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Abstract 

Our understanding of biology and medicinal sciences augmented by advances in data str uct ures and algorithms has resulted in proliferation of 
thousands of open-sourced resources, tools, and websites that are made by the scientific community to access, process, store, and visualize 
biological data. Ho w e v er, such data ha v e become increasingly comple x and heterogeneous, leading to an entangled web of relationships and 
external identifiers. Despite emergence of infrastr uct ure such as data lakes, the scientists are still responsible for the time consuming and 
costly e x ercise to find, e xtract, clean, prepare, and maintain such data sources while f ollo wing the FAIR principles. To better understand the 
comple xity, w e la y do wn a representation of the mainstream data ecosystem, describing the natural relationships and concepts found in biology. 
Built upon it and the fundamental principles of dat a unicit y and atomicit y, w e introduce BioR els, an automated and standardiz ed data preparation 
workstream aiming at improving reproducibility and speed for all scientists and handling up to 145 billion data points. BioR els allo ws comple x 
querying capabilities across se v eral data sources seamlessly and provides an e x change f ormat, BIORJ, to e xport and import data with all its 
dependency and met adat a. At last, w e describe the adv ant ages, limit ations, applications, and perspectiv es of a future approach BioR els-KB to 
expand future data preparation capabilities. 
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cientific decisions are fundamentally rooted in data, partic-
larly in the realm of biological sciences. These data encom-
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unique nomenclature and representation, which is not preor-
dained but rather evolves gradually through community ef-
forts. Over time, tools and platforms are developed, and web-
sites are established to facilitate the accessibility of this data.
As understanding deepens, consensus sometimes arises, lead-
ing to the emergence of key drivers within the scientific com-
munity. UniProt [ 1 ], ClinGen [ 2 ], InterPro [ 3 ], and wwPDB
[ 4 ] are perfect and diverse representations of such drivers for
proteins, clinical relevance of variants, protein family, and
macromolecular structures, respectively. These institutions or
consortia assume the responsibility of establishing standards
within their respective domains, serving as the guiding force
for others to adhere to as the field advances. But for many
domains, no consensus can emerge due to the large variabil-
ity, competitive interests, and the varying lifecycles of data
sources, which often face issues like obsolescence or poor
maintenance [ 5 ]. Indeed, as the scientific community navigates
the intricate landscape of data-driven decision-making in bio-
logical sciences, the myriad tools and websites at our disposal
offer both opportunities and challenges. 

Today, > 2236 databases [ 6 ], 30 307 tools [ 7 ], and 250
ontologies [ 8 ] stand ready to aid researchers in their quest
for knowledge, providing unprecedented access to data across
many scientific domains. However, alongside this abundance
arises a set of challenges that must be addressed to fully lever-
age the potential of these resources. The vast amount of data
accessible through the multitude of platforms and websites
can lead to a “data swamp”, where valuable information be-
comes obscured within an ocean of irrelevant, unsecured, low-
quality, obsolete, or deeply buried data. This overwhelming in-
flux can trigger a phenomenon known as “choice overload,”
making it harder for researchers to identify the best tools or
resources for their work. In turn, they may end up spending
more time comparing options rather than focusing on their
research. Additionally, the entangled and heterogeneous con-
nectivity between various tools and datasets can pose obsta-
cles to seamless integration and analysis. 

Navigating the vast expanse of data is akin to swimming
in a boundless sea, with various techniques tailored to specific
needs [ 9 ]. One approach involves a distributed model, con-
structing a cohesive library of computational tools to seam-
lessly query and merge data from diverse sources. The Bio*
Project [ 10 , 11 ], spearheaded by the Open bioinformatics
foundation, exemplifies global collaboration, streamlining ac-
cess to bioinformatics tools for the wider community. Alterna-
tively, early endeavors like the Integrated Genome Database
(IGD) in 1994 attempted a centralized data warehouse, amal-
gamating over 12 databases. However, the nascent internet
and technology posed challenges, leading to frequent schema
changes and the eventual breakdown of the IGD system, as
communicated by O. Ritter and Lincoln D. Stein [ 9 ]. In con-
trast, InterMine [ 12 , 13 ], developed by the Micklem Lab at
the University of Cambridge, stands as a contemporary substi-
tute. InterMine processes ∼30 diverse data sources, primarily
focusing on genomics, and serves as the foundational infras-
tructure for 19 websites within the InterMine Registry. Each
website offers unique insights tailored to specific organisms,
providing a nuanced perspective on the available information.

In addition to the multifaceted challenges facing scien-
tific data management, a range of initiatives that are not
necessarily directed towards sciences has emerged to fos-
ter greater accessibility , reliability , privacy , and quality . The
FAIR principles [ 14 ], among others, have had a tremen-
dously positive impact as a framework for enhancing the 
findability , accessibility , interoperability , and reusability of 
research data. Orthogonally, the European Union General 
Data Protection Regulation ( https://commission.europa.eu/ 
law/ law-topic/ data-protection _ en , last accessed: 11 March 

2025) stands as a pivotal framework for safeguarding Eu- 
ropeans overall privacy and personal rights. Meanwhile,
initiatives such as ALCOA+ ( https:// www.fda.gov/ media/ 
119267/download, last accessed: 11 March 2025), Title 21 

CFR Part 11 ( https:// www.ecfr.gov/ current/ title-21/ chapter- 
I/ subchapter-A/ part-11 last accessed: 11 March 2025), and 

of course the International Organization for Standardization 

(ISO) norms set standards for data quality and management,
particularly in industries subject to stringent regulatory over- 
sight. 

Yet, one of the most critical concerns and current area of 
focus is reproducibility, as the reliance on numerous tools,
datasets and data sources increases the complexity of repli- 
cating scientific findings. On an infrastructural level, initia- 
tives driven by national and international funding bodies have 
sought to address or anticipate issues of connectivity and re- 
producibility. The NCBI [ 15 ] remains a pioneering force in 

building comprehensive life sciences infrastructure, with sim- 
ilar initiatives such as EMBL-EBI [ 16 ] with the Elixir consor- 
tium [ 17 ] in Europe, the CNCB-NGDC [ 18 ] in China, SIB 

[ 19 ] in Switzerland, or the Global Biodata Coalition. Those 
initiatives aim at promoting data harmonization and acces- 
sibility by improving the inter-connectivity , open-accessibility ,
and relationships between the different data sources to reduce 
data duplications and improve scientific quality. Despite the 
large positive strides made by those, this has led however to 

the unexpected consequences of creating a data jigsaw, leav- 
ing the scientists piecing the resources together, even between 

those well-established infrastructures, thus increasing the risk 

for mistakes and heterogenicity in the preparation process. In 

addition, it is leaving less-supported infrastructures vulnera- 
ble to being engulfed in the data swamp. This highlights the 
ongoing need for innovative solutions throughout the data 
lifecycle. Indeed, the data preparation stage, involving tasks 
such as data acquisition, cleaning, and organization, remains 
a time-consuming bottleneck in scientific data endeavors, un- 
derscoring the importance of continued efforts to streamline 
and optimize data management processes. As of today, while 
crucial for reproducibility, this aspect remains unaddressed by 
any existing infrastructure. 

