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Abstract
As of August 27, 2021, the ongoing pandemic of coronavirus disease 2019
(COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has spread to over 220 countries, areas, and territories. Thus far,
214,468,601 confirmed cases, including 4,470,969 deaths, have been reported
to the World Health Organization. To combat the COVID-19 pandemic,
multiomics-based strategies, including genomics, transcriptomics, proteomics,
andmetabolomics, have been used to study the diagnosismethods, pathogenesis,
prognosis, and potential drug targets of COVID-19. In order to help researchers
and clinicians to keep up with the knowledge of COVID-19, we summarized
the most recent progresses reported in omics-based research papers. This review
discusses omics-based approaches for studying COVID-19, summarizing newly
emerged SARS-CoV-2 variants as well as potential diagnostic methods, risk fac-
tors, and pathological features of COVID-19. This review can help researchers
and clinicians gain insight into COVID-19 features, providing direction for future
drug development and guidance for clinical treatment, so that patients can
receive appropriate treatment as soon as possible to reduce the risk of disease
progression.
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1 INTRODUCTION

In 2019, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), a highly infectious virus related with the
coronavirus disease 2019 (COVID-19), was first identified
and spread rapidly across the world, seriously threatening
global public health and causing destructive impact on the
economy.1
During this COVID-19 pandemic, in order to keep track

of the latest epidemic, classical epidemic models, such
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as susceptible–infected–recovered model and susceptible–
infected–recovered–dead model, as well as modified and
sophisticatedmodelswere employed to estimate dailymor-
bidity and recovery rates, as well as to predict the time and
peak of confirmed cases2–4 As of August 27, 2021, the ongo-
ing COVID-19 pandemic has spread to over 220 countries,
areas, and territories, and 214,468,601 confirmed cases have
been reported to World Health Organization, including
4,470,969 deaths.5 At present, the United States of Amer-
ica (USA) is deeply affected by the COVID-19 pandemic,
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and there is a daily increase of over 100 thousand con-
firmed cases in the past week.6 Meanwhile, this pandemic
is spreading at alarming rates in India, Brazil, the Russian
Federation, and someAsian countries.7–9 So far, a variety of
candidate drugs, such as Chloroquine phosphate, Remde-
sivir, and Favipiravir, have been used to explore the effec-
tiveness against SARS-CoV-2 infection, whereas no spe-
cific drugs for the treatment of SARS-CoV-2 infection were
generally accepted. Vaccination is another crucial means
to control infectious diseases, and there aremultiple SARS-
CoV-2 vaccines approved for marketing currently. How-
ever, obstacles, such as rapid mutation of virus, pose huge
challenges to the application prospects of vaccines. In view
of this, it is urgent to realize in-depth analysis and under-
standing of SARS-CoV-2 andCOVID-19 so as to achieve the
prevention and control of this major epidemic situation.
Omics technology, including genomics, transcrip-

tomics, proteomics, and metabolomics, can achieve
high-throughput detection and analysis of target samples,
which has been greatly enriched and developed in recent
decades. Without exception, multiomics-based strategies
have been widely used to investigate the pathogenesis,
potential drug targets, and diagnostic approaches of
COVID-19.10–12 In particular, genomic analysis has been
applied to identify the mutations of SARS-CoV-2 as well
as track the emergence of new variants. Transcriptome
sequencing has been used to detect changes in SARS-
CoV-2 gene expression in different biological samples.13,14
Proteomics and metabolomics analyses have been con-
ducted to detect and quantify proteins and metabolites,
whereas different analytical methods have been used to
understand cell behavior after infection with the virus,
identify the entry receptors of SARS-CoV-2, investigate
the pathogenesis of COVID-19, find promising druggable
targets, and facilitate the development of specific drugs
and vaccines.15–17 In this review, we mainly summarize
the latest progress in applications of genomics, tran-
scriptomics, proteomics, and metabolomics in COVID-19
pandemic.

2 GENOMICS ANALYSIS
OF SARS-COV-2

As the COVID-19 pandemic spread, more and more muta-
tions were detected in newly isolated SARS-CoV-2 strains,
indicating adaptive viral evolution.18 Further, currently
licensed vaccines are mainly designed for the original ver-
sion of S protein; however, if they can still be protective
against newly emerging SARS-CoV-2 mutant S protein is
still dubious.19 On this basis, the disclosure of enough
SARA-CoV-2 genomes for genomic surveillance is of great
importance to track the mutations, evolution, and adapta-

tion of SARS-CoV-2,6,20,21 and series of efforts were made
to realize real-time genomic surveillance.22,23

2.1 Genomic surveillance
of SARS-CoV-2

The ongoing evolution of SARS-CoV-2 has been the
topic of considerable interest as the pandemic spreading
globally.24 Once a newprevalent variant arises in one coun-
try, it will quickly become a threat to neighbors.25 Evi-
dence is growing that SARS-CoV-2 variants could evade
immune responses under the selective pressure triggered
by vaccines and previous infections, and new variants are
being detected more frequently.6 Therefore, the strength
and duration of both natural and vaccinal SARS-CoV-2
immunity remains will play a central role in shaping the
future dynamics of COVID-19 cases and drowned a global
rush to increase genomic surveillance.9
As the progression of COVID-19 pandemic, genomic

surveillance has contributed significantly in tracking vari-
ants. Series of newly emerging variants are identified for
further study, including B.1.1.7 (also called Alpha variant),
B.1.351 (also called Beta variant), P.1 (B.1.1.28.1, also called
Gamma variant), B.1.167.2 (also called Delta variant),
B.1.427/B.1.429 (CAL.20C, also called Epsilon variant), P.2
(B.1.1.28.2, also called Zeta variant), B.1.525 (also called Eta
variant), P.3 (B.1.1.28.3, also called Theta variant), B.1.526
(also called Lota variant), B.1.167.1 (also called Kappa vari-
ant), C.37 (also called Lambda variant), and some other
variants spread in different regions.26–31 Among them,
B.1.1.7 variant, B.1.351 variant, P.1 variant, and B.1.617.2
were designated as variants of concern (VOCs).32
The SARS-CoV-2 B.1.1.7 variant originated in the UK

from late Summer to early Autumn 2020. Recently, it
has rapidly spread from southeast England to the whole
world (at least 185 countries, territories, and areas), indi-
cating a substantial selective advantage over other cur-
rently circulating lineages.33,34 Increased transmissibility,
risk of hospitalization, and reinfection add urgency to
intensive monitoring of B.1.1.7 variant.19,35,36 The signa-
ture mutation N501Y may be partially responsible for the
phenomenon.37–39
B.1.351, the main lineage circulating widely in South

