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ABSTRACT

Accurately characterizing transcription factor
(TF)-DNA affinity is a central goal of regulatory
genomics. Although thermodynamics provides the
most natural language for describing the continuous
range of TF-DNA affinity, traditional motif discovery
algorithms focus instead on classification para-
digms that aim to discriminate ‘bound’ and
‘unbound’ sequences. Moreover, these algorithms
do not directly model the distribution of tags in
ChIP-seq data. Here, we present a new algorithm
named Thermodynamic Modeling of ChIP-seq
(TherMos), which directly estimates a position-
specific binding energy matrix (PSEM) from ChIP-
seq/exo tag profiles. In cross-validation tests on
seven genome-wide TF-DNA binding profiles, one
of which we generated via ChIP-seq on a complex
developing tissue, TherMos predicted quantitative
TF-DNA binding with greater accuracy than five
well-known algorithms. We experimentally validated
TherMos binding energy models for Klf4 and Esrrb,
using a novel protocol to measure PSEMs in vitro.
Strikingly, our measurements revealed strong non-
additivity at multiple positions within the two
PSEMs. Among the algorithms tested, only
TherMos was able to model the entire binding
energy landscape of Klf4 and Esrrb. Our study
reveals new insights into the energetics of TF-DNA
binding in vivo and provides an accurate first-prin-
ciples approach to binding energy inference from
ChIP-seq and ChIP-exo data.

INTRODUCTION

One of the central goals of functional genomics is to
understand how transcription factors (TFs) bind to
specific functional elements in the genome to regulate
gene expression. This specificity is conferred primarily by
the intrinsic sequence preference, i.e. the binding energy
landscape, of the DNA-binding TF. If a TF binds nucleo-
tide sequences of length n, this landscape is defined by the
TF-DNA binding free energy of each of the 4n possible
DNA n-mers. However, it is common to assume that each
nucleotide contributes independently to the binding
energy, and that the total interaction energy is, therefore,
merely the sum of the n individual contributions. This is
the so-called ‘additive’ model of TF-DNA binding energy
(1). Although deviations from this additive model have
long been noted (2,3), it is still the most widely used para-
digm because of its simplicity. More general algorithms
that attempt to fit non-additive models to experimental
data could be susceptible to overfitting because of the
large number of free parameters in such models. This is
particularly true when the training data are subject to
modulation by in vivo factors, such as chromatin state.
Thus, in practice, even when non-additivity is a known
or suspected feature of TF-DNA binding energy, it is im-
portant to define the best possible additive approximation
to the non-additive landscape. All widely used algorithms
for in vivo motif discovery adopt this additive strategy,
and so do we.
With the aforementioned assumption, the binding

energy landscape can be represented by a position-
specific energy matrix (PSEM) with n columns and four
rows—one for each of the four possible nucleotides.
However, for historical reasons, PSEMs have rarely
been used to represent TF-DNA binding energy.
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Traditionally, TF-DNA binding energy models have been
inferred from limited data sets comprising a small number
of experimentally validated binding sites, either in the
genome or in vitro oligomer binding assays (4). Such
data sets are usually insufficient for quantitative estima-
tion, and the DNA sequences are, therefore, merely clas-
sified as ‘bound’ or ‘unbound’. The binding energy
landscape is modeled by a ‘position weight matrix’
(PWM), which is most commonly defined as the log-like-
lihood (or log-odds relative to background DNA se-
quences) of observing a specific nucleotide at a specific
position in the bound n-mers. Many algorithms have
been developed to infer PWM motifs from TF-DNA
binding data using the traditional bound–unbound
paradigm, including the widely used MEME (5) and
Weeder (6).
It has been shown that, when the PWM is derived from

sites bound at low TF concentrations in vitro, it is approxi-
mately equivalent to the PSEM (7,8). However, the pro-
portionality of PWMs to binding energies is only
approximate, as there is some arbitrariness in the classifi-
cation of DNA sequences as bound or unbound. In
reality, the occupancy (binding probability) of a TF at
any DNA site varies continuously between zero and one.
The bound–unbound approach requires selection of an
arbitrary threshold for discretizing this continuously
variable binding level. Consequently, different thresholds
for defining bound sites would yield different PWMs for
the same TF (8).
With the advent of high-throughput microarray tech-

nology, it became possible to quantify TF-DNA binding
on a genomic scale using chromatin immunoprecipitation
followed by array hybridization (ChIP-chip). The
MatrixREDUCE algorithm (9) was developed to exploit
the quantitative binding information in ChIP-chip by
directly fitting a thermodynamic position-specific affinity
matrix (PSAM) to the range of binding intensities
observed in the probed genomic regions. The logarithm
of the PSAM is equal to the negative of the PSEM (9).
This algorithm explicitly accounts for the continuous
nature of binding levels. However, as it was designed for
ChIP-chip data, which typically has low resolution
(hundreds of base pairs), the algorithm only makes use
of the aggregate binding intensity within an entire
genomic segment.
Recently, ChIP-chip has been supplanted by ChIP-seq,