In proposing a transformative approach to scientific data 
management, we advocate for the establishment of a novel in- 
frastructure that shifts the burden of data preparation from 

individual scientists to the broader research community. This 
innovative framework aims to enhance reproducibility and 

streamline research efforts by centralizing data preparation 

processes within a single, cohesive data warehouse infras- 
tructure. This infrastructure is designed to mirror the logi- 
cal relationships inherent in scientific concepts such as pro- 
teins, genes, small molecules, and variants, thereby facilitating 
consistency and standardization across datasets. By uniquely 
defining each scientific concept, this framework fosters ho- 
mogenization and ensures data unicity. To realize this vision,
we will initially outline a partial representation of the drug 
discovery data ecosystem, elucidating the key considerations 
informing its development. Subsequently, we will introduce 
the proof-of-concept of this infrastructure as a data mart,
empowering scientists to customize their data sources and 

https://commission.europa.eu/law/law-topic/data-protection_en
https://www.fda.gov/media/119267/download
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-A/part-11
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rganism selections while maintaining full integrity and in-
erdependency with other resources. Through this paradigm
hift, researchers can focus their efforts on advancing scien-
ific inquiry, confident in the robustness and accessibility of
heir data infrastructure. 

aterials and methods 

rug discovery data landscape 

he landscape of drug discovery data has been meticulously
rafted through an approach that begins with delineating
ome of the foundational scientific concepts: proteins, genes,
rugs, clinical trials, 3-D structures, disease, anatomy, and
mall molecules. Subsequently, a thorough manual examina-
ion of data sources ensues, elucidating additional scientific
rinciples and delineating the interrelationships among them.
o streamline terminology, dependencies are defined as the re-

ationship between a parent concept and its dependent child
oncept. These dependencies are further categorized into criti-
al and related dependencies. Critical dependencies are pivotal
or maintaining the scientific integrity of a given record, such
s the association of an organism to a gene record, without
hich crucial scientific knowledge would be lost. Conversely,

elated dependencies augment a record, providing supplemen-
ary information like external identifiers or publications. Any
cientific concept without a critical dependency will be set as
oot level (L1), while those with dependencies are assigned a
evel corresponding to the maximum dependency level of their
arent concepts plus one. 
To build the corresponding database schema, BioRels op-

rates on two fundamental principles: atomicity and unicity.
his means that when multiple data sources encompassing

he same scientific concept are encountered, they are consoli-
ated based on their identifiers, while retaining unique entries
or each. To enhance connectivity, every scientific concept is
eticulously deconstructed into its most granular component.
or instance, each amino acid within a protein sequence is rep-
esented as an individual record, and likewise, each DNA nu-
leotide within a chromosome is defined distinctly. The com-
lete database schema is available in Supplementary Fig. S1
nd is subdivided by the ecosystems. 

nfrastructure 

his infrastructure works using an SGE cluster, all the data
re stored in a POSIX system and in a PostgreSQL database.
he backend infrastructure is executed within a singularity
ontainer, which contains all the third-party tools and libraries
ecessary, allowing to run a set of 160 scripts, mainly written
n PHP and Python3.12. BioRels can be adapted to run using
ther job schedulers or on a single CPU (slower). 
The front-end website, written using PHP v7, Datatables

oolkit, Reactome’s Fireworks JS widget, jquery, jquery UI,
nd an Apache server, provides a web interface for scientists.
imilarly, the website can be run in a Docker container. The
ebsite is divided into modules that can surface the data in
ifferent format: Webpage, text, excel, fasta, image, json, 3-D
le format (MOL2 / PDB), among other formats. 
At last, an Application Programming Interface (API) is

vailable both on the website and in the backend infrastruc-
ure with > 200 queries. 
Source code for both the infrastructure and the website
are available under GPL3 at https:// github.com/ EliLillyCo/
BioRels . 

BioRels as a data mart—selection data sources 

Following the compilation of the container and establishment
of the database schema, scientists are prompted to engage
in a series of pivotal decisions. First, they are invited to se-
lect genome assemblies from NCBI or Ensembl, if applicable,
as well as proteomes from UniProt, if desired. Subsequently,
they can handpick data sources from a comprehensive pool
of 31 options, tailoring the dataset to their specific require-
ments. Moreover, scientists can choose from a plethora of pro-
cessing options and additional computational methodologies
to suit their analytical needs. For licensed data sources such
as OMIM or DrugBank, provision of login credentials is re-
quired. The subsequent phase of the process involves an au-
tomated examination of critical dependencies to seamlessly
integrate parent data sources, ensuring a comprehensive and
coherent dataset, without additional requirements from the
scientist. 

Computational framework 

The data processing workflow is orchestrated by a master
script along with a suite of 160 processing scripts to handle the
31 data sources listed in Table 1 . Each data source undergoes
processing by one or more scripts, depending on its complex-
ity . Initially , a daily check determines if a new release is avail-
able for a specific data source. If an update exists, the down-
load process is initiated. Subsequently, the processing scripts
come into play, but only after confirming that all parent data
sources have been successfully updated first, ensuring data in-
tegrity and consistency. In the event of a process failure, down-
stream scripts remain on hold until resolution. Once the pro-
cess for a given data source is complete, the data from the pre-
vious version is removed from the filesystem and the version
of the data is updated in the database in a specific versioning
table. 

In addition to the incorporation of those data sources,
BioRels offers the possibility to perform additional compu-
tations. For instance, during each Uniprot update, pairwise
protein sequence and domain alignments are generated using
a combination of blastp [ 20 ] and smith-waterman sequence
alignment [ 21 ]. After either Uniprot or RefSeq / Ensembl up-
date, transcript to protein translation is performed by using
EMBOSS transeq [ 20 ]. At last, it also provides the ability to
query Pubmed against genes, diseases, drugs, and tissues. A
complete description of the method used for each data source
is provided in Supplementary Text S1 . 

