 
one or more body locations.
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Due to the research interest in wearable FDSs, numerous repositories have been released in recent years (see, 
for example, the study in6 for a full review and comparison of these datasets). These datasets offer an appealing 
global benchmarking tool that is increasingly being used by specialists to assess the efficacy of the proposals 
for new detection algorithms. In a significant number of cases, the documentation of these datasets habitually 
provides the basic data (mainly age, gender, height and weight) of the subjects that participated in the experi-
ments. However, as it is pointed out in the review presented by Ren and Peng in7, most evaluation frameworks 
of FDSs do not consider the importance of the users’ characteristics on the results obtained by the movement 
classifiers. In fact, there are not clear guidelines or criteria to systematically select the number and typology of 
the participants employed to parameterize and evaluate the FDSs (typically implemented on machine learning 
models). This aspect is of special relevance if we consider that the detectors are not expected to be adjusted (or 
trained) with movements, especially falls, of the final users (older people) for whom these devices are targeted. 
To cover this lack, this paper focuses on analyzing the impact of the physical characteristics of the experimental 
users on the accuracy of the FDSs. The general goal is to identify those characteristics with a greater influence, 
aimed at defining recommendations on the typology of the subjects that should be part of the databases with 
which detection algorithms are parameterized or trained.

The paper is organized as follows: “Related works” section reviews the related literature. “Methods: definition 
of the evaluation framework” section describes the evaluation framework used to analyze the effect of the char-
acteristics of the participants while “Results and discussion” section presents and discusses the results achieved 
when this analysis framework is applied to different existing repositories. To conclude, “Conclusions” section 
summarizes the main conclusions of the work.

Related works
FDSs can be envisaged as a special case of Human Activity Recognition (HAR) system. In this regard, Lockhart 
and Weiss distinguished in8 two general types of models (which can be hybridized) to build a HAR system based 
on machine learning:

•	 Impersonal universal models, which employ training data from a set of users that will not test the model. The 
main advantage of this model type is that it is built once, so that no labelled data or extra training phases are 
required from the target users.

•	 Personal models, which only consider training data from the final (test) user. This personalization is achieved 
at the cost of disturbing the target user (the patient to be monitored) to obtain the corresponding labelled 
data. In the case of FDSs, for obvious reasons, actual fall samples from the elderly patients to be monitored 
can be extremely difficult to obtain.

The results presented by the same authors in9,10 highlighted the importance of personalizing the training 
sets with which the machine learning methods are trained in smartphone-based HAR systems, as they clearly 
outperform ‘impersonal’ models (trained with a different panel of subjects). Likewise, Cvetković et al. showed 
in11 that the accuracy of a HAR system (aimed at distinguishing up to eight diverse movements, including 
falls) strongly degrades (from 86 to 73%) when it is tested with a person with a different height from that of 
the subjects included in the training set. To reduce the problem, authors scale the data that feed the classifier 
by multiplying the input features by the ratio between the height of the test user and the average height of the 
users in the training set.

Following this line of thinking, Saeb et al. have also underlined the need of validating the decisions of classi-
fiers based on data captured by wearables with the target population for whom the final application is intended. 
In particular, the bibliographical analysis presented by these authors in12 uncovers that most studies on machine 
learning algorithms aimed at clinical prediction and diagnosis are evaluated through a ‘record wise’ strategy 
(instead of ‘subject-wise’ policy), that is to say, by using training and test datasets that do not take into account 
the actual population expected for the clinical use of the classifier. Authors demonstrate that this strategy, which 
does not contemplate the use of newly recruited individuals for the testing phase, tends to massively produce 
optimistic predictions of the efficacy of wearable-based classifiers in real clinical use-cases.

The ‘personalization’ of certain basic wearables is not uncommon. For example, during the setup process, 
pedometers demand users to input height and gender to estimate the step/stride length. In fact, recordings 
from a single inertial sensor can be employed to deduce the gender, age and height of a user13. In this respect, 
Masuda and Maekawa have also shown that user characteristics (gender, height, weight, dominant hand) can be 
estimated with machine learning strategies uniquely from basic activities such as washing dishes or walking14.

As it refers to FDSs, interpersonal differences may hinder the accuracy of fall detectors as long as personal 
characteristics may be important to determine several aspects in the dynamics of a falls and ADLs.

Shen et al. developed a smartphone-based FDS in15 and confirmed that body movements (including falls) 
tend to vary according to the difference in height, weight, and gender of the experimental users. For example, 
if the subject falls while standing, the user’s height may result a key element in the change of the position of the 
head. Similarly, the duration and nature of the free-fall period as well as the acceleration peak caused by the 
impact against the floor may strongly rely on the user’s height and weight. Besides, weight (obesity, thinness, 
…) can also influence the ergonomics of the user and the position in which the sensor can be transported in 
the most comfortable way (e.g. on the chest). Similarly, some works on FDSs have observed that acceleration 
measurements or points of impact may be strongly affected by users’ weight or height16–18. Ando et al. even sug-
gested in19 that as long as the acceleration signal is strictly correlated with the user characteristics (height and 
weight), signals collected by the accelerometer have to be normalized before being inputted to the classifiers. 
These authors argue that this normalization can make the system insensitive against the user’s characteristics. In 
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contrast, Kaenampornpan et al. state in20 that the user’s height does not significantly affect detection criterium 
(the difference between the values of the acceleration components before the activity starts and when the activity 
stops), at least for a certain groups of ADLs. No numerical evidences of this statement are provided.

In the interesting work by Shawen et al. in21, authors evaluate the effectiveness of four fall detection meth-
ods (based on the measurements of a smartphone and machine learning classifiers) when they are applied to 
the movements of individuals with lower limb amputations. Results evince that the performance of a detector 
trained on control non-amputee volunteers was not statistically different from that those achieved with a model 
trained on amputee population.

Gender is other circumstance that must be contemplated as it also impacts on the recurrence and conse-
quences of falls. Among older adults, non-fatal fall related injuries disproportionately affect women22. Anatomic 
differences between genders may be a focal factor to select the best position and orientation of the wearable and 
even the style with which certain individual movements are executed23.