which uses massively parallel sequencing instead of array
hybridization to identify TF-bound regions genome wide
(10). ChIP-seq provides higher resolution (tens of base
pairs) and more comprehensive genome-wide profiling of
binding sites than ChIP-chip. Moreover, ChIP-seq peak
height is well correlated with quantitative binding levels
(11). Although MatrixREDUCE applies equally well to
ChIP-seq data, its aggregate-intensity approach cannot
fully exploit the rich information content of the ChIP-
seq tag distribution. Zhao et al. (12) have recently de-
veloped an algorithm for inferring binding energy
models from high-throughput sequencing-based data on
TF-DNA binding. However, this method (BEEML) is
only applicable to data on in vitro binding of TFs to
short DNA fragments. We are not aware of any

equivalent algorithms for binding energy inference
from in vivo ChIP-seq data. To fully exploit the informa-
tion contained in the shape of the ChIP-seq tag profile, we
developed a PSEM estimation method named
Thermodynamic Modeling of ChIP-seq (TherMos).
TherMos can also be used on ChIP-exo data, which
provide even higher spatial resolution than ChIP-seq (13).

Through cross-validation on five ChIP-seq data sets
from mouse embryonic stem (mES) cells (14), one newly
generated ChIP-seq data set from mouse embryonic spinal
cord (GEO accession number GSE43159), and one ChIP-
exo data set from Saccharomyces cerevisiae (13), we found
that the TherMos binding energy model has higher
accuracy than other widely used algorithms. We further
confirmed the high accuracy of TherMos by performing
systematic in vitro measurements of quantitative TF-DNA
affinity. In the course of in vitro validation, we discovered
that both of the TFs analyzed in this manner showed
striking deviations from the additive binding energy
model. As a result of this non-additivity, the in vivo
motifs detected by the traditional PWM-based algorithms
were accurate only on high-affinity sequences. In contrast,
the TherMos in vivo PSEM was predictive of in vitro
binding affinity over the entire range of sequences tested.

MATERIALS AND METHODS

Biophysical model

The interaction between a TF and a DNA sequence can be
written as

TF+D ! TF �D

where TF is the TF, D is the DNA sequence and TF·D is
the complex of the TF and the DNA sequence. The dis-
sociation equilibrium constant of the reaction Kd can be
written as

Kd ¼
½TF�½D�

½TF �D�
¼ e�G=RT ð1Þ

where [ ] represents concentration, DG is Gibbs free energy
change of the reaction, R is gas constant and T is
temperature.

The occupancy O(D) of any DNA sequence D by the
TF is defined as the probability of binding or fraction
bound for that sequence, and it can be written as
(8,9,12)

OðDÞ ¼
½TF �D�

½TF �D�+½D�
¼

1

1+Kd=½TF�
¼

1

1+ 1
½TF�=Kd

¼
1

1+ 1
½TF�=KdðrefÞ expð���G=RTÞ

ð2Þ

where KdðrefÞ is the dissociation equilibrium constant for
the reaction between the TF and the reference sequence.
Hence,

��G ¼ �G��GðrefÞ ð3Þ
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Position-specific energy matrix

For an n-mer motif, a PSEM is defined as a 4�n matrix
with the rows 1–4 correspond to A, T, G, C, respectively.
Each element of the PSEM contains relative DNA–
protein binding free energy change to the reference
sequence (in unit of RT), ��G=RT [Equation (3)],
directly related to the actual discrimination energies in
physical units. Therefore, only three elements in each
column of the PSEM are independent (15,16). For con-
venience, the elements in the last row of the PSEM are set
to zeros. Smaller ��G=RT means stronger binding
affinity compared with the reference sequence. The inde-
pendence among the positions in the target sequence is
assumed (17). Consequently, ��G is additive across pos-
itions in the binding site.

ChIP-seq data sets

The in vivo ChIP-seq data were derived from chromatin
extracted from the dorsal domain of the dissected spinal
cords of embryonic day 12.5 (E12.5) mouse embryos.
Immunoprecipitation was performed using a monoclonal
Mash1/Ascl1 antibody as described in Castro et al. (18).
ChIP-seq data for the five mES cell TFs (Esrrb, Klf4,
Stat3, Zfx and n-Myc) are from Chen et al. (14). Yeast
Reb1 ChIP-exo data are from Rhee and Pugh (13).

Peak calling

TherMos takes a set of externally generated peak calls as
input. Here, we used the MACS algorithm with default
settings and a P-value threshold of 1� 10�10 to call peaks
(19). The control library from Chen et al. (14) for ChIP-
seq data set in mES cells is used. No control library is
available for Mash1 and Reb1 data set. The numbers of
peak calls are 31 621, 7508, 1380, 9678, 5320 and 2521 for
Esrrb, Klf4, Stat3, Zfx, n-Myc and Mash1, respectively.
For ChIP-exo of Reb1, 1776 peaks called in Rhee and
Pugh (13) were used. To save computational time, one-
third of the Esrrb peak calls (10 540) were randomly
chosen as input for TherMos and other algorithms.

TherMos implementation

In TherMos, we assume that binding affinities are only
determined by the interaction between TFs and DNA se-
quences. Effects of chromatin status, competing nucleo-
somes and cooperative or competing TFs are neglected.
The free parameters optimized in TherMos are the 3�n
elements in the PSEM for an n-mer motif (n is user-
specified), plus the scaled TF concentration parameter
[TF]/Kd(ref) [Equation (2)] (15). Input of TherMos
include a set of ChIP-seq tag coordinates, a set of
control-library tag coordinates and a set of externally
generated peak calls. TherMos is designed to exploit the
information from ChIP-seq peak shape within peak calls.