Results 

Map of drug discovery data ecosystem 

Establishing a strong data integration infrastructure for drug
discovery relies on understanding how different scientific
concepts from various data sources are connected. Although
mapping the entirety of the drug discovery data ecosystem is
beyond the scope, our focus lies on delineating the principal
drivers. To streamline visualization, we categorized resources
into ten ecosystems, each representing overarching scientific
concepts. The Genomic ecosystem—presented in Fig. 1 —
encapsulates organisms, DNA, RNA, and other genomic and

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf254#supplementary-data
https://github.com/EliLillyCo/BioRels
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf254#supplementary-data
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Table 1. List of data sources co v ered in BioRels with their update frequency and licensing 

Data type Data Source Release frequency License 

Taxonomy NCBI Taxonomy [ 92 ] Daily NCBI Policy 
Gene NCBI Gene [ 15 ] Ensembl [ 22 ] Daily Bi-Weekly NCBI Policy CC BY 4.0 
Orthologs NCBI Orthologs [ 15 ] HCOP [ 23 ] Daily NCBI Policy EMBL-EBI Policy 
Variant / Mutation dbSNP [ 93 ] No schedule NCBI Policy 
Small molecule ChEMBL [ 48 ] No schedule CC BY-SA 3.0 
Clinical variant Clinvar [ 55 ] Weekly NCBI Policy 
RNA expression GTEx [ 56 ] Version 8 CC BY-NC-SA 3.0 
Protein domain InterPro [ 3 ] 1–3 Months EMBL-EBI Policy 
Drug DrugBank [ 68 ] Weekly DrugBank license 
Disease MONDO [ 57 ] Bi-Monthly CC BY 4.0 
Anatomy UBERON [ 58 ] Bi-Monthly N / A 

Small molecule / Lipid SwissLipids [ 49 ] Weekly CC BY 4.0 
Small molecule / Patent SureChEMBL [ 50 ] No schedule EMBL-EBI Policy 
Cell lines Cellosaurus [ 59 ] No schedule CC BY 4.0 
Disease / Drug / Clinical trials Open Targets [ 94 ] Bi-Monthly CC 0 
Disease ontology EFO [ 95 ] Monthly Apache 2.0 
Sequence ontology SO [ 24 ] No schedule CC BY-SA 4.0 
Evidence ontology ECO [ 73 ] Monthly CC0 1.0 
BioAssay ontology BAO [ 96 ] No schedule CC BY 4.0 
Protein information UniProt [ 1 ] Quarterly CC BY 4.0 
Publication PubMed [ 15 ] Daily NCBI Policy 
Pathway Reactome [ 35 ] Bi-monthly Public domain 
Gene ontology GO [ 25 ] Monthly CC BY 4.0 
Gene / DNA / RNA RefSeq [ 97 ] Ensembl [ 22 ] No schedule NCBI Policy EMBL-EBI Policy 
Clinical Trials US Clinical Trials Daily US CT.gov Terms of use 
Disease / Gene information OMIM [ 60 ] Daily OMIM License 
Gene information Gene Reviews ® [ 98 ] Frequently Gene Reviews Copyright 
Liver toxicity LiverTox [ 99 ] Frequently Freely available 
PubMed central (PMC) PMC [ 15 , 74 ] Daily CC Only 

EMBL-EBI terms of use: https:// www.ebi.ac.uk/ about/ terms- of- use/ ; NCBI data policy: https:// www.ncbi.nlm.nih.gov/ home/ about/ policies/ ; Gene Reviews 
copyright notice and usage: https:// www.ncbi.nlm.nih.gov/ books/ NBK138602/ ; US clinical Trials: https:// www.clinicaltrials.gov/ about-site/ terms-conditions . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

genetics constituents. All the other ecosystems are provided
in Supplementary Figs S2 –S10 . Each scientific concept is
represented by box colored by the ecosystem it is in. The
dependency between two scientific concepts is described
by an arrow going from the parent concept to the child
concept. For example, a gene (child) record only exists in
the organism (parent) it is defined in. The dependency level
for a given scientific concept is defined as the maximum
number of dependency layers required to get all the necessary
information to process that scientific concept. Genomic
sequence, i.e. the DNA sequence of each chromosome, would
require to first process organisms’ data, as provided by NCBI
Taxonomy, followed by the genome assembly of interest and
the chromosomal information for this organism, provided
by NCBI Gene, Ensembl. Therefore, genomic sequence is
the third layer of dependency prior to processing variant,
epigenome, and transcript data [ 15 , 22–34 ]. In addition to
the Genomic ecosystem, nine other ecosystems have been
defined. Proteomic delves into protein sequences, domains,
and annotations [ 1 , 3 , 25 , 35–46 ]. Macromolecular structure
elucidates structural insights derived from nuclear mag-
netic resonance (NMR), X-ray, and cryo-EM techniques [ 4 ,
47 ]. A molecular entity delineates diverse molecule types,
such as small molecules, antibodies, silencing RNAs (siR-
NAs), lipid nanoparticles, or a combination thereof [ 48–54 ].
Disease / anatomy ecosystem elucidates anatomical structures
across different organisms and encompasses various diseases
and their impacts at different levels [ 2 , 15 , 25 , 55–67 ]. The
assay ecosystem encapsulates the different type of assays:
single protein, cellular or in vivo studies as well as the gener-
ated experimental data, synergizing with molecular structure,
disease / anatomy, genomic, and proteomic ecosystems [ 48 ,
51 , 66 ]. Drugs advancing to clinical stages are detailed in a 
distinct ecosystem, including clinical outcomes, on-target / off- 
target effects, and adverse event reports [ 15 , 48 , 68 , 69 ] (ATC:
https:// www.who.int/ tools/ atc- ddd- toolkit/atc- classification ; 
EU Clinical trials: https:// euclinicaltrials.eu/ ; China Clinical 
trials: https:// www.chictr.org.cn/ indexEN.html ; Canada Med- 
Effect: https:// www.canada.ca/ en/ health-canada/ services/ 
drugs- health- products/medeffect- canada.html ; FDA Ad- 
verse event reporting system: https:// www.fda.gov/ drugs/ 
fdas- adverse- event- reporting- system- faers/fda- adverse- 
event- reporting- system- faers- public- dashboard ; last ac- 
cessed: 11 March 2025). The medical ecosystem would 

therefore be patient centric, covering an individual ances- 
try, genome, and medical record [ 70–72 ] (ICD-11: https: 
// icdcdn.who.int/ icd11referenceguide/ en/ html/ index.html,
last accessed: 11 March 2025). All of them are highly 
connected to the scientific community ecosystem, encom- 
passing scientists, institutions, and the various published 

documents such as patents, publications, and reports [ 15 ,
73 , 74 ]. At last, genome wide association studies is de- 
fined with its own ecosystem [ 75–78 ] due to its stagger- 
ing complexity intricately intertwined with many other 
ecosystems. 