Another key debate about FDSs is focused on the appropriateness of the results and configuration of FDSs 
trained with intentional falls mimicked by young and healthy subjects when they are extrapolated to real monitor-
ing scenarios with older adults. Seniors have longer reaction time when compared to younger individuals. There 
is approximately a 25% increase in simple reaction time from the twenties to the sixties, with further significant 
slowing beyond this age24. In this respect, Klenk et al. found significant differences between the inertial meas-
urements captured during actual backward falls of four older persons and falls simulated by young volunteers25. 
On the other hand, Kangas et al. showed in26 that a wearable waist-worn accelerometer based FDS trained with 
falls simulated by 20 middle-aged (40–65 years old) experimental subjects can be effective to avoid false alarms 
when it is tested against the ADLs captured from 21 older people (aged 58–90).

In 1994, O’Neill et al. interviewed 1243 subjects aged over 50 to evaluate the importance of gender and age in 
the characteristics of falls experienced in the previous 4 months27. The study showed that age and sex differences 
may cause a clinically significant variation in the typology of falls. For example, males aged 50–64 were reported 
to be more likely to fall sideways and less likely to fall forwards than older males. Moreover, falls may be affected 
by a myriad of other personal factors. Epidemiological studies have revealed that sporting habits, vision, and 
subjective fall risk are key factors associated with fall recurrence. Age may even impact on the environment where 
most falls occur. So, the proportion of women who fell inside the home increases with age28.

In the related literature, the design of systems for fall detection has not been completely oblivious to this 
need of customizing the detectors. In this regard, strategies for fall detection criteria can be roughly classified 
into two basic types29–31, depending on weather they rely on a Threshold-Based (TB) or a Machine Learning 
(ML) algorithm. TB architectures trigger a fall alarm as soon as one or several parameters directly derived from 
the inertial sensors (e.g. the acceleration magnitude) exceed or fall below a certain preset value. Contrariwise, 
ML algorithms offer a more sophisticated and flexible solution to the problem of pattern recognition and avoid 
the need of establishing an arbitrary and rigid threshold (or set of thresholding values) to presume the occur-
rence of a fall. Under a supervised scheme, a FDS based on a ML classifier is trained with a dataset of labelled 
samples containing features computed from the measurements of the wearables and representing the two types 
of movements (falls and ADLs) that must be discriminated. During the training process, the ML algorithm is 
capable to self-configure to maximize the success ratio of the binary output decision. In the case of deep-learning 
architectures32, the model may even be directly inputted by the collected measurements, so that the method is able 
to extract the most convenient features to optimize the results without requiring a ‘manually-engineered’ selection 
of inputs. Due to the complex nature of human movements (and in particular, those caused by fall accidents), 
diverse studies29,33 have shown that ML methods generally outperform the behavior of the TB approximations.

In the literature on threshold-based fall detectors, there are a certain number of works in which this detec-
tion threshold is tuned or defined according to the personal characteristics of the subject to be monitored. For 
example, in34, Cao et al. presents a smartphone-based FDS that analyzes the accelerometer signals using a slid-
ing semi-overlapping time widow and two acceleration thresholds. The window-size for the signal analysis and 
threshold are selected depending on the sex, age and BMI (Body Mass Index) of the subject. A similar approach 
is followed by Rungnapakan et al. in35 as the threshold values to detect the impact force of the falls were set 
separately for each weight range of the experimental users. Wu and Tsai present in36 another smartphone-based 
FDS using a threshold-based algorithm in which the threshold level is tuned and ‘heuristically’ adapted for each 
user. Age, weight, height and level of activity of the user are considered into the equation that computes the deci-
sion threshold in the SP-based FDS presented by Sposaro in37. Wu and Tsai propose in36 an adaptive threshold 
based on user’s gender to detect falls based on the energy of the movements calculated from the DCT (Discrete 
Cosine Transform) of the acceleration magnitude. In all these works, authors do not evaluate the advantages (e.g. 
in terms of the accuracy, sensitivity or specificity of the FDS) of tuning and particularizing the parameters of the 
detectors depending on the user’s characteristics with respect to the case in which a generic threshold is defined.

After analyzing other threshold-based FDS, Wu et al. underlined in38 the importance of a proper selection of 
the threshold value to discriminate falling from other conventional activities that imply a sudden rotation of the 
body (such as lying). These authors claim that the robustness and reliability of their proposal could improve if 
the value of the threshold could be derived from the study of datasets captured from subjects with different age 
and gender. In this vein, Ren et al. showed in39 that the magnitude in the acceleration during for types of ADLs 
and falls are dependent on the user’s gender and age. In particular, stronger peaks were proved to be related to 
young and male subjects. Thus, these authors propose to combine an at-group and a light-self-tuning strategy to 
set the threshold. At-group strategy considers different age and gender partitions to estimate the best threshold 
for each group using ADL movements. This group threshold is then optimized and fine-tuned to provide an 
individual threshold for each experimental subject.

In any case, thresholding methods are in general too rigid to adapt to the huge variability of human move-
ments and, in most testbeds, they normally produce a non-negligible number of false positive (false alarms) 
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and false negatives (unnoticed falls). As aforementioned, ML and deep learning methods usually exhibit a much 
greater adaptability to identify human dynamics40. However, the almost automatic self-configuration of these 
classifiers hinders any ‘manual’ tuning of their hyperparameters based on the subject’s characteristics. Abbate 
et al. state in41 that FDSs should be capable of self-learning to adjust their parameters to the characteristics of 
the particular user who is wearing it but they do not provide any concrete solution to implement this guideline. 
Aziz et al. in33 or Tomkun et al. in42 also suggested taking into consideration subject anthropometric information 
(height, mass, age, etc.) to train or tailor machine learning detectors (such as SVM) but just as a future work. 
In particular, Tomkun proposed generating extensive datasets to parameterize specific SVM-based detectors 
depending on user’s height, weight and gender42. Nevertheless, user’s characteristics have not been considered 
as input features in any ML-based detector in the related literature.

In short, most studies on wearable FDS based on artificial intelligence techniques neither evaluate nor con-
sider the possible impact of user characteristics on the configuration or performance of the detection algorithms. 
In the next section, we analyze the generalizability of the learning of ML detectors and their capability to extrapo-
late results when training and test users have different physical characteristics.