Africa during the second wave of infections, is charac-
terized by eight lineage-defining mutations in S protein
of SARS-CoV-2, including K417N, E484K, and N501Y on
the RBD, L18F, D80A, D215G, ∆ 242–244 on the NTD and
A701V located in S2 region.6,38 Since its appearance, the
B.1.351 lineage almost completely displaced other lineages.
They could be 50% more transmissible than the other cir-
culating variants.40 Additionally, the researchers found
that B.1.351 was more resistant to convalescent serum and
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vaccine-induced sera than other circulating variants in the
pandemic.41–43
The emergence of SARS-CoV-2 P.1 variant (B.1.1.28.1)

was observed in a surge in severe COVID-19 case hos-
pitalizations in Brazil in February, 2021. Through whole-
genome sequencing, the P.1 lineage was revealed to be
associated with rapid increase of confirmed cases and
hospitalization rates.44,45 This new P.1 lineage bearing 17
mutations, including 11 mutations on the S protein. These
mutations resulted in increased binding to the human
angiotensin-converting enzyme 2 (ACE2) receptor and
immunity evasion against multiple neutralizing mono-
clonal antibodies, convalescent plasma, and vaccinee sera,
which will threaten current antibody therapies and lead to
increased reinfection rates.46,47 P.2 variant (B.1.1.28.2) is a
sub-lineage of B.1.1.28, which distinguished fromP.1 for the
single mutation E484K on the RBD of S protein. This vari-
ant was first reported in Rio de Janeiro, and then spread
to the others states of Brazil.48,49 P.3 variant (B.1.1.28.3),
which carried N501Y and E484K on the RBD of S protein,
is another sub-lineage prevalent in Philippines.50,51
The recently emerging variants almost all carried the

L452R mutation, including B.1.427/B.1.429 variant, B.1.526
variant, and B.1.167 variant. B.1.427/B.1.429 variant (also
CAL.20C), first identified variant bearing a L452R muta-
tion, is the prevalent lineage spread in California, USA,
which possesses increased infectivity and resistance of
neutralization due to the cooccurrence of L452R, S13I, and
W152C mutation.30,52,53 B.1.526 variant was identified in
NewYork City in November 2020, accompanied by contro-
versial breakthrough infection.54–56 SARS-CoV-2 B.1.167.1
is one of the circulating variants of India, which had spread
worldwide.57 B.1.167.2, also known as Delta variant, is first
detected in the United Kingdom in April, 2021, and sub-
sequently, the emergence of this variant was traced back
to October, 2020 in India. As of August 10, 2021, it has
been reported by over 140 countries, territories, and areas
around theworld.58 B.1.167.2 carries T19R,∆157-158, L452R,
T478K, D614G, P681R, and D950N mutations on the S pro-
tein, indicating high transmissibility and breakthrough
infection of vaccinated people, as well as increased hospi-
talized patients.28,57,59
Apart from VOCs, series of emerging variants have been

monitored for further alerts. A.23.1 is a sub-lineage of A.23
defined by F157L, V367F, Q613H, and P681R mutations,
possessing increased fusion activity and immune evasion
ability. In January, 2021, A.23.1 overtook the former cir-
culating variants in Uganda, and spread rapidly to more
than 23 countries.31 R.1 variants is a lineage first detected
in USA and Europe, which rapidly prevailed in Tokyo
in March, 2021.60 And B.1.525 (also called Eta variant),
which charactered by the carrying of signature mutations
of VOCs, is first identified in Nigeria and poses incredible

risk on unvaccinated population in Africa. Also, the possi-
ble resistance to vaccine-induced immunity will facilitate
its worldwide spreading.61,62 Lambda variants (C.37), car-
rying L452Q and T859N, are circulating in Peru during Jan-
uary to April, 2021 and could be responsible for the steep
increase of confirmed cases in SouthAmerica. As reported,
L452Q and D614G are considered to increase the transmis-
sibility, and T859N could be responsible for a reduced neu-
tralization by monoclonal antibodies and by convalescent
and postvaccination sera (Table 1).29

2.2 Notable mutations of SARS-CoV-2

The emergence of new variants is driven by the heritable
mutations of SARS-CoV-2 (Figure 1). As reported, SARS-
CoV-2 can utilize all ACE2 proteins, except mouse ACE2,
as cell entry receptors.69 And the highly variable spike (S)
protein of SARS-CoV-2 is responsible for virus–cell inter-
action. S protein is composed of S1 and S2 subunits; virus
attachment and entry are directly mediated by the recep-
tor binging domain (RBD) of S1, whereas the fusion pep-
tide (FP) of S2 facilitates membrane fusion.26,70 During
the SARS-CoV-2 epidemic, the mutations of S protein are
rapidly expanding, while most mutations are either lost, or
occasionally fixed, at the point of transmission, with min-
imal persistence of shared diversity.24,71
At the early stage of COVID-19 pandemic, some muta-

tions have existed in the epidemic strains, including H49Y
on the S1 N-terminal domain (NTD) from China, G476S
on the RBD fromWashington, USA and S943P on FP from
Belgium.72 As the COVID-19 pandemic going on,more and
more mutations are identified, including some prominent
mutations that spread globally. D614G (G614) mutation on
the C-terminal domain 2 (CT2) leads to an open conforma-
tional state of S protein, which will facilitate the binging of
RBD toACE2, indicating that strains with D614Gmutation
in the S protein possess stronger virulence and transmis-
sion ability.73,74 Also, D614G mutations showed a selective
advantage of higher viral loads, younger patient age, and
reinfection among circulating variants.75–77
N439K mutation on the receptor binding motif (RBM)

of S protein can enhance the binding affinity of S pro-
tein to ACE2 receptor moderately and can lead to resis-
tance against several neutralizing monoclonal antibodies
and some polyclonal sera from persons recovered from
infection.78,79 ∆H69/∆V70 deletion in the S1 NTD of the
S protein is responsible for the compensation of immune
evasion-induced infectivity defect in prevalent circulating
variants, whereas the NTD ∆242–244 deletion, which has
similar functional consequences, is particular in certain
strains.37,80,81 N501Y, K417N/K, and E484K are key con-
tact residues in RBD.43 Their mutations, especially the
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TABLE 1 Mutations on the S protein of circulating SARS-CoV-2 variants

Variants Mutations on S protein Signature mutations References
Alphaa B.1.1.7 N501Y, ∆69/70, ∆144/145, A570D, P681H, T716I,

S982A, and D1118H
N501Y 63,64

Betaa B.1.351 D614G, L18F, D80A, D215G, ∆242-244, R246I,
K417N, E484K, N501Y, and A701V

∆242-244, R246I, K417N,
E484K, N501Y

42,64,65

Gammaa P.1 (B.1.1.28.1) D614G, L18F, T20N, P26S, D138Y, R190S, K417T,
E484K, N501Y, H655Y, and T1027I

K417T, E484K, N501Y 45,46,64

Deltaa B.1.167.2 T19R, G142D, L452R, T478K, D614G, P681R, and
D950N

L452R, T478K 28,66,67

Epsilon B.1.427/B.1.429 (CAL.20C) S13I, W152C, L452R, and D614G L452R, S13I, W152C 30,52,53

Zeta P.2 (B.1.1.28.2) D614G, L18F, T20N, P26S, D138Y, R190S, E484K,
H655Y, T1027I, and V1176F

E484K, V1176F 48

Etab B.1.525 Q52R, A67V, ∆H69/V70, ∆Y144/145, E484K,
D614G, Q677H, and F888L

∆69/70, ∆145, E484K,
Q677H

61

Theta P.3 (B.1.1.28.3) D614G, ∆LGV141-143, E484K, N501Y, P681H,
E1092K, H1101Y and V1176F