Converting the data ecosystem into an 

infrastructure 

The infrastructure we’ve developed is grounded on three piv- 
otal assumptions, each reflecting the current landscape of 

https://www.ebi.ac.uk/about/terms-of-use/
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/books/NBK138602/
https://www.clinicaltrials.gov/about-site/terms-conditions
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf254#supplementary-data
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://euclinicaltrials.eu/
https://www.chictr.org.cn/indexEN.html
https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada.html
https://www.fda.gov/drugs/fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
https://icdcdn.who.int/icd11referenceguide/en/html/index.html
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Figure 1. Genomic ecosystem. Public / private resources are represented as rounded black direct data shapes, Tools as rectangular black predefined 
process, Ontologies as blue documents, and Genomic concept as orange rectangular process. Each arrow describes the directionality of the 
dependency: From the parent scientific concept to the child scientific concept that depends on it. The L[N] represent the le v el of dependency depth of a 
scientific concept, i.e. the minimum number of dependency la y er to comprehensively describe this scientific concept. A “P” on the bottom right corner 
describes a scientific concept which can be associated with publications, while a “E” describes annotated record by the Evidence and Conclusion 
Ontology. 
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echnological capabilities and scientific needs. First, it’s pred-
cated on the notion that technological advancements en-
ble the processing of vast quantities of data with unprece-
ented efficiency. Second, these same advancements facilitate
he management of complex data structure and querying of
ata across diverse scientific domains, effectively flattening
omplex datasets into accessible formats. Third, it acknowl-
dges that from the perspective of most scientist, the req-
isite scale of data isn’t as expansive as one might assume.
o substantiate these assumptions, we constructed an in-
rastructure utilizing 31 publicly available data sources, en-
ompassing 35 scientific concepts across 7 distinct ecosys-
tems. It accommodates up to twelve levels of dependencies,
nearing the upper limit found in the data ecosystem. No-
tably, our efforts included comprehensive coverage of ge-
nomic and proteomic data for eleven organisms listed in
Supplementary Table S1 , alongside mRNA / protein transla-
tion, protein sequence, and protein domain sequence similar-
ity and alignment. A glimpse at Table 2 reveals the scale of
our endeavor, with 145 billion records housed within a single
27-terabyte database. However, the resources required for a
typical laboratory can be accommodated with just 1 terabyte
of storage, making this level of access feasible for most small
organizations. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf254#supplementary-data
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Table 2. Number of records in million and size in gigabytes based on the ecosystem 

Simplified Complete 

Records Size Records Size 

Macromolecular Structure 4 .3 0 .6 4 .3 0 .6 
Assay 6 .3 2 .6 6 .3 2 .6 
Community 709 .0 196 .8 19 100 .0 6196 .8 
Disease 1521 .0 211 .7 4920 .8 629 .9 
Drug 265 .4 47 .6 265 .4 47 .6 
Genomic 645 .6 138 .4 64 436 .6 9518 .3 
GWAS 0 .0 0 .0 0 .0 0 .0 
Molecular Entity 120 .7 85 .0 120 .7 85 .0 
Other 0 .3 30 .8 0 .3 30 .8 
Proteomic 2338 .8 409 .2 56 525 .2 10 182 .4 
Total 5611 .3 1122 .7 145 379 .4 26 694 .0 

COMPLETE represent the entirety of the data currently processed and managed by BioRels, while SIMPLIFIED does not consider genomic assemblies, 
variants, translations, and alignments. Please note that Macromolecular structure and GWAS ecosystems have not been processed in this release. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Querying the infrastructure—tools and applications 

BioRels stands as a pioneering platform, offering a versatile
website that unveils data through various lenses, segmented
into the previously described ecosystems termed portals. Each
portal comprises reusable modules tailored to showcase data
pertinent to one or multiple scientific concepts. Clinical trial
information such as NCT0633951 should be retrievable when
searching by KRAS gene target (Fig. 2 A), Sotorasib drug (Fig.
2 B), or nonsmall cell lung carcinoma condition (Fig. 2 C). Each
of them should link to the clinical trial page showing not only
the information provided by the clinical trial itself but also
metadata such as drug structure or description (Fig. 2 D). 

Moreover, every module possesses the capability to seam-
lessly integrate with others, as well as facilitating data conver-
sion into multiple formats like JSON, webpage, or FASTA, ef-
fectively operating as an API with minimal overhead. If a web-
site isn’t an option, scientists can query the backend API pro-
viding > 200 queries spanning across the ecosystems. While
the process of loading each nucleotide of a genome individu-
ally may seem time-consuming and overly meticulous at first
glance, its querying capabilities prove exceptionally efficient.
Retrieving 100 000 nucleotides from any chromosome takes
merely 2 s, while compiling all variants associated with a spe-
cific gene requires < 5 s. 

However, the true innovation lies in our export / import fea-
ture, which not only captures the desired data but, owing to its
inherent integration of dependencies, extracts metadata and
all necessary parent data as well, maintaining the data in-
tegrity from top to bottom. For example, the export of a cell-
based assay and its experimental data (Fig. 3 ), respectively de-
fined with a dependency level of 8 and 9, can be done seam-
lessly and would include the data export of up to 30 differ-
ent scientific concepts—when applicable—in a simple com-
mand. This feature converts any record into a simple JSON
data structure called BIORJ, which can be further linearized
into a simple text file. The BIORJ format can streamlines data
sharing between BioRels infrastructures, potentially fostering
effortless collaboration, and even sharing complete datasets. 

Scientific applications 

Today, BioRels is an integral component of Lilly Institute for
Genetic Medicines, as it plays a pivotal role in sequence selec-
tion and analysis for antisense oligonucleotides, siRNA (Fig.
4 ) as well as mature RNA (mRNA) target evaluation for RNA
editing (Fig. 5 ). For any given Human target, BioRels allows 
a scientist to easily examine via the website the known tran- 
scripts from both NCBI and Ensembl (Fig. 4 A), compare them 

and choose the most expressed ones based on RNA expres- 
sion levels (Fig. 4 B). Next, a proprietary algorithm tiles the 
transcript(s) to generate the initial pool of siRNAs and pro- 
vide an assessment for each of them. This includes DNA vari- 
ability within the target region, on-target profile and cross- 
reactivity based on orthology (Fig. 4 C), off-target risks in Hu- 
man and other organisms and miRNA off-target risk. After 
experimental testing, we can map the potent siRNA sequences 
onto the target transcript (Fig. 4 D) to verify their location,
on / off-target profiles, and cross-reactivity to other organisms 
(Fig. 4 E). Those analysis, requiring the use of dbSNP, ALFA,
NCBI gene, Ensembl, HCOP, NCBI orthologs, and RefSeq are 
easily made possible by the fact that the data are centralized 

and properly connected. 
A similar approach has been applied to address the emerg- 

ing modality of RNA editing, which enables the modifica- 
tion of RNA by changing an adenosine to an inosine using 
an Editing Oligonucleotide. This modification is interpreted 

during translation as a guanine (G), offering potential thera- 
peutic benefits. Notably, G > A missense and nonsense mu- 
tations account for 20% (21 134 / 103 235) of pathogenic 
single-nucleotide variants (SNVs) reported in ClinVar ( https: 
// www.ncbi.nlm.nih.gov/ clinvar/ , accessed: 11 March 2025).
This makes identifying all adenosines that could potentially 
be edited particularly valuable for assessing their therapeu- 
tic potential. BioRels already houses many of the necessary 
data sources for such an analysis, including gene information,
genome and transcript data, variant and allele frequencies, as 
well as protein sequence and mRNA-to-protein translation 