Methods: definition of the evaluation framework
Selection of data repositories.  Currently, there are more than 25 public repositories available for the 
off-line analysis of wearable FDSs6. As previously mentioned, these repositories basically consist of numerical 
time series representing the measurements of inertial sensors located on one or several positions of the body. The 
measurements are almost unanimously captured from the movements of a set of experimental subjects, who are 
instructed to execute a variety of ADLs and mimicked falls. The time series are labelled in the databases accord-
ing to this binary classification of the movements.

Many works43–47 have suggested that the optimal position of an inertial sensor for a fall detector is waist (or 
falling that, the chest) as it is close to the center of gravity of the human body. Thus, aiming at comparing the 
different classifiers on an equal basis, we focus on the 14 existing datasets that include measurements collected 
at the waist. For the study, we discard those repositories that do not inform about the particular characteristics 
of the volunteer that executed each movement (although in most cases the average values of these characteristics 
of the participants are provided). In addition, we do not consider those datasets that contain less than 400 move-
ment samples since partitioning the traces of those repositories into different groups according to the individual 
characteristics of the subjects could result in biased subsets with insufficient and unrepresentative samples. After 
screening the available databases with these criteria, we selected five datasets (DOFDA, Erciyes, SisFall, UMAFall 
and UP-Fall), whose main characteristics are presented in Tables 1 and 2.

The benefits of combining the analysis of the accelerometry-signals with those measured by other inertial 
sensors (in particular the gyroscope) are still under discussion48,49. So, although some of these traces also include 
data obtained from a gyroscope and/or a magnetometer, for the sake of simplicity, we concentrate our research 
on the accelerometer measurements provided by abovementioned datasets.

Selection of data classifiers.  The core of a wearable FDS is the decision algorithm that discriminates 
falls from ADLs. As already stated, due to the simplistic approximation of TB methods to the complex dynam-
ics associated to falls, they are generally outperformed by ML strategies33. For this reason, for our analysis we 
select four well-known supervised machine learning algorithms, which are commonly employed in the related 
literature50–52:

Table 1.   Basic data of the repositories employed for the analysis.

Dataset Source
Number of types of ADLs/
falls

Number of samples (ADLs/
falls) Duration of the samples (s) Sampling rate (Hz) Accelerometer range (g)

DOFDA 62 5/13 432 (120/312) [1.96–17.262] s 33  ± 16

Erciyes University 63 16/20 3302 (1476/1826) [8.36–37.76] s 25  ± 16

SisFall 54 19/15 4505 (2707/1798) [9.99–179.99] s 200  ± 16

UMAFall 64 12/3 746 (538/208) 15 s (all samples) 20  ± 16

UP-Fall 65 6/5 559 (304/255) [9.409–59.979] s 14  ± 8

Table 2.   Characteristics of the experimental subjects in the employed datasets.

Dataset Number of subjects (females/males) Age (years) Weight (kg) Height (cm)

DOFDA 8 (2/6) [22–29] [60–94] [173–187]

Erciyes University 17 (7/10) [19–27] [47–92] [157–184]

SisFall 38 (19/19) [19–75] [41.5–102] [149–183]

UMAFall 19 (8/11) [18–68] [50–97] [156–193]

UP-Fall 17 (8/9) [18–24] [53–99] [157–175]
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•	 Support Vector Machine (SVM). To construct the model, we alternatively consider four possible popular 
kernels to transform the data: linear, cubic, quadratic and medium gaussian.

•	 K-Nearest Neighbors (K-NN). In this case, we check the performance when four different functions (Euclid-
ean, Minkowski, Chebychev and cosine) are used to compute the distance to the nearest neighbors. Addition-
ally, we consider three values for K (5, 10 & 50).

•	 Naïve Bayes (NB). We contemplate two cases for this classifier depending on the procedure to approximate 
the distribution of the input data: Gaussian function and KDE (Kernel Density Estimation).

•	 Decision Tree (DT). To define the topology and dimension of the decision tree, we tested two different poli-
cies. In the first case, following a ‘coarse’ approximation, a simple structure of up to four splits is allowed. 
Under the second (‘fine’) policy, the limit to the number of splits is set to 100 to enable a more flexible tree 
topology. In both cases the Gini’s diversity index was adopted as the splitting criterion.

All the models (totaling 30 variants: 4 for SVM, 12 for KNN, 2 for NB and 2 for DT), were hyperparameter-
ized and implemented (trained and tested) with Matlab (version 9.9 -R2020b-) scripts using the Statistics and 
Machine Learning Toolbox53. For all the secondary hyperparameters not commented here (e.g. procedure for 
objective-function minimization in SVM, distance weighting function for k-NN, etc.) we used the default values 
provided by the corresponding scripts in the toolbox.

Selection of input features.  A key element for the performance of a machine learning classifier is the 
selection of the input features which describe the data. As already mentioned, our study will focus on the values 
captured by the tri-axial accelerometers (Axi , Ayi and Azi for the i-th measurement), which are provided by the 
repositories. From these components of the acceleration, we can straightforwardly compute the signal magni-
tude vector (SMV):

Movement samples existing in the datasets present a variable duration. However, as an impact against the 
floor provokes a sudden increase of the acceleration, every movement in the traces will be characterized only 
from the measurements taken during a time interval of 1 s just before and after the highest detected acceleration 
peak, which is he period in which the fall is most likely to have occurred. Thus, the input features will be derived 
from this time observation window of 2 s, while the rest of the time series of each sample will be ignored by the 
detection algorithm.

In a previous work6, we defined and analyzed 12 statistical acceleration-based features that have been pro-
posed and studied by different works in the literature, as they can describe different properties of the dynamics 
of the human body during a fall. These feature, which are computed from the acceleration components during 
the observation window, are defined the following (refer to6 for a more detailed formal description):

The mean value of SMV, which informs about idea the average mobility suffered by the body.
The standard deviation of SMV, which characterizes the variability of the acceleration.
The mean absolute difference between two consecutive values of SMV, which can offer an indication of a 
sudden fluctuation of the acceleration caused by a fall.
The mean rotation angle, which may describe any possible alteration of the body orientation of the body.
The mean magnitude of the vector formed by the two acceleration components that are parallel to the floor 
plane (which informs abut changes in the verticality of the body).
The magnitude of the maximum difference between any two acceleration vectors (within the observation 
interval), which also offers a measurement of the variability of the acceleration components.
The maximum value of SMV, as a direct descriptor of any possible impact against the floor.
The minimum of the SMV, which can characterize the ‘valley’ or brusque decay of the acceleration magnitude 
during the free-fall phase preceding the impact of a fall.
The skewness of third-central moment of the series SMVi, which informs about the asymmetry of the accel-
eration distribution function.
The Signal Magnitude Area (SMA)54, which is a feature commonly considered to assess the physical activity.
The sum of the energy estimated from the Discrete Fourier Transform of the acceleration components in the 
three axes during the observation interval55, which may be used to detect rapid body movements.
Mean of the autocorrelation function of SMV, as falls movements are supposed to be less correlated than 
ADLs, which normally present smoother and slower alterations of the acceleration.