E484K, N501Y, P681H 50,51

Lotab B.1.526 L5F, T95I, D253G, D614G, A701N, and S477N or
E484K

L5F, T95I, D253G, S477N
or E484K

56

Kappab B.1.167.1 D614G, G142D, E154K, L452R, E484Q, P681R,
Q1071H, and H1101D

L452R, E484Q 61,67,68

Lambdab C.37 G75V, T76I, R246N, Δ247-253, L452Q, F490S,
D614G, and T859N

L452Q, T859N 29

aVOCs, variants of concern.
bVOI, variants of interest.

combined mutation of N501Y and E484K, can particu-
larly enhance the binding affinity of RBD to hACE2. Also,
some researchers have found N501Y mutation may pro-
mote the binding affinity of RBD to mouse ACE2s, pos-
ing a risk of intermediate transmission of SARS-CoV-2.82
Furthermore, N501Y and K417N can only decrease the
neutralization ability of certain vaccines, whereas E484K
can cause widespread escape from monoclonal antibodies
and convalescent plasma neutralization. Further, Δ242–
244 will be additive to the resistance of immune barrier
as well as T95I.41,65,83–86 Q493R is emerged after the treat-
ment of E484K mutant SARS-CoV-2 infections with bam-
lanivimab/etesevimab, indicating the incidence of poten-
tial drug resistance.87 L452R and Y453F, two naturally
occurred substitutions in RBM of S protein, can enhance
the interaction of SARS-CoV-2 and ACE2 as well as be
resistance of cellular immunity. L452R/Q mutation is
almost carried in all newly emerging variants, the emer-
gence of L452R/Q not only increase viral infectivity and
fusogenicity, but also decrease the sensitivity of certain
variants to neutralizing antibodies.88,89 In certain variants,
L452R mutation is occurred with W152C and S13I, leading
to increased infectivity.52
In chronic infection, D796H substitution in the S2 sub-

unit of S protein appeared to be responsible for the resis-
tance of neutralizing antibodies accompanied by decreased

infectivity; however, when combined with ∆H69/∆V70
mutation, this defect can be compensated.90 Mutation
P681H/R is immediately adjacent to the furin cleavage site
in S protein, which can enhance the fusion activity of the
SARS-CoV-2 and promote S1/S2 cleavage by the cellular
furin protease, so as to benefit the proliferation of SARS-
CoV-2.31,36,37 Besides, novel m6A methylation locus in the
S protein of SARS-CoV-2 is also detected to change the vir-
ulence and transmission capacity of the virus, which call
for comprehensive sequencing of circulating variants.91
Aside from S protein, RNA-dependent RNA polymerase

(RdRp), methyltransferase complex (Nsp10–Nsp16), and
helicase (Nsp13) can also be promising drug targets
of SARS-CoV-2 infection. However, the emergence of
mutations poses a challenge on the development of
virus-targeted therapies. By now, silent mutation and
composition-related mutations are identified in the RdRp
gene of SARS-CoV-2, arisen a risk on possible drug-
resistance to clinical used RdRp-targeted drugs.92 More-
over, studies have reportedmutations inmethyltransferase
complex (Nsp10–Nsp16) and helicase (Nsp13) of SARS-
CoV-2, which can facilitate host–pathogen interaction.93,94
Membrane (M) protein participates many virus–cell inter-
actions. M: I82T and V70L mutations, which located in
the glucose transport region of M protein, can enhance
the uptake of glucose during viral replication, and these
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F IGURE 1 Notable mutations carried in circulating variants. S, spike protein; M, membrane protein; N, nucleocapsid protein; RdRp,
RNA-dependent RNA polymerase; Nsp, nonstructural protein; Nsp13, helicase; Nsp10–Nsp16, methyltransferase complex

mutations will be resulted in SARS-CoV-2 infection in
younger people.95 Nucleocapsid (N) protein of SARS-CoV-
2 has a region associated with nuclear localization signals,
which raised another concern of emerging mutations. As
reported, amphimutation of R203K&G204R can enhance
the transportation of NP to nucleus and contribute to high
case fatality rates.96
Moving forward, long-term and continuous tracking

of emerging variants and the functional consequences of
mutations will help researchers and politicians to formu-
late more appliable strategies for the prevention and con-
trol of COVID-19 pandemic, including vaccination strate-
gies.

3 APPLICATION OF
TRANSCRIPTOMICS IN
COVID-19 PANDEMIC

Being an RNA virus, the life cycle of SARS-CoV-2 is highly
dependent on the machinery of the host cell. Therefore,
once infected by SARS-CoV-2, series of changes occur in
the host cells, especially in their transcriptomes. Tran-
scriptomic analysis is useful for investigating the cellu-
lar mechanisms underlying risk factors, pathogenesis, and
potential drugs targets of SARS-CoV-2 infection. Further,
the application of transcriptomic analysis in various clin-
ical samples will be helpful to elucidate the mechanisms
of COVID-19-associated tissue damage and comorbidities
(Figure 2).

3.1 Dysregulated immune responses
in COVID-19 patients

Many studies have confirmed that attenuated antiviral
responses and inappropriate inflammatory responses exist
in COVID-19 patients, including persistently enriched
T cells and monocytes.97,98 SARS-CoV-2 infects alve-
olar macrophages to induce the production of T cell
chemoattractants, and lead to the activated T cells.
Then, the activated T cells began to produce interferon-γ
(IFN-γ), and IFN-γ will promote the release of inflam-
matory cytokines, including T cell chemoattractants,
from alveolar macrophages in turn, and resulted in
further T cell activation.98 During this loop, clonally
expanded cluster of differentiation 8 (CD8+) T cells
and an increased ratio of CD8+ effector T cells to effec-
tor memory T cell characterized severe disease, while
circulating follicular helper T cells accompanied mild
disease.99 Besides, elevated inflammatory response will
enhance monocytic infiltration into lungs.100 Uncom-
mitted CD34+ hematopoietic stem/progenitor cells
were primed toward megakaryopoiesis, accompanied
by expanded megakaryocyte-committed progenitors and
increased chemokine/cytokine release.99 Nonclassical
CD16+ monocytes, which is characterized by decreased
antigen presentation, suppressed monocyte response to
early antiviral interferon signals and deficient lymphocyte
expression of cytotoxicity genes. Also, IFN-driven early B
cell activation was reduced.101,102 Therefore, overexpressed
chemokines and cytokines, as well as low levels of IFN-I
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F IGURE 2 SARS-CoV-2 infection induced tissue damage and comorbidities. (A) Workflow of transcriptomic analysis of clinical samples
collected from COVID-19 patients; (B) mechanisms of SARS-CoV-2 infection induced tissue damage; (C) SARS-CoV-2 infection correlated
comorbidities

and IFN-III accompanied moderate interferon-stimulated
genes response, are proposed to drive the progression of
COVID-19.103–105
Heterogeneous activation of coagulation and fibri-

nolytic pathways are present in early stage of COVID-19
and will persist into its late stage.106 SARS-CoV-2 infec-
tion causes endothelial disruption and vascular thrombo-
sis in lungs, which are induced bymacrophage infiltrating,
as well as the upregulation of complement, platelet acti-
vation, thrombosis, and proinflammatory factors-related
genes.107 The peak expression of these dysregulated
genes was accompanied by respiratory failure as well
as chemokine-dominant hypercytokinemia.104,108,109 Sub-
sequently, hypoxia inducting factor system (HIF) was
detected, along with the arisen of oxidative phosphoryla-
tion (OXPHOS), reactive oxygen species (ROS) and heme-
related metabolic pathways mediated mitochondrial dys-
functions, which will further contribute to the amplifica-
tion of immune dysfunction as well as related systematic
hypoxia injury.110–113

3.2 Risk factors of severe COVID-19

It has been reported that ACE2 is the receptor of SARS-
CoV-2. During viral entry, the S protein is primed by trans-
membrane protease serine 2 (TMPRSS2). To determine
the susceptible factors of SARS-CoV-2 infection, series of
experiments were conducted and multiple risk factors of
severe COVID-19 were demonstrated.