Based on the GC content of the control library,
TherMos first performs GC bias correction on the ChIP-
seq tag counts (Figure 1A and Supplementary
Information). Second, a smoothing weight, i.e. the
average shape of the tag distribution at binding sites, is
derived for the forward and reverse GC-corrected tags

(Figure 1B and Supplementary Information). Within
1-kb regions centered on peak calls, the reverse or
forward GC-corrected tag counts are smoothed using
the forward or reverse smoothing weights and added to
generate a ChIP-seq profile (Yobs) (Figure 1C).
Yobs shows some background noise because of

randomly generated tags regardless of the specific
antibody. A noise level is estimated as the average tag
counts of the ChIP-seq library in the whole genome and
subtracted from Yobs. High ChIP-seq peaks are observed
because of the low complexity DNA (20) both in the
ChIP-seq library and the control library. To eliminate
these false-positive peaks, tag densities of the control
library within 1-kb region centered on the peak calls are
calculated and regions with tag densities >6� inter
quartile range are removed.
Next, TherMos generates an initial guess of PSEM as a

starting point of the optimization routine (Figure 1D).
Each possible n-mer is given a score according to the
average height of Yobs where the n-mer occurs. The
n-mer, which has the highest z-score, is chosen as the con-
sensus sequence. The initial guess of PSEM is then
constructed from the consensus sequence and its all
singly mutated variants based on their average Yobs.
Then TherMos starts the optimization routine by

scanning the PSEM along the genomic sequence to calcu-
late thermodynamic occupancy estimates at each position
within 1 kb regions centered on peak calls [Figure 1E and
Equation (2)]. An expected peak shape is obtained by
convolving the forward and reverse smoothing weights.
A predicted ChIP-seq profile (Ypred) is generated by
smoothing the estimated occupancy profile using the
expected peak shape. Smoothing the occupancy of each
n-mer with the expected peak shape is equivalent to two-
step smoothing. The occupancy is firstly smoothed with
the reverse smoothing weight to generate positions of the
reverse tags relative to the position of the occupancy
(position of the n-mer). Second, equivalent to the con-
struction of Yobs, smoothing the aforementioned predicted
reverse tags profiles with the forward smoothing weight to
generate the Ypred. Both forward and reverse strands
are taken into account in the occupancy calculation. To
allow for comparison, Ypred in each 1-kb binding region
is scaled according to Yobs in the same region. Then
the Levenberg–Marquardt algorithm (21,22) is used to
minimize the squared prediction error jjYobs�Ypredjj

2

(SPE) covering all the 1-kb binding regions by iteratively
updating the PSEM. Finally, TherMos outputs a PSEM
when the SPE is smaller than a threshold (Figure 1F).
The TherMos program can be downloaded from http://
collaborations.gis.a-star.edu.sg/�cmb6/TherMos.

Cross-validation

To evaluate the performance of TherMos, a 10-fold cross-
validation test was performed for TherMos and other five
motif discovery algorithms. Settings and details of running
these five algorithms can be found in the Supplementary
Information. PWMs predicted by Weeder, MEME,
DREME (23) and ChIPMunk (24) were converted to
PSEMs as described previously (7). In each round of the

Nucleic Acids Research, 2013, Vol. 41, No. 11 5557



test, 90% of the ChIP-seq data were randomly chosen as
the training set and the remaining 10%were used as the test
set. Another parameter [TF]/Kd(ref) [Equation (2)] was
optimized using the training set for the algorithms except
TherMos, respectively. The SPE (jjYobs � Ypredjj

2) and the
rank correlation coefficient between the total occupancy
and the total tag counts within 1-kb region centered on
the peak calls in the test set were calculated. To compare
the cross-validation results for each algorithm, the average
SPE and rank correlation coefficient from all of the folds
for each TF were calculated, respectively.

Model for deriving Kd and PSEM from competitive
electrophoretic mobility shift assays

In an competitive electrophoretic mobility shift assay
(EMSA), labeled and unlabeled DNA sequences
compete with each other to bind TFs.

TF+DL  !
Kd1

TF �DL

TF+DU !
Kd2

TF �DU

where DL and DU are labeled and unlabeled DNAs, re-
spectively. The dissociation equilibrium constants for the
two reactions are

Kd1 ¼
½TF�½DL�

½TF �DL�
ð4Þ

Kd2 ¼
½TF�½DU�

½TF �DU�
ð5Þ

The total concentrations of labeled DNAs, unlabeled
DNAs and TFs, i.e. [DL]t, [DU]t and [TF]t are known.