After massive grid search with combinations of the different 12 features and the corresponding Analysis 
of Variance (refer to our previous works in56,57 for a full description of the method), we conclude that the best 
behavior of the four classifiers and for almost all the combinations of considered hyperparameters is achieved 
when all the features are simultaneously considered. Techniques for dimensionality reduction of these features, 
such as PCA (Principal Component Analysis) or mRMR (Minimum Redundancy Maximum Relevance), were 
employed, although no significant improvements were obtained when the derived features were inputted into 
the classifiers. Consequently, we utilize this set of 12 features, which present an evident physical interpretation, 
as a first alternative to dimension, train and test the detection algorithms.

In any case, as the selection of these 12 features may still seem arbitrary, we also consider, as an alternative set 
of features to feed the algorithms, those extracted by the hctsa (highly comparative time-series analysis) MATLAB 

(1)SMVi =
√

A2
xi
+ A2

yi
+ A2

zi
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software package58. hctsa library analyzes thousands (7700) of candidate features from univariate time-series to 
produce a low-dimensional representation of the data59. In our case, this tool was programmed to cluster the 
data into 12 groups in order to also select the 12 most representative features from the series of the acceleration 
SMV computed during the observation window of the samples in each dataset. From some preliminary tests 
(not shown here) we concluded that no significant gain is achieved in the classifiers if a higher number of hctsa 
features is considered.

With independence of the set of features employed to train the detectors, before being split into train and test 
sets and inputted to the detector for training and testing, the feature data were standardized by using a standard 
or z-score normalization.

Selection of performance metrics and train‑test split strategy.  In order to evaluate the trained 
detectors as binary classifiers, we estimated the sensitivity (Se) or recall, defined as the proportion of falls -or 
positives- in the test subset that are correctly identified, and specificity (Sp), as the ratio of ADLs which are not 
misinterpreted as falls so that they do not trigger a false alarm. In contrast with other measures of test accuracy 
(such as the accuracy or F1 score), these metrics are not skewed if the number of existing ADLs and falls in the 
datasets are unbalanced (as is the case of the datasets employed in this study). In addition, in order to describe 
the trade-off between these two statistical measures through a single variable, we also computed the geometric 
mean of Se and Sp ( 

√
Se · Sp ) as a global performance metric.

To calculate these quality metrics, we applied a fivefold cross validation procedure in which the datasets were 
split into five partitions of the same length. Every model of the classifier was then trained and tested five times. 
In each iteration, a different fold was employed for testing while the other four partitions were merged to form 
the training set (following the typical 80–20 rule). Results obtained during the test phase of each iteration are 
then averaged to generate the final metrics.

Results and discussion
The evaluation framework described in the previous section is now utilized to assess the impact of the charac-
teristics of the subjects used to train the ML algorithms on the discrimination capacity of the detector.

Results for a fair distribution of samples.  Aiming at establishing a baseline reference, we firstly evaluate 
the performance of all the ML classifiers (and their different configurations) for the ideal or ‘fair’ case in which 
the subsets used for both training and testing contain samples of all the experimental subjects. In particular, 
the partition of the datasets was randomly generated although it was guaranteed that samples of all the types of 
activities (ADLs and falls) and all the experimental subjects were included in the five folds.

Averaged results for the five testing folds of this ‘reference case’ are presented in Table 3. To characterize the 
degree of uncertainty of the results, the last column of the table incorporates the standard deviation of the global 

Table 3.   Performance metrics of the four best performing classifiers using fivefold cross validation and a ‘fair’ 
distribution of the samples between the training and testing subsets. a The last column includes the standard 
deviation of the measurement of 

√
Se · Sp for the five-fold tests.

Dataset Features Algorithm and hyperparameters Se (%) Sp (%)
√

Se · Spa

DOFDA

HCTSA Naive Bayes (Gaussian) 97.37 100.00 98.67 ± 1.27%

HCTSA SVM (linear kernel) 99.01 98.33 98.65 ± 1.77%

Own selection KNN (Euclidean, 10 neighbors) 98.02 98.18 98.08 ± 2.08%

HCTSA SVM (quadratic kernel) 99.34 96.67 97.97 ± 2.44%

Erciyes

Own selection SVM (quadratic kernel) 99.62 99.18 99.40 ± 0.17%

Own selection SVM (medium gaussian kernel) 99.34 98.98 99.16 ± 0.17%

Own selection KNN (cosine, 5 neighbors) 99.07 99.05 99.06 ± 0.12%

Own selection KNN (Minkowski, 5 neighbors) 99.45 98.64 99.04 ± 0.12%

SisFall

HCTSA SVM (cubic kernel) 99.78 99.96 99.87 ± 0.13%

HCTSA SVM (quadratic kernel) 99.78 99.96 99.87 ± 0.19%

HCTSA SVM (medium gaussian kernel) 99.11 99.96 99.54 ± 0.12%

HCTSA DT (Fine) 98.89 99.96 99.42 ± 0.23%

UMAFall

Own selection KNN (Euclidean, 10 neighbors) 98.93 98.73 98.83 ± 0.86%

Own selection DT (Coarse model) 98.38 98.99 98.67 ± 1.93%

Own selection SVM (medium gaussian kernel) 97.87 99.24 98.55 ± 0.55%

Own selection KNN (Euclidean, 5 neighbors) 98.93 97.97 98.45 ± 1.10%

UP-Fall

Own selection SVM (linear kernel) 99.59 98.02 98.80 ± 1.31%

Own selection SVM (medium gaussian kernel) 98.78 98.82 98.79 ± 1.32%

Own selection KNN (Euclidean, 10 neighbors) 99.18 97.23 98.20 ± 1.31%

Own selection KNN (Euclidean, 5 neighbors) 98.78 97.62 98.19 ± 1.65%
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performance metric ( 
√
Se · Sp ), computed from the five experiments executed during the fivefold cross-validation 

of the models. For the sake of simplicity, the table only shows the results of the four variants of the classifiers that 
achieved the best global performance metric. The best results and classifier (marked in bold) will be utilized as 
a reference in the analysis in the following sub-sections.