3.2.1 Susceptible factors of severe COVID-19

The analysis and reanalysis of single-cell transcriptomic
data specialized on ACE2 and TMPRSS2 found coexpres-
sion of ACE2 and TMPRSS2 in pulmonary and extrapul-
monary tissues, including maternal–fetal interface, sali-
vary glands, and the granulosum of the skin and so on,
posing a risk of systematic tissue damage, as well as indi-
cating the possibilities of vertical transmission and contact
transmission.114–117
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In moderately or critically ill patients with COVID-19,
ACE2 and TMPRSS2 expression in epithelial cells of
lung was increased in response to Type 2 inflammation-
related interleukin-13 (IL-13) and IFN signals. Afterward,
increased ACE2 and TMPRSS2 expression contributed
to clinical inflammatory lung injury and respiratory
failure. In this procedure, series of inflammation-related
pathways, including Toll-like receptor 4 (TLR4), C-C
chemokine receptor type 1 (CCR1), CCR5, C-X-C
chemokine receptor type 6 (CXCR6), mammalian target
of rapamycin (mTOR), mitogen-activated protein kinase
(MAPK)/MAPKK/protein kinase B (also known as AKT),
inhibitor of nuclear factor κB kinase/nuclear factor κB
(NF-κB), and ferroptosis pathways, were involved.14,118–123
SARS-CoV-2 infection induces hyperactivation of the

extrinsic blood coagulation cascade and the suppression
of the plasminogen activation system in epithelial cells,124
which poses higher risk for diverse coagulopathies in
the lung and distal organ systems of COVID-19 patients.
Tissue factor, the key regulator of extrinsic coagulation
cascade signaling, could be the most promising drug
targets for COVID-19-associated coagulopathies, whereas
coagulation factor VWF (von Willebrand factor) and
ADAMTS13 (a disintegrin and metalloproteinase with
a thrombospondin type 1 motif, member 13) may be
related to the incidence of severe COVID-19.125,126 The
expression of microtubule-associated proteins 1A/1B light
chain 3B (LC3B) and (p62/SQSTM1) p62, both of which
depend on lysosome for degradation, could also predict
the emergence of moderate-to-severe disease in COVID-19
patients requiring hospitalization for supplemental oxygen
therapy.127
Aside from the underlying risks, many acquired risk

factors are also observed in SARS-CoV-2 infection. The
higher expression of ACE2 and TMPRSS2 in individu-
als who smoked and those with lung cancer, posing rel-
atively higher risk of SAR-CoV-2 infection.128 As well as
a fivefold increase of ACE2 expression was also observed
in the heart tissues obtained from patients with obstruc-
tive hypertrophic cardiomyopathy.129 Besides, in the pop-
ulation of COVID-19 patients with chronic lung injuries,
AT2 cells exhibit preexisting dysregulation of viral infec-
tion associated genes, including verified and putative entry
receptors and priming proteases (ACE2 and putative BSG,
NPR1, HSPA5, as entry receptors; and TMPRSS2, CTSL, or
FURIN, as priming proteases), which will facilitate SARS-
CoV-2 infection.130
Besides, COVID-19 patients could also be distinguished

by age and gender. Compared with male and elderly
patients, female and children possess higher expression
levels of immune modulation-correlated genes and will
experience relatively lower disease severity.131,132 Fur-

ther, reprogrammed immune cell landscape and upreg-
ulated expression of susceptibility genes were uncovered
in the elderly COVID-19 patients. Among them, receptor-
interacting serine/threonine-protein kinase 1 (RIPK1)
could be a potential target for drug repurposing in elderly
population.133,134

3.2.2 Immune microenvironment

The severity of COVID-19 may depend on the immune
microenvironment. In asymptomatic or mild COVID-19
patients, lower proportion of CD169+ expressing mono-
cytes and correlated proinflammatory cytokines, as well
as more counts of mature neutrophils, early bystander
CD8+ T cell and plasmablast responses and higher levels
of growth factors were detected, suggesting that asymp-
tomatic patients mount less proinflammatory and more
protective immune responses against SARS-CoV-2, and no
prolonged immunological activation would exist.110,135,136
Hyperactivation of dendritic cells (DCs), CD14+ mono-
cytes, and megakaryocytes progenitor cells/platelets and
reduction of naive CD4+ T lymphocytes were detected
in patients with severe COVID-19, along with proinflam-
matory monocyte-derived macrophages enrichment.137,138
In addition, the hospitalized patients in critical condition
possess increased proportions of cytotoxic follicular helper
cells and cytotoxic T helper cells, along with natural killer
cells (NKs) deletion induced disruption of CD8+ T cell
exhaustion than nonhospitalized patients.137,139 Mucosa-
associated invariant T (MAIT) cells can function as innate-
like sensors and mediators of antiviral responses. Dysreg-
ulated gene expression of MAIT cells could be associated
with poor clinical outcome.140 Besides, plasma B-cell
activity and calprotectin were higher in critical COVID-19,
whereas most transcripts related to immune functions
were reduced, particularly in B cells.141

3.3 COVID-19-associated tissue damage
and comorbidities

SARS-CoV-2 infection-induced systematic tissue damage
was marked by inflammation and coagulopathy in blood
and tissues.142,143 In the lungs of fatal COVID-19 patients,
dysregulated genes were mostly associated with dysregu-
lated activation of granulocyte and complement, lympho-
cyte differentiation and certain T cell activation, as well as
correlated pulmonary fibrosis.12,144,145 Overactive immune
responses-related genes resulted in chemokines (such
as CXCL1 and CXCL8) induced neutrophil pulmonary
infiltration. The abnormal activation of neutrophils,
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characterized by the enrichment of CD177, alarmin S100
A8/A9/A12, is mediated by the TLR4 pathway, will further
contribute to the amplification of inflammatory responses,
including activated CXCR2 pathway, in turn. This loop
will prolong uncontrolled pathological damage in severe
COVID-19 patients, especially in lung.12,146–149 Other-
wise, the genes associated with B cell activation, human
leukocyte antigen class DR lowmonocytes differentiation,
neutrophil precursors-correlated emergency myelopoiesis
were also distinguished.150–153
In the postmortem human brain tissue of COVID-19