information. Leveraging these data, we developed a process 
to evaluate all adenosines reported in human protein-coding 
transcripts. Given that pathogenic mutations are typically 
low-frequency variants, we expanded our search to include all 
adenosines reported in dbSNP within these transcripts. This 
process then assesses whether editing a given adenosine to 

guanine would result in an alteration of the protein sequence 
or its translation. Our analysis identified 261 358 832 DNA 

positions mapped to Human protein-coding transcripts with a 
reported adenosine, either in the transcript or as a variant. Of 
these, 39 012 377 positions would lead to an amino acid modi- 
fication, while 226 630 positions could prevent premature ter- 
mination of translation. BioRels facilitates the visualization of 

https://www.ncbi.nlm.nih.gov/clinvar/
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Figure 2. Example of webpage and data integration with Clinical trial. ( A ) list of clinical trials for drugs targeting KRAS. ( B ) List of clinical trials for 
Sotorasib drug. ( C ) List of clinical trials reported for nonsmall cell lung carcinoma disease. Panels (A), (B), and (C) highlight the clinical trial NCT0633591 in 
bold. ( D ) Arm and intervention description for NCT0633591 clinical trial. Provides additional information like the drug structure and textual description 
from DrugBank and OpenTargets and links to the drug webpage. 
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hese potential RNA editing sites at the protein sequence level,
ross-referencing them with UniProt annotations. Scientists
an then access BioRels website to look for the different anno-
ations provided by UniProt on a protein sequence as well as
he identified RNA editable sites (Fig. 5 A). Next, they have the
ossibility to select an editable site to review information pro-
ided by ClinVar, the publications associated with the record
Fig. 5 B) and dbSNP (Fig. 5 C). Thanks to the precomputed
rotein sequence alignment and mRNA / protein translation,
he website also offers a full insight on the targeted mRNA
ranscript sequence with ClinVar, Uniprot protein sequence
nd annotation as well as protein and mRNA mismatch with
rthologous genes for cross-reactivity evaluation across other
rganisms (Fig. 5 D). This integrated approach thus offers a
owerful tool for evaluating RNA editing opportunities and
heir therapeutic implications. 

iscussion 

echnology is advancing at an incredible pace, and the
ata generated from it continues to grow even faster. To
ush further the boundaries of our biological knowledge,
scientists are increasingly required to become excellent
data steward in how they find, retrieve, prepare, maintain,
generate, and share data, with the FAIR principles used as
guidance. Despite being crucial for scientific reproducibility
and progress, this process is inherently complex and vari-
able, and has been historically challenging. Consequently,
evaluating the efficacy of data preparation infrastructure
can be difficult. One approach to gauge its potential benefits
is through assessing the return on investment of existing
infrastructure. The EMBL’s European Bioinformatics In-
stitute, which manages > 150 data resources and tools,
reported in its 2021 Executive Summary Report that the
wider value of their resources is equivalent to 23 to 102
times the total estimated costs. In addition, the de-duplication
of research efforts could be worth 6 billion pounds per
year ( https:// www.embl.org/ documents/ wp-content/ uploads/
2021/ 10/ EMBL- EBI- impact- report- summary- 2021.pdf; last
accessed: 11 March 2025). Similarly, a 2017 report on the eco-
nomic impact of using RCSB-PDB resources was estimated
at 800 times greater than its direct operating cost ( https:
// cdn.rcsb.org/ rcsb-pdb/ general _ information/ about _ pdb/ 
Economic%20Impacts%20of%20the%20PDB.pdf; last ac-

https://www.embl.org/documents/wp-content/uploads/2021/10/EMBL-EBI-impact-report-summary-2021.pdf
https://cdn.rcsb.org/rcsb-pdb/general_information/about_pdb/Economic%20Impacts%20of%20the%20PDB.pdf
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Figure 3. Representation of BIORJ dependency map for the export of a cell based assay and its experimental data (red bo x es on right hand side). The 
dependencies le v els are la y ered v ertically f or better representation. R ounded black direct data shape: Potential public / priv ate data source. Light blue 
documents: Ontology. Rectangles: scientific concepts. Dark yellow: Proteomic scientific concept. Melrose: Molecular entity scientific concept. Orange: 
Genomic scientific concept. Yellow: Disease / anatomy concept. Red: assay concept. Each arrow describes the directionality of the dependency: From 

the parent scientific concept to the child scientific concept that depends on it. The L[N] represent the level of dependency depth of a scientific concept, 
i.e. the minimum number of dependency la y er to comprehensively describe this scientific concept. A “P” on the bottom right corner describes a 
scientific concept which can be associated with publications, while a “E” describes annotated record by the Evidence and Conclusion Ontology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cessed: 11 March 2025). Thus, enhancing data access and
preparation processes stands poised to significantly benefit
the scientific community and ultimately the people they
serve. We aim at addressing such challenge by proposing a
new infrastructure that would be positioned between the
data resources and the scientists. In helping the scientists to
“shop” for the data sources they need and offering a standard
framework for data preparation, we intend in reducing the
data preparation burden and Human cost, improving the
accessibility, the integrity and ultimately the reproducibility
of the data. 

To successfully build such infrastructure, understanding the
intricacies of how the data flows and the relationships between
the different data components is paramount, leading to the
creation of a biological and drug discovery map. With > 2000
biological databases reported, it is impractical if not unfeasible
to describe in its totality the drug discovery data ecosystem,
which is very vast and complex. Therefore, we have chosen
to focus on outlining the heavily cited resources and didn’t
cover bacterial, fungi, viruses’, and toxicological databases. To
simplify its readability, we broke it down into 10 ecosystems,
each covering a specific biology or drug discovery domain, and
further broken down into scientific concepts with commonly
used vocabulary: Protein, Gene, Molecule, and Clinical trial.
Each scientific concept is then connected to other concepts
when it is either a part of, a consequence of, or is associated 

with it. For instance, a clinical trial can assess the safety and 

efficacy of a drug candidate for a given condition / disease. As 
such, drug and disease information are critical dependencies 
of a clinical trial. Thus, a clinical trial database is a child of the 
parents’ disease and drug. The critical dependencies defined in 

this map doesn’t however perfectly match the reality as trade- 
offs are inevitable due to experimental constraints. A proto- 
typical example resides in how UniProt annotates its protein 

entries. In an ideal world, a protein should be annotated by 
the gene that codes for its sequence. However, the identifica- 
tion and confirmation of the coding gene can come later after 
the discovery of the protein. As such, UniProt annotates pro- 
tein records by organisms and provide gene annotations. 