As can be seen, in general, SVM (under different configurations of the kernels) and, to a lesser extent, KNN, 
are the algorithms that offer the best classification of the patterns. This conclusion is consistent with most of 
the comparative analyses carried out in the literature that have compared the performance of ML classifiers in 
FDSs (see, for example, the studies in52,60,61). Likewise, the results show that the selection of the 12 characteristics 
(‘own selection’) commented in “Selection of input features” section  (which have a clear physical interpretation 
in the characterization of the activities) can even lead to a better behavior than the choice of 12 features based 
on the massive test of ‘abstract’ statistical features offered by the hctsa tool. Nonetheless, there are combinations 
(datasets and ML models) for which the best behavior is achieved with hctsa-derived features. Further studies 
should thoroughly investigate if the use of this type of tools for the automatic selection of features can be helpful 
in the design of fall detection algorithms.

In any case, the evaluation indicates that the ML algorithms are capable of producing an acceptable recog-
nition rate, with sensitivities and specificities (for the methods presented in Table 3) always higher than 97%.

Results for a distribution of samples based on personal characteristics.  To assess the impact of 
the subject’s characteristics on the discrimination capacity of the classifiers, we repeated the previous analysis 
by modifying the composition of the subsets used for training and testing. Now, for all the cases, we included 
all the samples captured from the same user just in one the subsets (training or testing). Thus, the models are 
always tested with traces obtained from users different from those who generated the training subset. This could 
correspond to a realistic application scenario of an FDS in which the target user (e.g. a particular elderly person) 
does not directly participate in the training of the fall detector.

As the selection criterion to cluster the users into the testing or training group, we utilize one of the follow-
ing five characteristics: weight, height, BMI or Body Mass Index (computed as the subject’s weight in kilograms 
divided by his/her squared height in meters), age and gender.

For the first four characteristics, which are defined by a specific numerical value, the training set included 
the samples of 80% of the subjects, while the remaining 20% were used in the test phase. In this way, the distri-
bution of the samples between the training and testing sets (by roughly following the 80/20 rule) was similar to 
that used with the fivefold partition of the reference results already discussed. Thus, for example, in the case of 
considering weight as the parameter under analysis, two complementary tests were carried out. In the first one, 
the system is trained with the M subjects with the lowest weight (where M is computed to the integer closest to 
80% of the total number of participants in the datasets) while tested with the other 20% (those with the highest 
weight). Conversely, in the second test, the selection criterion is reversed and we considered the 80% with the 
highest weight for training and the rest for testing. In any case, very similar results (not presented here) were 
reached when the system was examined by separating users based on a fixed ‘hard’ threshold (for example, a 
certain value of the body weight).

In the case of a binary separation of the patterns based on the subject’s gender, two analyses were considered: 
when the classifier is trained with patterns exclusively generated by men and evaluated with movements per-
formed by women (and vice versa). For these experiments, the size of each subset obviously depended on the 
percentage of male and female participants involved in each dataset. Thus, the 80/20 rule was not kept.

For comparison purposes, we also included in our analysis the outcomes of the detector for the case in which 
the partition of the subjects into the training and testing groups are performed at random, without taking into 
consideration any specific individual characteristic. By doing so, we try to determine whether the possible 
disparities with the baseline reference (under a ‘fair’ distribution) are simply due to the fact that the subjects in 
both groups are different, so that the detector, during the learning phase, tends to overfit certain particularities 
of the mobility of the training subjects, which are not necessarily associated with the physical characteristics 
that are analyzed here. For this ‘random’ distribution of users among the subsets, a fivefold cross-validation was 
again applied.

The results of the analysis for the five characteristics are presented in Tables 4, 5, 6, 7, 8. The main goal is to 
evaluate if the behavior of a classifier, which apparently performs accurately when a ‘fair’ distribution of partici-
pants for training and testing is considered, degrades if a different distribution of the samples of the individuals 
in the train and test subsets is applied. Thus, although all the possible combinations of pattern discrimination and 
classifying models were evaluated, for ease of comparison the tables only show (for each dataset) the performance 
metrics corresponding to the input feature set, algorithm and hyperparameters that yielded the best results for 
the ‘fair’ case (this baseline case, extracted from Table 3, is indicated in bold). Anyhow, from the massive tests 
executed with the other combinations, we can state that the conclusions achieved with the best performing clas-
sifier can be extrapolated in general to the behavior of the other algorithms.

The analysis of the performance of the classifiers, when the criterion to separate the training and test groups is 
based on weight (Table 4) and height (Table 5), seems to recommend to train the system with the tallest and most 
corpulent individuals. Except for the case of the UMAFall database, with the rest of the repositories it is verified 
that the detection algorithm generates better results when it is trained with individuals with greater weight and 
height (and tested with the thinnest and shortest subjects) than when the reverse operation is carried out. This 
behavior could be explained by the fact that thicker and taller subjects provoke more recognizable mobility pat-
terns (e.g. higher acceleration peaks caused by impact), which may ease the discrimination between falls of ADLs. 
On the other hand, training the system with samples of thinner individuals can lead to a certain lack of references 
during the test phase when conventional ADLs are executed by more corpulent subjects with higher energy.
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This difference in the performance of the FDS when the grouping of subject relies on the weight or height 
is not so evident when the body mass index (BMI) is used as the division criterion, as can be seen in Table 6. 
The BMI, which does not inform about the absolute values of weight and height but on the ratio between both 
parameters, seems to have a lower representativeness when characterizing the groups of individuals during falls 
and ADLs. 

Table 4.   Performance metrics of the best performing classifier (‘fair’ case) when the weight is used as a 
criterion to select the subjects of the training subset.