½DL�t ¼ ½DL�+½TF �DL� ð6Þ

Figure 1. Workflow of the TherMos algorithm. (A) Enrichment of tags in the control library as a function of local GC content. (B) Forward and
reverse smoothing weights (tag distribution at binding sites) estimated using an iterative peak refinement procedure. Most tag fragments are <100 bp
from the binding site. (C) Construction of ChIP-seq profile (Yobs) from per base pair tag profile. (D) Initial guess of PSEM. (E) Theoretically
predicted ChIP-seq profile (Ypred), based on PSEM and inferred average peak shape. (F) PSEM that best fits the Yobs.
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½DU�t ¼ ½DU�+½TF �DU� ð7Þ

½TF�t ¼ ½TF�+½TF �DL�+½TF �DU� ð8Þ

The fraction bound f measured from the competition
assay is defined as

f ¼
½TF �DL�

½DL�t
ð9Þ

Based on Equations (4–7),

Kd2

Kd1
¼
½DU�½TF �DL�

½TF �DU�½DL�
¼

½DU�

½DU�t � ½DU�
�
½DL�t � ½DL�

½DL�
ð10Þ

If the unlabeled competitor DNA sequence is the same
as the labeled consensus DNA sequence, we assume that
Kd1=Kd2. Then,

Kd2

Kd1
¼

½DU�
0

½DU�
0
t � ½DU�

0 �
½DL�t � ½DL�

0

½DL�
0 ¼ 1 ð11Þ

The quantities with prime are used here to indicate this
special case. From Equation (11), we get

½DU�
0
¼ ½DU�

0
t � ð1� f0Þ ð12Þ

Combine Equations (7–9) and (12), we get

½TF�0 ¼ ½TF�t � f0½DL�t � f0½DU�
0
t ð13Þ

Then from Equations (4, 6, 9 and 13), Kd1 can be written
as

Kd1 ¼
½TF�0½DL�

0

½TF �DL�
0 ¼
½TF�0ð1� f0Þ

f0

¼
1� f0

f0
ð½TF�t � f0½DL�t � f0½DU�

0
tÞ

ð14Þ

As not all the proteins are active in the solution, the
active total protein concentration needs to be determined
before Kd1 and Kd2 can be calculated. The lower limit of
the active total protein concentration can be determined
from Equation (14) and Kd1> 0. That is,

½TF�t > f0ð½DL�t+½DU�
0
tÞ ð15Þ

If Kd1 6¼Kd2, based on Equations (6, 7) and (9, 10),

Kd2

Kd1
¼

f

1� f
�
½DU�

½TF �DU�
¼

f

1� f
�
½DU�t � ½TF �DU�

½TF �DU�

¼
f

1� f
� ð
½DU�t

½TF �DU�
� 1Þ

ð16Þ

From Equations (4, 8 and 9),

½TF �DU� ¼ ½TF�t � Kd1 �
f

1� f
� f½DL�t ð17Þ

Combine Equations (14, 16 and 17),

Kd2

Kd1
¼

f

1� f
� ð

½DU�t
f0�f

f0�ð1�fÞ ½TF�t+
fð1�f0Þ
1�f ½DU�

0
t+

fðf�f0Þ
1�f ½DL�t

� 1Þ

ð18Þ

As Kd2/Kd1> 0, so

f0 � f

f0 � ð1� fÞ
½TF�t+

fð1� f0Þ

1� f
½DU�

0
t+

fðf� f0Þ

1� f
½DL�t > 0 ð19Þ

For those unlabeled competitors with f> f’, the upper
limit of the active total protein concentration can be
determined as

½TF�t <
f � f0 � ð1� f0Þ

f� f0
½DU�

0
t+f � f0 � ½DL�t ð20Þ

Once the upper and lower limits of the active total
protein concentration are determined, we take the mean
of the limits as the active total protein concentration. Then
Kd1 and Kd2 can be calculated using Equations (14 and 18)
accordingly. Finally, the PSEM can be obtained based on
the relationship

��G

RT
¼ ln

Kd2

Kd1
ð21Þ

RESULTS

Overview of the TherMos approach

TherMos infers an additive binding energy model (PSEM)
using least-squares fitting to the ChIP-seq tag profile
(Figure 1 and ‘Materials and Methods’ section). The al-
gorithm takes as input a set of ChIP-seq tag coordinates, a
set of control-library tag coordinates and a set of exter-
nally generated peak calls. First, TherMos performs GC
bias correction on the ChIP-seq tag counts and infers the
average shape of the tag distribution at binding sites (1-kb
regions centered on peak calls, Supplementary
Information). The GC-corrected per base pair (un-
binned) tag counts are then smoothed using the tag distri-
bution to generate the ChIP-seq profile (Yobs). TherMos
starts the optimization routine by using a heuristic to
generate an approximate PSEM from Yobs. This PSEM
is scanned along the genomic sequence to calculate
thermodynamic occupancy estimates at each position
within 1-kb regions centered on peak calls (‘Materials
and Methods’ section). The estimated occupancy profile
is converted into a predicted ChIP-seq profile (Ypred) using
the appropriate tag-distribution-based peak shape
(‘Materials and Methods’ section). The squared prediction
error jjYobs�Ypredjj

2 is then minimized by iteratively
updating the PSEM in successive rounds of optimization.
The output of the TherMos algorithm is a PSEM that
models the free energy of TF-DNA binding and can
readily be expressed as a sequence logo (1,25).