This analysis has revealed the importance of ontologies,
being with NCBI Taxonomy the foundational layer of the 
ecosystem and underlining the critical importance of stan- 
dardized nomenclature in data quality and reusability. Fur- 
thermore, ∼90 resources have been highlighted as primary 
catalysts for the proliferation of biological and drug discovery 
data, underscoring their paramount importance in advancing 
scientific understanding and innovation. After defining all the 
critical dependencies, we were surprised to see the relatively 
shallow depth of these relationships, with 76 out of 120 sci- 
entific concepts accessible within five layers of dependencies 
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Figure 4. Suite of webpages supporting ASO and siRNA drug disco v ery from early target e v aluation to e xperimental results with HRPT1 as example. ( A ) 
List of reported HPRT1 transcripts with their annotations (NCBI Gene, RefSeq, and Ensembl). ( B ) RNA expression data in frontal cortex tissue for HPRT1 
gene and transcripts (GTEX). ( C ) List of HPRT1 orthologous genes (NCBI Orthologs, HCOP). ( D ) Mapping of randomly generated siRNA sequences 
color-coded by their activity data against HPRT1 NM_000194.3 transcript. Top: transcript / gene information and global view of the alignment. Mapping of 
reported clinical variant (ClinVar), protein translation and annotation (UniProt), orthologous sequence alignment [different or identical amino-acid or 
nucleotide] and DNA variant frequency information, aggregated by frequency profile across different studies. ( E ) Match of a siRNA sequence against all 
HPTR1 transcripts across different organisms, providing the number of mismatch and localization. 
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r less. To cover the bulk of drug discovery data, our anal-
sis has revealed that thirteen levels of dependencies suffice
o cover almost all the main scientific concepts. This suggests
hat building a robust data preparation infrastructure is not
nly achievable but also within reach, offering the potential
o significantly streamline drug discovery processes in the fu-
ure. 

ioRels—a data warehouse / mart 

o prove the feasibility of such concept, we have developed
ioRels, a biological relationship infrastructure. With the ca-
acity to ingest data from 31 data sources in real-time, BioRels
covers 35 out of 120 scientific concepts, spanning across
7 data ecosystems and accommodating up to 9 levels of de-
pendencies within the presented data landscape. However, un-
derstanding how BioRels fits within the current infrastructure
paradigm is important. In today’s world of big data, four types
of infrastructure have been proposed: a data lake, a data ware-
house, a data mart, and knowledge graphs. 

A data lake serves as an expansive storage facility where
data of any format—be it images, documents, PDFs, free text,
structured, or unstructured—can reside at various curation
stages. This freedom allows data to flow into the lake with-
out immediate processing requirements, enabling data scien-
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Figure 5. Evaluation of suitable RNA editable sites for Human HPRT1 protein sequence. ( A ) Each colored rectangle under an amino-acid represent a 
UniProt annotation or a RNA editable site (cyan). The selected amino-acid R45 is highlighted by the vertical rectangle. Generated web report providing 
information about the RNA editable site HPRT1 K > R45 from ClinVar ( B ) and dbSNP ( C ). ( D ) Representation of the mRNA targeted region with 
cross-reactivity information based on protein sequence alignment between HPRT1 human and HPRT1 orthologs as well as mRNA to protein translation. 
Highlighted in red are the mismatches between the Human mRNA and protein sequence versus orthologs mRNA and protein sequences, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tists to query it with exceptional flexibility. However, this
flexibility comes with trade-offs, including the lack of struc-
ture and architecture, necessitating scientists to possess ex-
pert domain knowledge regarding the type, quality, format,
and associated metadata of the data they seek [ 79 ]. In con-
trast, a data warehouse presents a more structured infrastruc-
ture with predefined data schemas. While this imposes upfront
costs for data preparation and loading, it also limits imme-
diate access to the data and imposes constraints and filters
based on the schema. Yet, these limitations are offset by the
advantages of clean, homogenized, and interconnected data.
Alternatively, a Data Mart can be viewed as a subset of a
data warehouse, tailored to address specific business needs.
Each of these infrastructures has their own set of benefits
and challenges, extensively discussed in numerous publica-
tions [ 79 , 80 ]. Additionally, an emerging alternative infras-
tructure that has been gaining significant traction over the
last decade is the knowledge graph, particularly in the medi-
cal domain [ 81 , 82 ]. Its ease of use, coupled with the ability to
quickly load vast and heterogeneous datasets, makes it an in-
valuable tool for inferring connections and deriving insights.
Despite these advantages, knowledge graphs are increasingly
recognized for their lack of an enforced data structure, which
limits their suitability for efforts aimed at reintroducing struc- 
ture into heterogeneous data. This challenge highlights the 
need for more robust frameworks that can balance flexibil- 
ity with organization, especially in data-intensive fields like 
healthcare. 

The current system most resembling BioRels is InterMine,
developed by the Micklem lab in 2002. Tailored to present 
genomic information for a set of organisms, InterMine allows 
scientists to build their own data model during configuration,
which the system will adapt to unify and load data from multi- 
ple sources. It then merges information covering the same en- 
tity, operating as a model-driven data warehouse that usually 
loads data at build time, with some specific exceptions. Inter- 
Mine is now the foundation for > 19 instances, including Fly- 
Mine [ 83 ] and TargetMine [ 84 ]. In comparison, BioRels em- 
bodies elements of both a data warehouse and a data mart, of- 
fering a predefined data schema that grants scientists the flex- 
ibility to choose which data sources, genomes, and proteomes 
to incorporate. Although InterMine provides greater freedom 

in how data are framed, BioRels predefined data schema pro- 
vides a stable and standardized foundation to build upon and 

share data between systems. As such, either system can be used 

depending on the scientific needs. 
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enefits and limitations 
he inherent limitations of a data warehouse infrastructure
re rooted in its fundamental concept. First, scientists en-
ounter the challenge of upfront costs associated with ingest-
ng data before it can be utilized effectively. This initial in-
estment can be significant both in terms of storage and com-
utation, depending on the number of data sources and their
overage. However, it can be seen in BioRels as a one-time fee,
ith minimal Human cost thanks to the automation, and little

xtra cost for updates. Additionally, the requirement to ingest
ata into a predefined schema poses constraints on flexibility
nd adaptability. As the database schema expands to accom-
odate more data sources, any modifications to the schema,
articularly for foundational resources at the L1 or L2 lev-
ls in the data landscape, can potentially trigger a cascading
ownstream effect. This can be mitigated in part by separating
he critical information of a given data source from its anno-
ation. For instance, a gene would be defined by its locus, iden-
ifier(s), symbol, and organism, while synonyms, alias, textual
escription can be separated in other tables. Such principle of
arrowing down a scientific concept to its critical informa-
ion would minimize the risk of cascading effect, while retain-
ng the ability to expand around it as much as necessary. Over
ime, as the scientific community gains a deeper understanding
f the data and its relationships, the schema will gradually sta-
ilize, improving its long-term adaptability. As the infrastruc-
ure expand, the number of tools and libraries required can
lso become a bottleneck. One potential solution would be to
volve the containerization into a container mart, where each
ata source provides their list of dependencies, thus allowing
o build tailored containers based on the scientist needs. 