patients, monocytes and macrophages infiltrate to choroid
plexus across the blood–brain barrier and lead to IRF8-,
ATF5-, SPI1-, and TAL1-mediated activation of microglia
inflammatory responses, including cellular activation,
mobility, and phagocytosis.154 Peripheral T cells can infil-
trate to the parenchyma, and astrocyte cluster is marked
by established inflammation and astrogliosis, lead to sig-
nificant dysregulation of neurotransmission and synap-
tic organization.155 In the frontal cortex tissue of COVID-
19 patients, downregulation of genes associated to HIF
was observed, which may inhibit the capacity of defense
system during infection and oxygen deprivation, show-
ing that hypoxia is also marked in the brain of COVID-19
patients.113
COVID-19 causes cardiac dysfunction in up to 25% of

diagnosed patients, independent of disease severity.156,157
Cardiac damage is not only associated with disease
mortality,158,159 but also leads to a long-term suffering of
cardiac sequelae from COVID-19.160 However, its patho-
genesis still needs further study. As reported, phospho-
lipase A2 group VII (PLA2G7), a well-known cardiovas-
cular disease biomarker, was predominantly expressed
by proinflammatory macrophages in lungs at the early
stage. However, with the progression of COVID‑19, serum
PLA2G7 was also elevated, and posing a risk on cardiovas-
cular system of the COVID-19 patients.161 In the cardiomy-
ocytes of died patients with COVID-19, multiple genes
associated with nuclear disruption and myofibrillar frag-
mentation, particularly sarcomeric fragmentation, were
upregulated.89 Besides, in primate cardiopulmonary aging
models, IL-7 accumulated in aged cardiopulmonary tissues
and inducedACE2 expression in human vascular endothe-
lial cells in an NF-κB-dependent manner, leading to sys-
temic inflammation and compromised virus defense of
aging cardiopulmonary.162 Taken together, these findings
provide an insight into the mechanism of cardiac pathol-
ogy of COVID-19, and they may help guide the develop-
ment of efficacious antiviral and cardioprotective therapies
in patients with COVID-19.157
During to the systematic tissue damage in individuals

with COVID-19, various comorbidities are observed in

this population. Transcriptomic analysis conducted in the
male reproductive system revealed that during the high
expression levels of ACE2 in testis, SARS-CoV-2 infection-
correlated spermatogenesis damage was observed.163,164
Acute kidney injury usually occurs in COVID-19 patients,
accompanied by podocytes and proximal straight tubule
cells damage.165 Maculopapular drug rashes are associated
with hyperactivation of monotypes/macrophages and
highly cytotoxic CD8+ T cells in severely ill COVID- 19
patients. These cutaneous findings are possibly initiated
by or exacerbated by a robust systemic COVID-19-induced
immune response.166 Multisystem inflammatory syn-
drome in children (MIS-C) is a new COVID-19-related
disease mediated by enhanced autoreactivity. In the
individuals with MIS-C, IL-15-driven NK cell exhaustion
derangement resulted in downregulation of NK cells as
well as disrupted CD8+ T cell exhaustion and led to sus-
tained inflammatory environment and severe or even fatal
T cell immunopathology.137 T-box transcription factor 21,
a central coordinator of exhausted CD8+ T cell differentia-
tion, as well as suppressor of cytokine signaling 1 (SOCS1),
a negative regulator of type I and II interferons, may be the
promising therapeutic target candidate for MIS-C.167,168
People recovered from COVID-19 may develop post-
traumatic stress disorder.169 Augmented T helper 17 cell
differentiation and cytokine response might be partially
responsible COVID-19-associated central nervous system
dysregulation, including Guillain-Barré syndrome.170
SARS-CoV-2 infection is associated with an increased rate
of ischemic stroke and intracerebral hemorrhagemediated
by complement cascade. Namely, upregulation of comple-
ment component C3 is triggered by SARS-CoV-2 infection;
C3a amplifies the inflammatory signaling of brain,
whereas C3b leads to cellular destruction.171 Viral sepsis is
also detected in COVID-19 patients.172

4 APPLICATION OF PROTEOMICS
IN THE EMERGING PANDEMIC

Nowadays, proteomics has been widely used to study and
develop therapies of different diseases. In the COVID-19
pandemic, the application of proteomics can be roughly
divided into two aspects: one is directly applied in virus
characterization, including pathogen diagnosis, mutation
identification, posttranslational modifications, and so on;
the other is for monitoring the impacts of infection on
host cells at the protein level, including discovery of poten-
tial therapeutic targets, understanding the pathologic pro-
cesses and the immunogenicity, revealing the antiviral
mechanism of drugs, as well as detection of biomarkers for
disease course and prognosis (Figure 3).
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F IGURE 3 Overview of application of
proteomics in COVID-19 pandemic. The
yellow box and blue box represent the
application of proteome in the fields of viral
detection and monitoring the diversity of
host protein levels, respectively

4.1 Protein-based COVID-19 diagnosis

The development of sensitive and specific SARS-CoV-2
detection tool is of utmost priority for the control of its
transmission, and early diagnosis of infection will help
clinicians administer timely intervention to prevent pos-
sible disease progression. At present, the most widely used
SARS-CoV-2 diagnosis method is RT-PCR, which is also
supposed to be a gold standard173; however, viruses in some
samples, such as urine, cannot be detected by RT-PCR, and
the accuracy of detection by this method may be affected
by various factors, including substitutions and deletions.
Aside fromRT-PCR, enzyme-linked immunosorbent assay
is also a popular tool to detect SARS-CoV-2 infection. The
limitation of this method is that it takes up to 3 weeks
for body’s immune system to generate antibodies against
foreign viral particles.174 In addition, conventional tech-
niques for studying IgG and IgM responses in patients can
only detect a single target protein in one test. Hence, new
diagnosis methods should be developed to supplement the
detection of COVID-19.
Recently, mass spectrometry (MS)-based proteomic

methods with rapid and sensitive superiority have been
applied for SARS-CoV-2 diagnostic testing. Targeted pro-
teomic analysis was conducted to identify candidate

viral peptides targets for SARS-CoV-2 detection.175 Jiang
et al.176 constructed a protein-based microarray for high-
throughput characterization of proteome-wide antibody
responses to aid the identification of potential diagnos-
tic and therapeutic targets of COVID-19. Also, MS-based
approaches were used to detect SARS-CoV-2 N protein
in nasopharyngeal epithelial swabs, respiratory tract sam-
ples, and gargle solutions with high sensitivity.177–181 Col-
lectively, clinical proteomics has become a potential com-
plementary approach for the diagnosis of COVID-19 by
directly detecting viral peptides or proteins. Although
these studies have confirmed the feasibility of MS-based
SARS-CoV-2 detection strategies, there are some limita-
tions to such approaches, especially regarding the prepa-
ration of clinical samples and the baseline of detection,
which merits further investigation.182,183