TherMos outperforms other algorithms in
cross-validation tests

We used TherMos to derive PSEMs for six TFs spanning
a broad range of DNA-binding domains, based on
ChIP-seq data from mES cells (Esrrb, Klf4, Stat3, Zfx
and n-Myc) (14) and ChIP-exo data from S. cerevisiae
(Reb1) (13). In addition, to evaluate TherMos on data
from a heterogeneous tissue, we generated and analyzed
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Mash1 ChIP-seq data from mouse spinal cord at embry-
onic day 12.5 (‘Materials and Methods’ section). Only the
dorsal region of the spinal cord was analyzed, as Mash1
expression is restricted to the dorsal domain at this time
point (26). As seen in Figure 2A, the Mash1 ChIP-seq
profile showed strong peaks at Fbxw7 and Dll1, two
known targets of the TF (18).
To visualize the results, the seven PSEMs were con-

verted into sequence logos (Supplementary Figure S1).
Reassuringly, the motifs discovered by TherMos quali-
tatively match the known motifs for corresponding
factors (TRANSFAC database) (27). For comparison,
we also inferred binding affinity matrices using
MatrixREDUCE, and PWMs using four well-known al-
gorithms: Weeder, MEME, DREME and ChIPMunk.
The accuracy of the inferred PSEMs, PSAMs and
PWMs was quantified through 10-fold cross-validation
analysis using two different performance metrics. The ob-
jective was to determine whether the methods, when
trained on 90% of the ChIP-seq peaks, could predict the
ChIP-seq profile in 1-kb regions centered on the remaining
10% (test set). We first measured accuracy as the SPE
between the predicted and measured ChIP-seq profiles in
the test set (Figure 2B and ‘Materials and Methods’
section). A smaller SPE indicates higher accuracy. By
this metric, TherMos ranked first on all but one of the
seven data sets, and it had the smallest average SPE.
ChIPMunk had the second-lowest average SPE, and the
remaining four had similar average SPE to each other.
As a second method to evaluate the performance of

TherMos, we computed the rank correlation coefficient
between the total predicted TF occupancy and the total
tag count in the test set of 1-kb peak regions (Figure 2C).
Note that the rank correlation metric is precisely the
quality measure optimized by MatrixREDUCE, and this
could potentially give the algorithm an advantage in this
particular comparison. However, TherMos was once
again the most accurate overall, and ChIPMunk again
ranked second (though by a narrower margin). Sequence
logos and box-plots illustrating the range of SPE and
rank correlation values for each TF and each algorithm
are presented in Supplementary Figures S2–S7. In
summary, the PSEMs inferred by TherMos show the
highest overall accuracy in predicting ChIP-seq and
ChIP-exo profiles.

TherMos accurately predicts Esrrb in vitro binding energy

To experimentally benchmark the performance of
TherMos in predicting the intrinsic binding energy of
TFs, we developed a competitive EMSA protocol that
can measure PSEMs in vitro (‘Materials and Methods’
section and Supplementary Information). We first
applied this validation approach to the nuclear receptor
Esrrb. As in the standard EMSA competition assay, we
mixed a labeled high-affinity DNA fragment with the
purified Esrrb DNA-binding domain and multiple un-
labeled competitor DNA fragments, and then quantified
the fraction of labeled DNA fragments that bound Esrrb.
The bound fractions were then used to infer the dissoci-
ation constants of TF binding to the competitor fragments

(‘Materials and Methods’ section). Using the 9-bp Esrrb
‘consensus’ element CCAAGGTCA as the core of the
labeled fragment, we tested 28 competitors: the consensus
sequence itself, plus all 27 (3� 9) singly mutated variants
of the consensus (Figure 3B). From the resulting bound-
fraction data, we estimated an additive in vitro PSEM
for Esrrb. The equivalent sequence logo is shown in
Figure 3C.

To use the EMSA-generated in vitro PSEM for Esrrb as
a benchmark, we require a measure of how different the
benchmark PSEM is from the PSEMs and log-odds
PWMs predicted by the six algorithms. For this
purpose, we transformed all binding energy and affinity
models into their equivalent nucleotide frequency matrix,
and then we used Euclidean distance between the experi-
mentally and computationally derived matrices as a
measure of prediction error (Supplementary
Information). We adopted this approach because
Euclidean distance was found to be the best performer
in a systematic assessment of seven different distance
measures for TF-binding motifs (28). By this measure,
the binding energy model measured in vitro for Esrrb
was closest to the ChIPMunk prediction (Figure 3D).
TherMos ranked second in prediction accuracy, followed
by MEME, DREME, Weeder and MatrixREDUCE.

On visual inspection, we noticed systematic differences
between the thermodynamic methods (TherMos and
MatrixREDUCE) and the dichotomous ‘bound–
unbound’ methods (Weeder, MEME, DREME and
ChIPMunk). The dichotomous algorithms predicted a
strict ‘AA’ sequence at positions 3 and 4 in the Esrrb-
bound n-mer (Figure 3A), whereas the two thermo-
dynamic methods were relatively tolerant of mismatches
at those two positions. To quantify this effect,
we examined the per position Euclidean distance of
the six algorithms (Figure 4A). In comparison with
the dichotomous methods, the biophysical methods
deviated strongly from the in vitro PSEM at positions
3 and 4.

The local discrepancy in Esrrb binding energy models
has an intriguing parallel in protein-binding microarray
(PBM) measurements of TF-DNA binding energy (29).
According to the PBM data, the binding energy landscape
of Esrra, a close paralog of Esrrb, could not be modeled
by a single additive PWM. A better fit was obtained by
combining two PWMs that differed strongly at positions
2–4 but were almost identical elsewhere (Figure 4B) (29).
Thus, Esrra (and presumably also Esrrb) DNA-binding
energy shows position interdependence at precisely the
location where TherMos and MatrixREDUCE differed
from enrichment-based PWM models. The primary
Esrra motif strongly resembled the in vitro EMSA
binding energy model for Esrrb and also the models of
the four enrichment-based algorithms. In contrast, the
TherMos model presumably represents an additive ap-
proximation to the non-additive binding energy contribu-
tions of positions 2–4. The same could be said for
MatrixREDUCE, except for a scaling of the information
content relative to TherMos.