This infrastructure offers also numerous advantages, pri-
arily through the enforcement of a unique definition for each

cientific concept, thereby streamlining and homogenizing in-
ormation. However, managing multiple data sources concur-
ently has historically been in a bioinformatic challenge in
aintaining consistency. BioRels’ unique design is the first in-

rastructure that fully incorporates and enforces critical de-
endencies in its design, in which the system’s architecture
ictates that child data sources (for instance a gene) are up-
ated only upon successful updating of parent data sources
such as the taxon), guaranteeing the utmost accuracy during
rocessing. Furthermore, BioRels preserves relationships even
hen parent data sources are updated, maintaining data con-

istency even if child sources become inactive or infrequently
pdated. This enables older data sources to maintain their rel-
vance, as their relationships can be kept up to date, reducing
he risk of connectivity loss seen in data lakes. Additionally, if
 parent record becomes obsolete or is removed, BioRels au-
omatically deletes all related child records in cascade. While
his could pose a challenge for reproducibility, the issue can
e mitigated using BioRels’ BIORJ export / import capability,
hich allows users to take a complete snapshot of a dataset
ith all its dependencies at any given time, ensuring that the
ata and its relationships remain reusable. 

er specti ves on the current state of the public data 

cosystem 

 unified data community 
he multitude of databases and tools crafted by scientists over
ecent decades has yielded a diverse landscape characterized
y varying levels of quality , accessibility , and more impor-
tantly redundancy. As scientific knowledge evolves, the com-
munity continually hones specific concepts until they attain a
level of maturity conducive to establishing a comprehensive
definition. Transforming this definition into a sturdy founda-
tion becomes imperative for progress. Yet, complexities arise
when economic considerations, national policies, and compet-
itive forces intersect, resulting in a lot of scientific concepts
presented in the data landscape to be described by multiple
data sources. Converging towards a consensus—even an im-
perfect one—becomes imperative in navigating this complex-
ity. A successful example of such consensus is InterPro [ 3 ].
Through the integration of thirteen member databases, In-
terPro offers a unified classification system for protein fami-
lies and domains, fostering homogeneity and ease of use. This
streamlined approach must be applied to all well-established
scientific concepts, even as underlying processing rules evolve.
For instance, a more unified collaboration between RefSeq
and Ensembl, extending beyond the scope of the MANE initia-
tive, could bring significant benefits to the scientific commu-
nity [ 85 , 86 ]. Genomes and transcriptomes serve as founda-
tional elements for many downstream research concepts, and
the differences between these resources often lead to cascading
effects. Initiatives inspired by projects like InterPro could re-
duce the number of identifiers, minimizing data redundancy,
complexity, and the potential for errors. Such a shift would
ultimately lower the time, cost, and effort required from re-
searchers, while fostering the creation of dynamic, adaptable
resources that can continue to evolve and improve over time.

Open source licenses 
Even with advancements in data sharing, licensing remains
a significant challenge. The complexity, variability of licens-
ing terms, as well as their accessibility—sometimes very
well hidden—can impede the seamless utilization of scien-
tific data. While the diversity of open-source licenses presents
challenges—many of which were not designed with scientific
contexts in mind—protecting patient privacy, ensuring proper
credit for researchers, and supporting appropriate use of data
remain fundamental. To mitigate these concerns, a tailored le-
gal framework for scientific licenses is needed, one that differ-
entiates between academic, medical, personal, and commercial
uses of data and tools, as well as research activities within in-
dustry settings. This framework should distinguish between
commercial uses that directly drive profit, such as develop-
ing new treatments or medical products for sale, and research
activities within industry settings, such as academic-industry
collaborations or post-doctoral work in a corporate environ-
ment, which contribute to scientific discovery but are not pri-
marily focused on driving the business. Such a system would
foster innovation, ensure the proper use of scientific data, and
maintain compliance with legal and privacy standards, while
strengthening trust and collaboration between academic in-
stitutions and industry to drive collective progress. To address
this, it is essential for the scientific community to take an ac-
tive role in establishing a transparent licensing framework,
grounded in clear and standardized principles that prioritize
ethical use, legal compliance, and data / tool stewardship. In
turn, we envision a system in BioRels where users can more
clearly activate the use of licenses (approved within their or-
ganization) based on the type of organization and use case.
This would allow BioRels to quickly verify whether a data
source can be used, either in its entirety or partially, by au-
tomating the assignment of the correct license and ensuring
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compliance, streamlining data access decisions, and monitor-
ing potential changes in license terms. With BioRels as an
open source framework, the scientific community itself would
play a key role in ensuring that licensing terms are respected
and implemented, alleviating some of the weight and concerns
around this issue and promoting a shared responsibility for
data stewardship. 

Reproducibility 
Reproducibility, which relies on having identical data and
tools to achieve consistent results, remains a significant chal-
lenge. While the goal of full reproducibility is commendable,
the vast volume of data, the variability of tool versions, and
the preparation processes make it an ongoing, complex task.
One potential way to address this complexity is through cen-
tralization, where a broad user base works within a unified
infrastructure, potentially reducing some of the variability.
However, even within centralized systems, many data sources
still lack proper versioning mechanisms. For example, NCBI
Gene provide a history file to map outdated gene records to
their current counterparts, but they do not offer the full set of
data—such as synonyms or complete names—which limits the
ability to trace specific versions over time and complicates the
task of reproducing exact processes. Many others only pro-
vide monthly or quarterly historical versions. 

We recognize the technological and resource challenges in-
volved in achieving full versioning, especially for dynamic re-
sources like NCBI Taxonomy and Gene, which are frequently
updated. BioRels faces similar challenges on both the techno-
logical and data fronts. For instance, when a taxon is removed
from NCBI Taxonomy or a disease record becomes obsolete,
there’s a dilemma: should related data from other sources be
removed to preserve data integrity and reflect the latest sci-
entific consensus, or should the data be retained to support
consistency with the FAIR principles, even if it risks accumu-
lating outdated, irrelevant or inaccurate information due to a
retracted publication? This balancing act—between maintain-
ing data accuracy and ensuring reproducibility, especially at
that scale—illustrates the complexities scientists face as they
navigate the rapidly evolving landscape of scientific data. 

Centralization could help address this by consolidating
datasets into a unified infrastructure, ensuring that, while not
identical, a given dataset remains more consistent and aligned
across various sources. This approach allows for greater accu-
racy in reproducing results, even as some data may evolve over
time. By operating within a centralized system, discrepancies
between versions can be minimized, making reproducibility
more achievable without compromising the overall integrity
of the data. 