4.2 Proteome-associated disease course
and prognosis factors of COVID-19

Identification of disease courses of COVID-19 is essential
to implement preventive measures and personalized inter-
vention, especially in critically patients. Researchers have
carried out a number of proteomic studies on different
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samples to find valuable biomarkers that can accurately
predict the COVID-19 disease trajectories.
By analyzing plasma proteomics of COVID-19 patients,

researchers found that some plasma proteins could be
used as biomarkers to predict the disease severity. Haljas-
mägi et al.184 conducted a longitudinal proteomic profil-
ing in terms of blood inflammation markers, antibodies,
and plasma proteins in COVID-19 patients requiring inten-
sive care unit (ICU) admission or not. The results indi-
cated that selective inflammatory markers, such as IL‑6
and CXCL10, as well as monocyte‑attracting C-C motif lig-
and 2 (CCL2), CCL7, and CCL8 were significantly evident
in ICUcohorts.184 Inmany studies, it has been claimed that
IL-6 has correlation with the severity of COVID-19, and
cytokines relatedwith IL-6-mediated proinflammatory sig-
naling are highlighted as biomarkers of critical COVID-
19.185–187 In addition, there are certain proteomic analy-
sis studies of exosomes and plasma samples, and found
that a variety of cytokines including CRP, lactate dehydro-
genase (LDH), procalcitonin (PCT), SAA, angiotensino-
gen (AGT), IL-12, PTX3, IGLV3-19, BNC2, CKAP4, and
so on are remarkably upregulated or downregulated dur-
ing the disease progression, which could serve as poten-
tial predictors of progression and mortality, although
some cytokines are nonspecific and still need further
confirmation.188–194 Compared with nonsevere COVID-
19 patients, dysregulation of a variety of apolipoproteins
(APOA1, APOA2, APOC1, etc.) in critically ill patients was
discovered based onproteomic profiling, although the rela-
tionship between these proteins and the disease process
needs further explanation.189,195,196 Neutrophil activation
is the first line of defense against pathogens infection. It
can recruit inflammatory mediators to accumulate at the
site of infection and even cause cytokine storms when out
of control. Many studies have showed that neutrophils are
closely associated with the progression of COVID-19 and
may be a considerable target for clinical prediction and
therapeutic intervention.190,197,198 Factors involved in neu-
trophil activation, such IL-8 and resistin, were regarded
as the most potent discriminators of critical illness, and it
plays a central role in the pathogenesis of severe COVID-
19.199,200 Apart from blood, urine samples can also be used
to predict the COVID-19 disease course. For instance, by
using capillary electrophoresis-MS-based proteome anal-
ysis, Wendt et al.201 found urinary peptides significantly
associated with SARS-CoV-2 infection and may be a valu-
able biomarker to assess and predict the severity of COVID-
19 disease course. Also, Ni et al.202 revealed that ACE2 is
detectable by MS-based proteomic approaches in urinary
samples, and further verified the feasibility of urinary sam-
ples to predict disease severity.
In face of the long-term recovery of the prognosis of

patients infected by SARS-CoV-2, Doykov et al.203 used tar-

geted proteomic technology to analyze a cohort of serum
samples, and the results indicated that even after SARS-
CoV-2 infections have subsided for a considerable time,
biochemical and inflammatory pathways can remain per-
turbed long. Considering that, it is necessary to identify
some valuable prognostic biomarkers to evaluate the ther-
apeutic efficacy and monitor the recovery of COVID-19
patients. Also noteworthy, prognostic markers and predic-
tors used to classify COVID-19 severity have a consider-
able overlap, and in-depth characterization of these factors
should be developed for further applications.204

4.3 Potential therapeutic targets of
COVID-19 treatment

Investigating the pathogenesis and discovering the poten-
tial therapeutic targets of COVID-19 are critical for
the healthcare systems to provide correct interventions.
Recently, based on proteomics technology, researchers
have performed various attempts and discovered many
emerging therapeutic targets. These studies can be roughly
divided into three strategies: one is to screen antivi-
ral targets at the cellular level, which is based on the
use of human cell lines expressing SARS-CoV-2 proteins
to explore potential interacting proteins; the other is to
directly study the proteomics of various tissue samples
fromCOVID-19 patients and construct the protein–protein
interaction network; the third is to integrate, summarize,
and analyze the published proteomic data for revealing
more targets with high efficiency and low toxicity.
In a pioneering study on COVID-19, Gordon et al.205

expressed 26 SARS-CoV-2 proteins in human cells, which
were used for affinity-purificationMS; this study identified
332 high-confidence protein–protein interactions between
SARS-CoV-2 and human proteins, and more than 66 of
332 proteins were identified as druggable targets. Based
on this work, Acharya et al.206 demonstrated that BRD2 is
a potential target for development of therapeutics against
SARS-CoV-2 in vitro. In another study, using proximity
proteomics, Meyers et al.207 generated a compendium
of 2422 human proteins vicinal to 17 SARS-CoV-2 viral
proteins, which provide insights into the pathogenicity
and potential targets of SARS-CoV-2. Stukalov et al.208
performed a proteomics analysis of SARS-CoV-2-infected
ACE2-expressing A549 cells and revealed perturbation
of many antiviral pathways; moreover, the production of
ephrin-B1, polymerase (RNA) II (DNA directed) polypep-
tide B, thymidylate synthase, and dihydrofolate reductase
showed a ubiquitination-dependent decrease. Further-
more, the ubiquitination changes that occur in both the
virus and the Vero E6 cells during SARS-CoV-2 infection
were identified and quantified and laid a foundation for
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understanding the relationship between ubiquitination
and viral pathogenesis as well as the identification of
potential therapeutic targets.209 Appelberg et al.210 per-
formed an integrative proteo-transcriptomic analysis of
SARS-CoV-2-infected Huh 7 cells and identified tyrosine
kinase ErbB, HIF-1, mTOR, and TNF signaling as potential
antiviral targets; and they also clarified and confirmed a
Akt/mTOR/HIF-1 axis. Bojkova et al.15 performed quan-
titative mePROD proteomics analysis on the translatome
and proteome, and the results indicated that SARS-CoV-2
infection may interfere with different pathways in the host
cells, including translation, proteostasis, glycolysis, splic-
ing, and nucleotide synthesis pathways; in addition, the
antiviral activities of corresponding inhibitors were veri-
fied. The results of bioinformatics analysis of proteomics
showed that APOA1, amyloid precursor protein (APP),
epidermal growth factor (EGF), complement protein C3
and other targets are also closely related to SARS-CoV-2,
which could be the valuable diagnostic and therapeutic
targets. Significantly, APOA1, as the protein complex seed,
was identified as the key differentially expressed protein
in different proteomics studies.196,211,195
Viral RNA-binding proteins in the host play a central

role in viral replication cycle. Considering that, researchers
systematically analyzed viral RNA–protein interactions
in cells and revealed that multiple host and viral RNA-
binding proteins are involved in SARS-CoV-2 infection.212
For positive-strand RNA viruses, 5′ and 3′ UTRs of viral
RNA are associated with its replication and have become a
research hotspot recently. Verma et al.213 generated RNA–
protein–protein interaction network and demonstrated
that Lamp2a, an interaction partner of SARS-CoV-2 5′
UTRs, can effectively affect the replication in SARS-CoV-
2-infected cells. In another study, host proteins G3BP1 and
DDX3X were identified as the interacting protein of SARS-
CoV-2 nucleoprotein and acted on viral RNA life cycle.213
Multiorgan proteomic landscape was generated based

on autopsy samples from seven organs of 19 COVID-19
patients. The outcomes of this study uncovered multiple
biological and pathological processes involved in COVID-
19, which offer a unique perspective for understanding
the pathogenesis and provide novel insights into poten-
tial targets for the treatment of SARS-CoV-2 infection.214
Leng et al.215 conducted a quantitative proteomic anal-
ysis of fresh lung tissues and identified molecular fea-
tures of expiratory dyspnea, coagulation disorder, immune
activation, and extracellular matrix imbalance. Besides,
they also found that the production of chemokines and
cytokines, as well as lymphoid organogenesis were regu-
lated by noncanonical NF-κB/NFKB2 pathway, represent-
ing a potential antiviral target.215 In another study, by
using an integrated quantitative proteomics and phospho-
proteomics approach, the proteomic changes in the liver

were detected. The results not only provided insight into
pathological features caused by SARS-CoV-2, but also pre-
sented 202 potential therapeutic drug targets, which may
be developed as countermeasures against COVID-19 liver
damage.216
In addition to perform direct proteomic analysis of