The non-additive Esrra/b binding energy model
inferred by Badis et al. (29) from PBMs provides a
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Figure 2. (A) Mash1 in vivo ChIP-seq profile (E12.5 mouse spinal cord) shows strong peaks at known targets of Mash1. (B, C) Performance of
TherMos and other algorithms in 10-fold cross-validation testing on the seven whole-genome TF binding profiles. For each algorithm and each TF,
the bar height indicates the average SPE or rank correlation coefficient across the 10 test sets. The summary bars at the end indicate average
performance across all seven TFs. (B) SPE is calculated between predicted (motif) and observed (experimental data) ChIP-seq binding profile.
Smaller SPE indicates higher accuracy. (C) Rank correlation coefficient is calculated between predicted (motif) and observed (experimental data)
ChIP-seq tag counts. Average rank correlation coefficients below zero for some of the algorithms are not shown.
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qualitative explanation for the observations noted earlier
in the text. First, the similarity of the in vitro EMSA
binding energy model to the ‘primary motif’ of Badis
et al. is not surprising when one considers that both
were inferred from single mutations relative to the con-
sensus n-mer. As double mutations were not considered,
these two motifs represent the additive binding energy
landscape in the immediate vicinity of the consensus
binding n-mer. The EMSA model and the PBM-derived
primary motif are, by definition, ‘blind’ to non-additivity.
In contrast, TherMos and MatrixREDUCE fit quantita-
tive binding models to a large array of genomic binding
sites, many of which contain multiple mutations relative

to the consensus. We would, therefore, expect these two
algorithms to estimate binding energy models that repre-
sent an additive approximation to the entire binding
energy landscape. As the primary and secondary PBM
motifs differ mainly at positions 2–4, it is thus not
surprising that TherMos and MatrixREDUCE show
higher tolerance for sequence variability at those motif
positions. The behavior of the statistical algorithms
(Weeder, MEME, DREME and ChIPMunk) was not
predictable a priori, but it is possible that the bound–
unbound paradigm used by such methods might cause
them to systematically converge on the higher-affinity
primary motif.

Figure 3. In vitro binding energy model for Esrrb and comparison with algorithmic predictions from ChIP-seq. (A) Sequence logos of Esrrb motifs
predicted by TherMos, MatrixREDUCE, Weeder, MEME, DREME and ChIPMunk. (B) Results of the EMSA competition assays. (C) The
sequence logo of the Esrrb affinity model measured in vitro by EMSA competition assays. (D) Euclidean distance between in vitro motif and the
motifs predicted by various algorithms.
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Esrrb multi-mutations deviate from additive model:
confirmation using EMSA

To independently confirm the prediction that position-
interdependence affects Esrrb–DNA binding energy, we
used EMSA to measure the affinity of two multiply
mutated versions of the Esrrb consensus binding site.
These two oligomers were designed to match the second-
ary Esrra motif inferred by Badis et al. (29) from PBM
data. Our hypothesis was, therefore, that they would bind
Esrrb with significantly greater affinity than predicted
from the single-mutation EMSA measurements
(Figure 4C). Indeed, we found that both sequences
bound Esrrb more strongly than expected. The sequence
TAGGGGTCA, which exactly matched the secondary
Esrra motif from PBM measurements, showed the most
dramatic deviation; it bound Esrrb with 100-fold greater
affinity than predicted from the single mutations. In
general, non-specific binding at the extreme low end of
the affinity spectrum could be one potential cause of de-
viations from the additive binding energy model.
However, this is an unlikely explanation for our results,

as the two multi-mutated oligomers are well within the
affinity range of singly mutated sequences. In fact, the
affinity of the TAGGGGTCA sequence was 29-fold
higher than that of the weakest measured binder (CCAA
GCTCA), indicating that non-specific binding is not likely
to be a factor. Thus, these results validate our hypothesis
that the relatively low specificity of the TherMos binding
energy model and MatrixREDUCE affinity model for
Esrrb at positions 2–4 are a consequence of non-additive
binding energy contributions at those positions.

TherMos accurately predicts Klf4 in vitro binding energy

For further validation of the performance of TherMos in
predicting the intrinsic binding energy of TFs, we per-
formed a similar analysis of the C2H2 zinc-finger protein
Klf4 binding energy (Figure 5). In this case, the motif
inferred from ChIP-seq data by ChIPMunk showed the
closest overall resemblance to the in vitro EMSA PSEM,
and TherMos ranked third. Interestingly, we again found
that the binding site contained a sub-region (positions 8
and 9) where the biophysical methods (TherMos and