Dataset Features and algorithm Subjects included in the training subset Se (%) Sp (%)
√

Se · Sp (%)

DOFDA HCTSA features
Naive Bayes (Gaussian)

Random selection of users 97.38 100.00 98.67

All (fair distribution) 97.37 100.00 98.67

Subjects (80%) with highest weight 94.81 100.00 97.37

Subjects (80%) with lowest weight 93.51 100.00 96.70

Erciyes Own selection of features
SVM (quadratic kernel)

Subjects (80%) with highest weight 100.00 100.00 100.00

All (fair distribution) 99.62 99.18 99.40

Subjects (80%) with lowest weight 99.41 97.06 98.23

Random selection of users 97.83 98.43 98.12

SisFall HCTSA features
SVM (cubic kernel)

Subjects (80%) with highest weight 100.00 100.00 100.00

All (fair distribution) 99.78 99.96 99.87

Random selection of users 99.74 99.96 99.85

Subjects (80%) with lowest weight 85.33 100.00 92.38

UMAFall Own selection of features
KNN (Euclidean. 10 neighbors)

All (fair distribution) 98.93 98.73 98.83

Subjects (80%) with lowest weight 100.00 95.38 97.67

Random selection of users 98.28 97.05 97.66

Subjects (80%) with highest weight 91.55 98.68 95.05

UP-Fall Own selection of features
SVM (linear kernel)

Subjects (80%) with highest weight 100.00 100.00 100.00

All (fair distribution) 99.59 98.02 98.80

Subjects (80%) with lowest weight 100.00 97.56 98.77

Random selection of users 99.65 97.56 98.60

Table 5.   Performance metrics of the best performing classifier (‘fair’ case) when the height is used as a 
criterion to select the subjects of the training subset.

Dataset Features and algorithm Subjects included in the training subset Se (%) Sp (%)
√

Se · Sp (%)

DOFDA HCTSA features
Naive Bayes (Gaussian)

Tallest subjects (80%) 98.65 100.00 99.32

Random selection of users 97.38 100.00 98.67

All (fair distribution) 97.37 100.00 98.67

Shortest subjects (80%) 93.59 100.00 96.74

Erciyes Own selection of features
SVM (quadratic kernel)

Tallest subjects (80%) 100.00 100.00 100.00

All (fair distribution) 99.62 99.18 99.40

Random selection of users 97.83 98.43 98.12

Shortest subjects (80%) 91.22 93.73 92.46

SisFall HCTSA features
SVM (cubic kernel)

Tallest subjects (80%) 100.00 100.00 100.00

All (fair distribution) 99.78 99.96 99.87

Random selection of users 99.74 99.96 99.85

Shortest subjects (80%) 99.78 99.83 99.80

UMAFall Own selection of features
KNN (Euclidean. 10 neighbors)

All (fair distribution) 98.93 98.73 98.83

Shortest subjects (80%) 100.00 96.05 98.01

Random selection of users 98.28 97.05 97.66

Tallest subjects (80%) 77.78 96.67 86.71

UP-Fall Own selection of features
SVM (linear kernel)

Tallest subjects (80%) 100.00 97.83 98.91

Shortest subjects (80%) 100.00 97.67 98.83

All (fair distribution) 99.59 98.02 98.80

Random selection of users 99.65 97.56 98.60
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Table 6.   Performance metrics of the best performing classifier (‘fair’ case) when the Body Mass Index (BMI) 
is used as a criterion to select the subjects of the training subset.

Dataset Features and algorithm Subjects included in the training subset Se (%) Sp (%)
√

Se · Sp (%)

DOFDA HCTSA features
Naive Bayes (Gaussian)

Subjects (80%) with lowest BMI 100.00 100.00 100.00

Random selection of users 97.38 100.00 98.67

All (fair distribution) 97.37 100.00 98.67

Subjects (80%) with highest BMI 94.81 100.00 97.37

Erciyes Own selection of features
SVM (quadratic kernel)

All (fair distribution) 99.62 99.18 99.40

Random selection of users 97.83 98.43 98.12

Subjects (80%) with lowest BMI 98.75 100.00 99.37

Subjects (80%) with highest BMI 99.36 100.00 99.68

SisFall HCTSA features
SVM (cubic kernel)

All (fair distribution) 99.78 99.96 99.87

Random selection of users 99.74 99.96 99.85

Subjects (80%) with highest BMI 99.83 99.68 99.76

Subjects (80%) with lowest BMI 98.22 99.62 98.92

UMAFall Own selection of features
KNN (Euclidean. 10 neighbors)

All (fair distribution) 98.93 98.73 98.83

Subjects (80%) with lowest BMI 100.00 95.77 97.86

Random selection of users 98.28 97.05 97.66

Subjects (80%) with highest BMI 94.38 98.25 96.29

UP-Fall Own selection of features
SVM (linear kernel)

Subjects (80%) with highest BMI 100.00 100.00 100.00

Subjects (80%) with lowest BMI 100.00 97.62 98.80

All (fair distribution) 99.59 98.02 98.80

Random selection of users 99.65 97.56 98.60

Table 7.   Performance metrics of the best performing classifier (‘fair’ case) when the age is used as a criterion 
to select the subjects of the training subset. n.c. not computable.

Dataset Features and algorithm Subjects included in the training subset Se (%) Sp (%)
√

Se · Sp

DOFDA HCTSA features
Naive Bayes (Gaussian)

Youngest subjects (80%) 100.00% 100.00 100.00%

Oldest subjects (80%) 100.00% 100.00 100.00%

Random selection of users 97.38% 100.00 98.67%

All (fair distribution) 97.37% 100.00 98.67%

Erciyes Own selection of features
SVM (quadratic kernel)

All (fair distribution) 99.62% 99.18 99.40%

Youngest subjects (80%) 98.74% 100.00 99.37%

Oldest subjects (80%) 98.07% 100.00 99.03%

Random selection of users 97.83% 98.43 98.12%

SisFall HCTSA features
SVM (cubic kernel)

Youngest subjects (80%) n.c. 99.56 n.c.

Oldest subjects (80%) 100.00% 100.00 100.00%

All (fair distribution) 99.78% 99.96 99.87%

Random selection of users 99.74% 99.96 99.85%

Subjects older than 50 98.03% 98.66 98.34%

Subjects younger than 50 30.67% 99.32 55.19%

UMAFall Own selection of features
KNN (Euclidean. 10 neighbors)

Youngest subjects (80%) n.c. 100.00 n.c.