To address this, BioRels adopts a flexible approach: it ap-
plies scientific data integrity constraints, assuming that if a
user provides the same version of input data and the same
BioRels version, the resulting BioRels database will be iden-
tical. Additionally, BioRels offers users the ability to export
a list of data sources along with their versions, or to export
datasets as Biorj files for easier sharing and reusability. One
can then shares the complete dataset to be loaded in a BioRels
database, even with obsolete records and with minimal over-
head to reproduce the results of a new method for example.
Obsolete records would remain in the database until a refresh
is triggered. 
Future development 

Currently, BioRels is designed to support the large-scale use of 
data resources and aid in the development of new resources 
that integrate multiple scientific concepts. As such, it is not 
well-suited for smaller laboratories or teams that lack ac- 
cess to high-performance computing systems. However, the 
foundational principles of BioRels can be extended to cre- 
ate a more flexible, on-demand infrastructure. By leverag- 
ing semantic web technologies and SPARQL [ 87 ] along with 

BioRels’ dependency management logic, this approach offers 
a scalable solution that could accommodate a wider range of 
users. We envision a platform where scientists directly input 
and document their findings, experiments, and images into 

the database, adhering to BioRels’ data schema standards.
SPARQL queries would ensure the completeness of the data,
and its dependencies based on the data ecosystem (Fig. 6 A).
With ontologies fully integrated into the database, a scien- 
tist’s manuscript could be preannotated with relevant scien- 
tific concepts as well as the experimental data, streamlining 
the process. Ultimately, this system would make newly gener- 
ated data, its dependencies, and manuscript annotations read- 
ily available during the publication process thanks to a BIORJ 
file, enhancing efficiency, collaboration and ingestion by pub- 
lic resources. The completeness of the data, which would in- 
clude information from dependent data sources, would also 

have an indirect, yet crucial impact of supporting public re- 
sources by tracking their impact [ 88 ]. 

With the current state of BioRels arises a multitude of pos- 
sibilities in leveraging its capabilities. In a production en- 
vironment in large organizations, the necessity, if not the 
criticality, of segregating the data architecture into discrete 
sub-components becomes evident. We can imagine a simple 
scenario—Fig. 6 B where two BioRels-DB instances are dedi- 
cated to assay registration and molecular entity registration.
Thanks to its standardized data schema, both can share their 
information using BIORJ data exchange to a third instance 
storing experimental results. BIORJ format not only encom- 
passes the pertinent data but also ensures comprehensive data 
integrity by including all relevant parent data, easily allow- 
ing to harness the system’s flexibility and scalability. Alter- 
natively, each data source can have their own BioRels in- 
stance, easily communicating and sharing data in real time 
with one another and to scientists around the world Fig.
6 C. Scientists could therefore query each data source for a 
specific data point and get all the associated metadata with 

it. 
We envision the creation of BioRelsKB (Biological Re- 

source Knowledge Base), a community-driven infrastructure 
designed to advance biological and drug discovery data sci- 
ence. BioRelsKB could not only provide a stable core but also 

allow for the development of new tools and workflows. Draw- 
ing inspiration from systems like UniProtKB, BioRels could 

differentiate between curated, quality-assured data (BioRels- 
DB, Fig. 6 D) and user-contributed, unreviewed extensions 
(BioRels-EXT, Fig. 6 E). BioRels-DB could offer high-quality,
expert-curated data sources, scripts, and database tables,
maintained by the community to serve as a solid foundation 

for scientific research. Meanwhile, BioRels-EXT could host 
user-contributed tools, protocols, and extensions submitted by 
scientists. These contributions could undergo periodic com- 
munity review and once validated, could be integrated into 

the system, ensuring the continual evolution of the platform. 
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A B

C

ED

Figure 6. Description of potential a v enues f or BioR els. ( A ) BioR els as a scientific support infrastr uct ure. ( B ) Data infrastr uct ure as multiple data silo, each 
handling a different ecosystem and sharing data using BIORJ files to a third instance that is dependent on their data. ( C ) Multiple data infrastr uct ure 
sharing their data to one another. ( D ) Ov ervie w of BioRels future infrastructure. ( E ) Ov ervie w of the process for scientist to use and expand BioRels. 
BioRels-EXT can serve as a repository for scientific protocols, which over time can be ingested in the core BioRELS-DB infrastr uct ure. 
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Built on a robust schema defined by experts from lead-
ing data providers, BioRelsDB could offer a stable foundation
for managing, processing, and visualizing biological data. The
core schema could be reviewed periodically to ensure it adapts
to evolving scientific needs while warranting stability. Core
data processing would be handled in Python, with each data
provider responsible for maintaining their own data process-
ing scripts (bulk data and SPARQL queries) to upload data
into a central PostgreSQL database. 

To support the diverse needs of the scientific commu-
nity, BioRelsDB could enable flexible customization through
Docker containers via an infrastructure called BioRelsDock.
These containers could automatically compile the necessary
packages and tools for selected data sources, ensuring that
researchers can quickly and easily set up their working en-
vironments without the need for manual configuration. This
approach provides scalability and reproducibility, allowing
scientists to focus on their research rather than the techni-
cal setup. BioRelsDB could offer four core applications: A
customizable website that provides both simple and com-
plex visualizations via modular components, a standard API
for general data access, a SPARQL API for more specific
data queries. To enable natural language queries, the integra-
tion of Retrieval-Augmented Generation methods (e.g. Go-
rilla [ 89 ]) that queries the API could help mitigate inaccura-
cies commonly seen in global Large Language Models like
ChatGPT [ 90 ]. These components could streamline work-
flows, support collaboration, and ensure that scientists have
immediate access to high-quality data, tools and visualiza-
tion. The core infrastructure of BioRelsDB could remain sta-
ble, with modifications only made by the core data providers
and BioRels team, ensuring consistency and reliability across
the platform. 

Scientists could be able to tailor BioRelsDB to their specific
project needs by selecting the data sources they require. Once
the data sources are chosen, the system could automatically
trigger the build of a customized container with all necessary
packages and tools. This flexibility ensures that researchers
can quickly adapt BioRels to their unique workflows, enabling
faster and more efficient data analysis. The applications could
enable scientists to quickly build their own website to share
their results, without having to reinvent the wheel and while
benefiting from what the community has the best to offer. 

Conclusion 

BioRelsKB has the potential to evolve beyond a mere collec-
tion of individual tools and data sources into a collaborative,
community-driven infrastructure that can catalyze scientific
discovery at an unparalleled scale. The database schema’s in-
herent flexibility, designed to reflect biological relationships,
not only provides a strong foundation for innovation, homo-
geneity and open science organizations [ 91 ], but also enables
continuous adaptation to emerging scientific concepts and
methodologies. By bringing together diverse data providers,
domain experts, and cutting-edge technologies, we can cre-
ate a platform that seamlessly integrates high-quality data
while fostering growth, adaptability, and collaboration. Just
as each component of BioRelsKB brings its unique strengths,
the collective efforts of the community ensure that together
we achieve more than the sum of our parts. We have demon-
strated its pivotal role in drug discovery, particularly in ge-
netic medicine, where BioRelsKB enables scientists to visualize
complex, heterogeneous data in an accessible way, supporting 
all siRNA and ASO preclinical projects. By working together,
we can build a more efficient, flexible, and impactful founda- 
tion for biological and drug discovery, accelerating innovation 

and driving progress in ways no single entity could accomplish 

alone. 
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