Figure 4. Position interdependence in Esrrb binding. (A) Euclidean distance at each nucleotide position between in vitro motif and the motifs
predicted by various algorithms. (B) Esrra primary and secondary motifs measured using PBM (29). The nucleotides showing positional inter-
dependence are highlighted in the box. (C) The measured affinity by single or multiple mutation EMSA (i.e. the measured log ratio of the Kd of the
mutant sequences to Kd of the reference sequence) versus the predicted affinity (i.e. the corresponding predicted log ratio) by single mutation EMSA.
Twenty-seven single mutant (diamond) and two multiple mutant (circle) sequences were tested in EMSA competition assays. The consensus (refer-
ence) sequence is highlighted in red with the mutated nucleotides highlighted in blue. Error bars for the two multiple-mutant sequences are too small
to be visible in this plot.
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MatrixREDUCE) tolerated mismatches to the consensus,
whereas the statistical methods inferred a fairly strict
requirement for the consensus dinucleotide (GG)
(Figure 5A). This dichotomy was again quantitatively sup-
ported by examining the Euclidean distance at each nu-
cleotide position (Figure 6A). The discrepancy between
TherMos and EMSA was also highest in this region (pos-
itions 7–10). Encouragingly, we again found a parallel in
the PBM data, which support two different binding energy
matrices for Klf7, a close paralog of Klf4 (Figure 6B). As
before, the two Klf7 PBM motifs differed most noticeably
at exactly the positions where TherMos differed from
EMSA (positions 7–10). Given the consistent localized
discrepancies between the biophysical algorithms and
our in vitro EMSA models, we hypothesized as before

that the EMSA approach of measuring only singly
mutated DNA sequences had failed to capture the full
breadth of the binding energy landscape of Klf4.

TherMos in vivo PSEM predicts binding energy landscape
of Klf4 multi-mutations in vitro

To independently confirm the non-additivity of nucleotide
interaction energies in the Klf4 binding site, we designed a
second round of in vitro affinity measurements focused on
multiple mutations at interdependent positions within the
Klf4 binding site. We also hypothesized that, in this test,
TherMos would outperform the binding energy models
that resembled the primary Klf7/4 PBM motif.
Combinatorial mutations at positions 5, 7, 8, 9 and 10

Figure 5. In vitro binding energy model for Klf4 and comparison with the algorithmic predictions from ChIP-seq. (A) Sequence logos of Klf4 motifs
predicted by TherMos, MatrixREDUCE, Weeder, MEME, DREME and ChIPMunk. (B) Results of the EMSA competition assays. (C) The
sequence logo of the Klf4 affinity model measured in vitro by EMSA competition assays. (D) Euclidean distance between the in vitro motif and
the motifs predicted by various algorithms.
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Figure 6. Position interdependence in Klf4 binding. (A) Euclidean distance at each nucleotide position between the in vitro motif and the motifs
predicted by various algorithms from ChIP-seq data. (B) Klf7 primary and secondary motifs measured using PBM (29). The nucleotides showing
positional interdependence are highlighted in the box. (C) Twenty-five mutant sequences were tested in multiple mutations EMSA competition
assays. The 10-bp consensus sequence is highlighted in red with two flanking nucleotides (in black) at both ends. The mutated nucleotides are
highlighted in blue. (D) The multi-mutation measured affinity (i.e. the observed log ratio of the Kd of the 25 mutant sequences to Kd of the Mut 10)
versus the corresponding log ratio predicted by single mutation affinity model, TherMos, MatrixREDUCE, Weeder, MEME, DREME, ChIPMunk,
PBM primary motif and PBM secondary motif (29). The Pearson correlation coefficient is also shown in the plot.
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were designed based on significant differences between the
two PBM models at these positions (Figure 6). We used
EMSA as before to measure the in vitro affinity of 25
multiply mutated DNA fragments (Figure 6C).
Strikingly, the additive binding energy model based on

single-mutation in vitro measurements failed almost com-
pletely in predicting the binding energy of multiply
mutated Klf4 binding sites (Pearson correlation coeffi-
cient: R=0.19) (Figure 6D). This result strongly
supports binding energy interdependence at positions 5,
7, 8, 9 and 10 and highlights the inadequacy of the
binding energy model inferred from the single-mutation
in vitro assay. Given the poor performance of the single-
mutation in vitro motif for Klf4, we hypothesized that the
primary PBM-derived motif would also perform poorly in
this multi-mutation binding energy prediction test. Indeed,
we found that this was the case (R=0.08). In contrast, the
secondary PBM-derived motif displayed good predictive
power (R=0.66), indicating that it represents a reason-
able additive approximation to the binding energy land-
scape far from the consensus binding n-mer.
We evaluated the ability of the various in vivo Klf4

binding models inferred from ChIP-seq data to predict
the in vitro binding energy of the multi-mutated DNA se-
quences. In this test, TherMos was the only algorithm that
provided accurate binding energy predictions (R=0.6).
The other five algorithms were mostly unable to predict
multi-mutation affinities (R� 0.1), despite their accuracy
in the previous single-mutation benchmark. Thus, the
other algorithms fail to capture the binding energies of
sites that deviate significantly from the high-affinity con-
sensus at interdependent positions. As the TherMos model
is based on the entire binding energy landscape of in vivo
binding sites, it is able to provide a more accurate additive
approximation to the in vitro binding energy even in the
presence of position interdependence.