SARS-CoV-2 infected samples, researchers also reanalyzed
published proteomics data. Bock and Ortea217 conducted
impact pathways analysis and network analysis of cur-
rently available proteomics data and verified the impor-
tance of inflammatory responses, as well as uncovered the
alteration of proteins related to chromosome segregation
during mitosis. Moreover, Feng et al.16 reanalyzed pub-
licly available proteomics data and identified ubiquitous
bromodomain-containing protein 4, RIPK1, and tissue-
unique receptor expression-enhancing protein 5 as promis-
ing drug targets.

5 APPLICATION OFMETABOLOMICS
IN THE EMERGING COVID-19 PANDEMIC

Metabolomics studies focus on the analysis of metabolites
perturbations induced by diseases and infection. As direct
signatures of disease onset and infection, metabolites can
help researchers quickly determine pathogenesis, poten-
tial therapeutic targets, aswell as cell or tissue damage, and
it can also be used as biomarkers to monitor disease pro-
gression. At present, metabolomics, including amino acid
metabolism, glucosemetabolism, lipidmetabolism, purine
and pyrimidine metabolism, and so on, have been widely
applied in the emerging COVID-19 pandemic. Herein,
we summarize the application of metabolomics in iden-
tifying pathogenic mechanisms, discovering antiviral tar-
gets, and exploring biomarkers from three aspects, namely
amino acid metabolism, glucose metabolism, and lipid
metabolism (Figure 4).

5.1 COVID-19 associated with amino
acid metabolism

Multiple studies have shown that most amino acid
metabolism systems, including branched chain amino
acids (BCAAs), aromatic amino acids, gluconeogenic
amino acids, and so on, are vulnerable to SARS-CoV-2
infection. Here, we mainly review the research progress of
several amino acids that are more tightly associated with
COVID-19.
Aside from tryptophan/5-hydroxytryptamine pathway,

tryptophan can be metabolized to nicotinamide adenine
dinucleotide (NAD) via Kynurenine pathway. Of note,
Kynurenine pathway was found to be susceptible to
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SARS-CoV-2 infection and its metabolite, anthranilic acid,
could be used as a potentially prognostic biomarker for the
evolution of COVID-19.218 Similar findings are also found
in other independent experiments. When exploring the
changes in the serum metabolites of COVID-19 patients,
Thomas et al.219 revealed that tryptophan metabolism
via the kynurenine pathway, which is correlated with
IL-6 levels, is altered. Blasco et al.220 performed plasma
metabolome analysis of COVID-19 patients at different
time points and revealed that metabolites can not only
serve as diagnostic biomarkers but also predict the evo-
lution of this disease; moreover, they highlighted the
roles of tryptophan–nicotinamide pathway and cyto-
sine in inflammatory signals. As the rate-limiting step
of kynurenine pathway, indole 2,3-dioxygenase (IDO1)
can regulate inflammation and immunization, and the
kynurenine/tryptophan ratio, as the presentation of IDO1
activity, may be used as a predictor of disease severity.219
Moreover, Shen et al.196 collected the sera of COVID-

19 patients to conduct metabolomic analysis and observed
the accumulation of 11 steroid hormones that contribute to
increased disturbance of NAD+ synthesis via kynurenine
pathway as well as macrophage modulation. NAD coen-
zymes play a significant role in both viral replication and
host cell homeostasis. Based on this, Heer et al.221 con-
ducted a targeted NAD metabolome analysis and found
that the availability of NAD is a key rate-limiting step of

antiviral activities of noncanonical poly-ADP-ribose poly-
merase isozyme; intriguingly, nutritional and pharmaco-
logical administration of NAD may enhance the innate
immunity to coronaviruses.
Arginine can regulate the activation of host immune

cells and resist pathogens infection. Multiple metabolites
involved in arginine metabolism also showed abnormal
levels in COVID-19 patients.196,219,220 Fraser et al.222 per-
formed metabolomics profiling of critically ill COVID-
19 patients admitted to ICU to identify potential diag-
nostic or prognostic biomarkers in blood and found
increased kynurenine as well as decreased arginine, sarco-
sine, and lysophosphatidylcholines levels; further, it was
confirmed that the arginine/kynurenine ratio can accu-
rately determine the COVID-19 status, whereas the cre-
atinine/arginine ratio can accurately predict COVID-19-
associated mortality.222 Arginine participates in the urea
cycle and helps maintain nitrogen balance in the body.
However, the levels of arginine in COVID-19 patients
were dramatically reduced, suggesting metabolic repro-
gramming of urea cycle occurred, and it may cause
pathological abnormalities.223 In some other studies, argi-
nine metabolism has also been found to be related to
inflammatory cytokines and fatal outcomes in COVID-19
patients.224,225 Hypoxia caused by SARS-CoV-2 infection
can inhibit theOXPHOS ofmitochondria and led to amod-
ified BCAA metabolism, which is closely related to the
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adverse clinical outcomes of severe COVID-19 patients.226
BCAAs administration was recommended as a strategy to
maintain NAD balance in COVID-19 critical patients.

5.2 COVID-19 associated with lipid
metabolism and glucose metabolism

Lipid metabolism has a close association with glucose
metabolism, and certain metabolites of the two path-
ways are mutually interconverted. SARS-CoV-2-induced
metabolic reprogramming, including lipid metabolism,
glycolysis, and tricarboxylic acid (TCA) cycle, provide a
comprehensive molecular view of the pathophysiology of
COVID-19. For instance, lipid participates in every process
of viral propagation and invasion, and a remarkable alter-
nation of lipid, lipidmediators, and relatedmetabolic path-
ways was observed in COVID-19 patients.