Oldest subjects (80%) 100.00% 100.00 100.00%

All (fair distribution) 98.93% 98.73 98.83%

Random selection of users 98.28% 97.05 97.66%

UP-Fall Own selection of features
SVM (linear kernel)

Oldest subjects (80%) 100.00% 97.67 98.83%

All (fair distribution) 99.59% 98.02 98.80%

Random selection of users 99.65% 97.56 98.60%

Youngest subjects (80%) 97.62% 97.83 97.72%
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Regarding age (Table 7), the analysis is constrained by the fact that in almost all the datasets, there are no 
elderly volunteers or, when older people do participate, they do not perform falling movements for safety rea-
sons. DOFDA, UP-Fall and Erciyes databases only include people between 18 and 29 years (see Table 2). This 
homogeneity of the age range prevents drawing any conclusions about any discrimination of the subjects based 
on age since the youngest and oldest participants have a very similar age. In fact, with those datasets, the behav-
ior of the classifiers does not register relevant differences if age is used to separate the test and training groups. 
Contrariwise, UMAFall and SisFall repositories do include samples captured from older people (aged up to 68 
and 75 years, respectively). In both cases, when the older subjects are used in the test phase, the sensitivity cannot 
be calculated (which is indicated by the abbreviation n.c. in Table 7) since there are no falls performed by that 
age group. SisFall incorporates falls emulated by people over 50. Thus, to partially alleviate the lack of samples of 
falls in older people, the experiment was specifically repeated with the SisFall database, grouping in the test and 
training sets those older and younger (respectively) than 50 years. The results, although very limited by the scar-
city of samples, are very revealing. Although training with samples generated by young people and testing with 
patterns executed by older people can produce high specificity, the obtained sensitivity is very low (30.67%). This 
could evince the fact that falls in older people follow very different mobility patterns than in younger individu-
als. These preliminary results are of great importance as they clearly question the usefulness of evaluating FDSs 
with databases generated from falls measured from a group of volunteers entirely composed of young people.

On the other hand, Table 8 shows the effects of using gender to separate the subjects employed in the training 
and test subsets. From the results we observe that this division does not substantially affect the effectiveness of 
the classifiers. In four of the analyzed databases, training with patterns generated only by men seems to lead to 
slightly higher quality metrics than those attained when the classifier is only trained with patterns captured from 
women. These divergences could be explained by the evident correlation that gender has with weight and height.

In any case (and except for the aforementioned case of training with young people), it should be noted that, 
for most databases, the differences caused by the segregation of the experimental subjects are not particularly 
significant. In fact, in some tests, the separation of test and training subsets based on a certain subjects’ charac-
teristic leads to better results than those caused by a random distribution of participants. This may be an indica-
tion that the corresponding physical characteristic is not necessarily a key element to determine the nature of 
the mobility patterns.

Results for a distribution of samples based on the nature of the movements.  In this section we 
will show that the typology of movements (in particular the ADLs) used in the training phase constitutes a much 
more relevant factor than the characteristics of the experimental users to determine the extrapolation capacity 
of the detectors. For this purpose, we evaluated the classifiers when they are tested with types of movements dif-
ferent from those included in the training phase.

Given the enormous heterogeneity of ADLs (58 types) of the used databases, we propose to divide them into 
four groups or sub-categories, as also suggested in6, depending on the degree of physical effort required. Thus, 
we differentiate between:

Table 8.   Performance metrics of the best performing classifier (‘fair’ case) when the gender is used as a 
criterion to select the subjects of the training subset.

Dataset Features and algorithm Subjects included in the training subset Se (%) Sp (%)
√

Se · Sp (%)

DOFDA HCTSA features
Naive Bayes (Gaussian)

Male subjects (testing with females) 100.00 100.00 100.00

Random selection of users 97.38 100.00 98.67

All (fair distribution) 97.37 100.00 98.67

Female subjects (testing with males) 95.26 100.00 97.60

Erciyes Own selection of features
SVM (quadratic kernel)

All (fair distribution) 99.62 99.18 99.40

Random selection of users 97.83 98.43 98.12

Female subjects (testing with males) 97.29 98.06 97.68

Male subjects (testing with females) 96.53 98.15 97.34

SisFall HCTSA features
SVM (cubic kernel)

Male subjects (testing with females) 100.00 99.92 99.96

All (fair distribution) 99.78 99.96 99.87

Random selection of users 99.74 99.96 99.85

Female subjects (testing with males) 99.00 99.85 99.42

UMAFall Own selection of features
KNN (Euclidean. 10 neighbors)

All (fair distribution) 98.93 98.73 98.83

Random selection of users 98.28 97.05 97.66

Male subjects (testing with females) 95.35 98.02 96.68

Female subjects (testing with males) 97.93 91.81 94.82

UP-Fall Own selection of features
SVM (linear kernel)

All (fair distribution) 99.59 98.02 98.80

Male subjects (testing with females) 99.10 98.31 98.70

Random selection of users 99.65 97.56 98.60

Female subjects (testing with males) 98.51 95.56 97.02
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1.	 Basic ordinary movements. This category encompasses those low-energy elementary routines that can be 
addressed by almost any subject. So, in the case of the five databases under analysis, this group would include 
activities such as: standing, lying, rising/descending from/to lying or kneeling, descending to sitting/rising 
from sitting or bending, and elementary hand movements (making a call, applauding).

2.	 Standard movements, which involve more physically demanding activities that require a higher degree of 
mobility, such as walking, going down, climbing stairs (up and/or down), or picking and object from the 
floor.

3.	 Sporting activities. In the datasets, this group covers up to four different actions: running, jogging, jumping 
and hopping.

4.	 Near falls. This category comprises those movements in which the experimental subject emulates a movement 
on the verge of losing his/her balance. In the five studied repositories, only Erciyes database has a certain 
number of these movements (including trips and stumbles).

In the case of falls, all the datasets incorporate very similar types, mainly distinguishable by the direction of 
the movements (lateral, backwards, frontal or vertical collapse). In some datasets, several variants are considered 
depending on the initial position of the subject or the emulated accident that causes the fall (slip/trip). For a 
more detailed description and comparison of the datasets refer to the study in6.