DISCUSSION

The occupancy of a TF at any given genomic binding site
is related to its intrinsic binding energy, which can most
naturally be described using the language of thermo-
dynamics. Viewed from a thermodynamic perspective,
every DNA n-mer has some non-zero likelihood of being
bound by a given TF, with this likelihood (i.e. occupancy)
being a continuous function of the binding free energy of
the n-mer. However, before the advent of high-throughput
methods, this continuum of TF-DNA binding energy was
commonly discretized into two categories: bound and
unbound. The bound–unbound dichotomy is artificial,
and also somewhat arbitrary, as it reflects the detection
limits of specific biochemical binding assays, rather than
any inherent bimodality in TF-DNA binding levels.
Nevertheless, it was unavoidable in most cases because
of the limitations of traditional forms of the training
data. Consequently, bioinformatic methods typically
eschewed explicit thermodynamic modeling and instead
favored a machine-learning approach based on motif en-
richment in bound sequences relative to unbound
sequences.

Now that multiple high-throughput methods exist for
generating quantitative binding profiles, it is possible to
adopt a more natural thermodynamic formalism for motif
detection, based on a continuum of free energy and occu-
pancy. Continuous-occupancy binding energy models are
already incorporated in some modern motif detection
algorithms (9,12). However, using a thermodynamic
approach in conjunction with ChIP-seq data on in vivo
TF binding requires additional effort. Most importantly,
TherMos has the ability to predict the precise shape of the
ChIP-seq profile implied by any particular binding energy
model. This feature is key to the ability of TherMos to
exploit the rich information content of the ChIP-seq tag
distribution, and likely contributes to the robustness of the
algorithm.

Uniquely, TherMos fits to the peak shape in binding
regions, rather than to absolute peak height (see
‘Materials and Methods’ section). This largely insulates
the algorithm from locus-specific scaling of TF binding
levels by the local chromatin state. As MatrixREDUCE
in effect predicts peak height rather than peak shape, it is
more susceptible to distortions from chromatin state vari-
ation; therefore, it infers binding energy models of rela-
tively low information content (Figures 3 and 5). When
the locus-specific scaling feature is disabled, TherMos
similarly produces PSEMs with low information content,
although the effect is not as pronounced (data not shown).

In this study, we used a two-pronged approach to com-
prehensively validate the TF-DNA binding energy and
affinity models inferred from ChIP-seq and ChIP-exo
data by TherMos and other algorithms. The validation
strategy included both in vivo cross-validation and
in vitro EMSA assays for quantifying dissociation con-
stants. Overall, these analyses indicated that the binding
energy models estimated by TherMos provided the most
accurate representation of the entire binding energy land-
scape. This was particularly true when the non-additivity
of interaction energies across neighboring nucleotides in
Esrrb and Klf4 binding sites was taken into account.

Recent studies based on high-throughput in vitro TF-
DNA affinity measurements suggest that additive models
of TF-DNA binding energy are generally effective, and
only occasionally violated (30–32). In particular, it was
found that non-additivity was prevalent in vitro among
TFs from the zinc-finger and zipper classes (31). Our ex-
periments were performed before publication of these
studies. However, coincidentally, the two TFs we
selected for non-additive binding energy analysis happen
belong to the zinc-finger class.

For both Esrrb and Klf4, our in vitro dissociation
constant measurements provide strong evidence for non-
additivity in the binding energy landscape. Strikingly, the
TAGGGGTCA DNA oligomer, which was predicted to
have negligible affinity for Esrrb based on the additive
model, displayed 100-fold greater affinity than expected.
This is highly consistent with the PBM-based prediction
of Badis et al. that Esrra, a close paralog, can bind a sec-
ondary DNA motif whose consensus sequence is AGGG
GTCA. We performed a more systematic survey of non-
additivity for Klf4, by measuring the in vitro affinity of 25
multiply mutated versions of the consensus binding site.
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We designed these mutations to coincide with positions
that differed between the primary and secondary Klf7
motifs inferred by Badis et al. from PBM data.
Remarkably, the binding energy of Klf4 for the multiply
mutated sequences bore almost no resemblance to the
additive PSEM inferred from our single-mutation
EMSA assays. Rather, they closely matched the secondary
Klf7 PBM motif. Thus, our EMSA measurements inde-
pendently confirm the PBM-based predictions of non-
additive binding for Klf4/Klf7 and Esrra/Esrrb.

Little is known about the in vivo significance of non-
additive binding. It is conceivable that the non-additivity
observed in vitro may only affect DNA sequences whose
affinity is too low to have any effect on genomic binding.
However, the TAGGGGTCA Esrrb-binding sequence
does not fit this pattern; its affinity is within a factor
of 50 of the consensus n-mer, and in fact higher than
that of nine singly mutated versions of the consensus.
The TherMos PSEMs inferred from ChIP-seq data
provide even more direct evidence for the in vivo import-
ance of non-additivity. Consider a hypothetical scenario
in which the additive model is dominant in vivo and suf-
ficient to explain genomic TF binding. In such a
scenario, the TherMos PSEM would correlate with the
primary PBM motif of Badis et al., but not with the
secondary motif. However, we see that the TherMos
PSEM diverges significantly from the primary motif,
and this divergence occurs precisely at the nucleotide
positions where the two PBM models diverge.
Similarly, if additive binding were dominant in vivo, the
TherMos PSEM would fail to predict the binding energy
of Klf4 binding sites that violated the additive model
in vitro. However, TherMos can indeed predict the
binding energy of such sequences (Figure 6D). Thus,
our results consistently reflect the influence of non-
additivity on TF binding in vivo.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
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