5.2.1 Diagnosis of SARS-CoV-2 infection

Compared with proteomics, the pretreatment of lipid sam-
ples is simpler and the detection efficiency is higher, which
helps to achieve rapid determination of SARS-CoV-2 infec-
tion and mirror the severity of COVID-19.227 To estab-
lish a rapid diagnostic approach for SARS-CoV-2, De Silva
et al.228 employed a Teslin R© substrate in paper spray
MS (PS-MS) to determine the metabolomic biomarkers of
SAR-CoV-2 infection within 60 s of analysis time, and fur-
ther identified 11 metabolites for integrative analysis using
symptomatic PCR. Using metabolomics strategy, multi-
ple metabolites in the exhaled air of COVID-19 patients
were considered to have the potential for SARS-CoV-2
detection and as biomarkers of disease deterioration.229 In
another study, Delafiori et al.230 combined metabolomics
andmachine learning to create an expeditious platform for
the specific diagnosis of SARS-CoV-2 infection. Moreover,
thismethod also providesmolecular information about the
disease pathophysiology and helps to identify prognostic
markers and treatment targets.230

5.2.2 Biomarkers for COVID-19 surveillance

Through metabolomics analysis of serum samples of
COVID-19 patients, it was found that multiple metabo-
lites related to glucose metabolism and lipid metabolism
can be used as biomarkers for COVID-19 disease monitor-
ing. Shi et al.231 revealed that a combination of metabo-
lites including d-fructose, citric acid, and 2-palmitoyl-
glycerol can be applied to distinguish SARS-CoV-2-

infected patients from healthy people; and 2-hydroxy-
3-methylbutyric acid, 3-hydroxybutyric acid, cholesterol,
succinic acid, l-ornithine, oleic acid, and palmitelaidic
acid can accurately predict the possibility of severe
conditions.231 In an untargeted metabolomics study of
COVID-19 plasma, Barberis et al.232 found that triglyc-
erides and free fatty acids(arachidonic acid and oleic
acid) positively correlated with the severity of COVID-
19; circulating lipids (phosphatidylcholine 14:0_22:6, phos-
phatidylcholine 16:1_22:6, and phosphatidylethanolamine
18:1_20:4) and multiple metabolites, such as 2-hydroxy-
3-methylbutyric acid, 2,3,4-trihydroxybutyric acid, and
3-hydroxyisovaleric acid, can act as biomarkers in the
detection of COVID-19 infection.232 Besides, the changes
of triglycerides in patients with different severity were
specifically explored and 11 triglycerides were selected to
accurately differentiate severe conditions of COVID-19.233
Phospholipase A2 is a class of enzymes that hydrolyze
phospholipids to produce fatty acids and lysophospho-
lipids, and specifically, phospholipase A2 Group IIA can
be used to distinguish SARS-CoV-2 infection or not and
the gravity of diseases.234 In COVID-19 patients, most glyc-
erophospholipids decrease, whereas lysophospholipids,
arachidonic acid, and oleic acid were opposite.232,235 As
the critical characteristic of dyslipidemia of COVID-19
patients, dypolipidemia, including low-density lipopro-
tein cholesterol, high-density lipoprotein cholesterol and
cholesterol, was observed in several studies of lipid profiles
on COVID-19 patients, which are generally decreased with
the gravity of the disease.236,237

5.2.3 Disturbance of lipid metabolism
and glucose metabolism

SARS-CoV-2 infection is closely associate with body’s
physiological functions and metabolic regulation.
Cytokine release syndrome (CRS) is the main cause
of multiorgan injury and fatal outcome in critical COVID-
19 patients. Xiao et al.224 analyzed the serum samples
of COVID-19 patients and found that reprogrammed
host metabolism was closely related to proinflammatory
cytokines/chemokines and proposed that metabolic reg-
ulation may be a potential strategy for treating fatal CRS.
The therapeutic strategy based on this insight provides a
novel direction for the treatment of fatal CRS induced by
SARS-CoV-2 infection.
Using untargeted and targeted metabolomic method,

Jia et al.223 revealed that lactate accumulates abundantly
in severe patients, and even in recovery group whose
SARS-CoV-2 PCR test is negative, providing an insight of
a serious disturbance in energy metabolism. Meanwhile,
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metabolites in the TCA cycle, including glucose, lactate,
and pyruvate, exhibit abnormal levels in the course of
COVID-19. All of these results suggest that TCA cycle
and related metabolic pathways have close association
with the pathological processes of COVID-19 diseases.223
A metabolomic analysis of red blood cells from COVID-
19 patients revealed markedly increased glycolysis due to
the higher protein levels of phosphofructokinase and some
other rate-limiting enzymes or the significantly decreased
levels of phosphoglucomutase-2-like 1 and glyceraldehyde
3-phosphate dehydrogenase.238
With respect to arachidonic acid and its lipid mediators

(prostaglandins, thromboxane, lipoxin, and leukotrienes),
there is a close correlation with COVID-19 pathophysiol-
ogy. Importantly, arachidonic acid and other unsaturated
fatty acids (such as eicosapentaenoic acid and docosahex-
aenoic acid [DHA]), as well as their metabolites not only
can be regarded as potential antiviral agents, but also play
a role in inflammation regulation in severe COVID-19.239 It
was reported that lipid mediators are related to the course
of COVID-19 disease severity. For instance, PGs (PGE2,
PGD2, and PGF2a) and RvE3 exhibited a negative correla-
tion with increasing of disease deterioration. Lipid medi-
ators have immune-regulatory function and are closely
associated with inflammatory progression, which provides
a basis for the mechanism study of immuno-lipidomic dis-
proportion in critical COVID-19 patients.240
The elevation of ketone bodies (acetoacetic acid, 3-

hydroxybutyric acid, and acetone) was reported in the
serumofCOVID-19 patients, indicating a pathological con-
dition in which the liver has an abnormal capacity to
oxidize acetyl-CoA.241 Sphingolipids are involved in vari-
ous biological processes, such as apoptosis and inflamma-
tory responses. The levels of sphingolipids are suscepti-
ble to viral infection, although there are different trends
in COVID-19 patients.196,233,235 Song et al.235 utilized a
combination of targeted and untargeted MS to analyze
the plasma lipidome and metabolome in mildly, moder-
ately, and severely ill COVID-19 patients and found that
monosialodihexosyl gangliosides (GM3s) were increas-
ingly enriched in the exosomes of COVID-19 patients with
greater disease deterioration, and that GM3 dysregulation
was one of the pathogenesis mechanisms of COVID-19. In
severe patients, the levels of different ceramides and gly-
cosylceramides were obviously increased and decreased,
respectively. And this may be associated with abnor-
mal cardiovascular and pulmonary function of COVID-
19 patients.233 For patients during convalescence, metabo-
nomic analysis can monitor the recovery of patients. For
example, metabolic changes of plasma samples, including
the decrease of palmitic acid and the increase of docos-
apentaenoic acid as well as DHA, indicated that COVID-19
patients are undergoing liver repair.242

6 CONCLUSIONS

Omics technologies are remarkable research approaches
for the development of rapid responses to emerging or
reemerging infectious diseases. In case of the COVID-19
pandemic, omics techniques help researchers and clini-
cians to comprehensively understand and recognize the
SARS-CoV-2 virus and correlated COVID-19. Based on
the surveillance of the SARS-CoV-2 sequences, mutations
and variants mediated potential uncontrolled outbreak are
closely monitored. And transcriptomics, proteomics, and
metabolomics work together to elucidate the underneath
pathogenesis of COVID-19, which will facilitate the iden-
tification of biomarkers, risk factors, and drug targets of
SARS-CoV-2 infection, and realize the early diagnosis and
treatment of COVID-19, so as to fight against the world-
wide spread COVID-19 pandemic.
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