Table 9 shows the results of the performance of the algorithms that exhibit the best metrics when all the move-
ment samples of a subcategory are excluded from the training patterns and exclusively used in the test phase. In 
all the combinations, a fair distribution of the subjects is employed between the training and test patterns (i.e. it 
is guaranteed that the detectors are trained with samples from all subjects). As in the previous section, the result 
of the fair case (in bold), in which the training patterns incorporate activities from all the categories, is used as 
the baseline reference.

The results clearly indicate the importance of diversifying the typology of the movements used for training, 
especially those that involve a greater degree of mobility. Thus, it is observed that classifiers do not tend to lose 
effectiveness when recognizing basic movements as ADLs, although they have not been used during the learning 
phase. On the contrary, performance (especially specificity) can dramatically degrade if movements of greater 
physical effort (especially sporting activities, which are mistakenly identified as falls) are considered in the test 
phase but not during training. Note, for example, that, in the case of the UMAFall and UP-Fall datasets, the 
specificity drops to less than 3% when a system trained with only basic and standard movements is evaluated 
with sport-like activities. This undoubtedly highlights the difficulties of the ML detectors to discriminate falls 
from other high-energy movements if they are not utilized to train the model.

Table 9.   Performance metrics of the best performing classifier (‘fair’ case) when different categories of ADL 
are used in the training and the testing subsets.

Dataset Features and algorithm

ADL categories used for

Se (%) Sp (%)
√

Se · Sp (%)Training Test

DOFDA HCTSA features
Naïve Bayes (Gaussian)

All (fair distribution) All (fair distribution) 97.37 100.00 98.67

Basic ADLs Standard ADLs 100.00 68.00 82.46

Standard ADLs Basic ADLs 100.00 50.00 70.71

Erciyes Own selection of features
SVM (quadratic kernel)

All (fair distribution) All (fair distribution) 99.62 99.18 99.40

All but standard ADLs Standard ADLs 99.34 98.90 99.12

All but basic ADLs Basic ADLs 99.34 97.22 98.28

All but sporting ADLs Sporting ADLs 98.68 95.65 97.15

All but ‘Near Falls’ Near Falls 100.00 92.39 96.12

SisFall HCTSA
SVM (cubic kernel)

All (fair distribution) All (fair distribution) 99.78 99.96 99.87

All but basic ADLs Basic ADLs 99.83 92.96 96.34

All but sporting ADLs Sporting ADLs 99.67 84.46 91.75

All but standard ADLs Standard ADLs 99.67 72.34 84.91

UMAFall Own selection of features
KNN (Euclidean. 10 neighbors)

All (fair distribution) All (fair distribution) 98.93 98.73 98.83

All but basic ADLs Basic ADLs 100.00 93.84 96.87

Standard ADLs Standard ADLs 95.16 97.87 96.51

All but sporting ADLs Sporting ADLs 100.00 1.82 13.48

UP-Fall Own selection of features
SVM (linear kernel)

All (fair distribution) All (fair distribution) 99.59 98.02 98.80

All but basic ADLs Basic ADLs 100.00 100.00 100.00

Standard ADLs Standard ADLs 98.77 95.93 97.34

All but sporting ADLs Sporting ADLs 100.00 2.17 14.74
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Conclusions
Wearable fall detection systems (FDSs) provide a cost-effective and non-invasive method to automatically dis-
criminate falls from other activities of daily life basing on inertial signals (mainly accelerometry). The most 
effective wearable fall detection systems in the literature are founded on machine learning algorithms that usually 
require a learning phase. This training is usually carried out on movement patterns (emulated falls and ADLs) 
captured from a set of experimental subjects different from the target public of these systems, mainly older adults, 
who, for obvious reasons, cannot emulate falls for a final fine-tuning of the classifiers.

However, in the vast majority of studies in the literature, FDSs are evaluated with the same subjects who gen-
erated the training samples. This study has focused on systematically analyzing the performance of a ML-based 
FDS when the characteristics of the individuals used in the test are different from those participants employed 
for the training. By using five well-known public datasets, four ML algorithms (with different hyperparameter 
configuration) and two alternatives to select the input feature sets, we investigated the impact of this separation of 
training and testing subjects on the effectiveness of the detectors. In particular, we examined the discrimination 
capability of the classifiers when the training and test subjects are separated based on five criteria: weight, height, 
body mass index, gender and age. In all cases, the performance metrics of the classifiers (sensitivity, specificity 
and geometric mean of both parameters) were compared with those obtained for: (1) the (optimal) case in which 
the test and training individuals coincide, (2) the case in which the separation of the subjects in both groups 
(test and training) is randomly executed. The results indicate that this segregation of the experimental subjects 
can cause some losses in the classification process. For most of the used datasets, the underperformance seems 
to be somewhat lower if the tallest and heaviest individuals are not included in the training group, which could 
be justified by the fact that corpulent persons generate confusing acceleration patterns (with larger peaks) when 
they perform ADLs. The impact of gender (if we discount its possible correlation with weight or height) or BMI 
is shown to be of secondary importance. Regarding age, the preliminary results illustrate the difficulty of applying 
detection algorithms to older persons when they have been trained exclusively with young subjects. In any event, 
any conclusion derived from the split of the train and test groups based on an age criterion should be taken with 
great caution since the study is strongly limited by the lack of fall patterns associated with elderly volunteers. 
Just one dataset (SisFall) incorporates falls of subjects over 50 years old. In addition, the fact that employed falls 
are actually emulated may also distort the registered divergences between the two groups (younger and older 
participants), as they may be really caused by the differences in the way these two groups emulate a fall accident 
and not by the compensatory movements that they would perform during an actual fall.

In any case, the study discloses that the characteristics of the participants have much less impact on the effec-
tiveness of the classifiers than the type of movements used for training and testing. Moreover, the performed 
tests show that the algorithms clearly tend to overlearn the particular ADLs used for training, in such a way that, 
during the test phase, they have difficulties to identify new ADL routines, especially if they involve sudden or 
highly energetic movements (such as sport-type activities), as they are misclassified as falls. These results show 
the importance of training the fall detectors with as many activities as possible. In contrast with the procedure 
typically employed by the related literature, the discrimination and extrapolation capability of FDSs should be 
equally tested against a wide variety of ADLs and falls, including movements not present in the training set.
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