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ABSTRACT

Inefficient dietary nitrogen (N) conversion to microbial proteins, and the subsequent use by ruminants, is
a major research focus across different fields. Excess bacterial ammonia (NH3) produced due to degra-
dation or hydrolyses of N containing compounds, such as urea, leads to an inefficiency in a host's ability
to utilize nitrogen. Urea is a non-protein N containing compound used by ruminants as an ammonia
source, obtained from feed and endogenous sources. It is hydrolyzed by ureases from rumen bacteria to
produce NH3 which is used for microbial protein synthesis. However, lack of information exists regarding
urea hydrolysis in ruminal bacteria, and how urea gets to hydrolysis sites. Therefore, this review de-
scribes research on sites of urea hydrolysis, urea transport routes towards these sites, the role and
structure of urea transporters in rumen epithelium and bacteria, the composition of ruminal ureolytic
bacteria, mechanisms behind urea hydrolysis by bacterial ureases, and factors influencing urea hydro-
lysis. This review explores the current knowledge on the structure and physiological role of urea
transport and ureolytic bacteria, for the regulation of urea hydrolysis and recycling in ruminants. Lastly,
underlying mechanisms of urea transportation in rumen bacteria and their physiological importance are

currently unknown, and therefore future research should be directed to this subject.
© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

bacteria obtain N from a wide range of compounds, but also differ in
their N sources (Kim et al., 2014, 2017).

Researchers from animal nutrition, animal physiology, envi-
ronmental sciences and microbiology fields have long discussed
inefficient dietary nitrogen (N) conversion to microbial proteins,
and their subsequent use by ruminants (Firkins, 2010; Hackmann
and Firkins, 2015). This leads to the potential loss of useful N, and
N excretion to the environment, which causes pollution due to
excess NH3 produced from high dietary N degradation. Nitrogen is a
major limiting element for living creatures, including bacteria,
because they depend on it for growth and survival. Ruminal
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For ruminants, the dietary and recycled urea from their liver can
be absorbed by microbes in the rumen and metabolized to become
microbial protein, which is a good protein source for milk or muscle
protein synthesis (Tadele, 2015). Urea is normally added to the diet
of a ruminant as non-protein nitrogen, which benefits animal
production and saves on nitrogen costs. The research progress
concerning urea transporters and hydrolysis will be helpful to
guide the regulation of urea utilization.

The urea-N metabolism uses 2 interconnected pathway net-
works (Arriaga et al., 2009; Sigurdarson et al., 2018). The first hy-
drolysis pathway is necessary for N release from compounds, to
make N available in the surrounding medium. Secondly, assimila-
tory and biosynthetic pathways produce amino acids and peptides
used by the cell. These pathways require various enzymatic activ-
ities and accessory proteins; however, compounds for metabo-
lization must reach effective sites, thus requiring transportation
mechanisms.

It is accepted that excess NH3 from urea hydrolysis and other N
containing compounds are absorbed and transported to the liver
(Abdoun et al., 2006). Here, NH3 is used for endogenous urea
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synthesis, which is recycled through the ruminal wall and salivary
secretion. This process plays a vital role in N utilization and
metabolism in ruminants (Long et al., 2004; Reynolds and
Kristensen, 2008; Wang et al., 2011; Zhou et al., 2017). Hepatic
urea is transported to the rumen via gut epithelia, where ureases
are located. According to recent findings (Stewart et al., 2005;
Abdoun et al., 2006), humans and different animals express spe-
cific urea transporters in various tissues, such as the kidney and
gut epithelium.

In our previous research, we investigated efficient urea utiliza-
tion mechanisms; and factors affecting urease activity such as dairy
cow immunization against ureases in the rumen (Zhao et al., 2015),
and urease inhibitory compounds (Liu et al., 2020). We have also
published a review about ruminal microbial urease activation,
ureolytic bacteria diversity and urea recycling, but no integrated
review about urea transport and hydrolysis (Jin et al., 2018).
Furthermore, we understand that knowing about the factors that
affect urea transportation in rumen and ruminal bacteria will
provide other possibilities to manipulate urea utilization in the
ruminant. The urea transport system in rumen is well studied by a
number of researchers such as (Marini and Van Amburgh, 2003;
Marini et al., 2004; Recktenwald et al., 2014), however ruminal
bacteria is not well understood.

Therefore, we reviewed urea transporters and transportation,
urea hydrolysis kinetics and mechanism in ruminants and ruminal
bacteria, to update knowledge on urea-N metabolism. The review
also includes factors affecting urea transportation and hydrolysis
processes.

2. Physiological roles and structures of urea transporters

In living organisms, N containing macromolecules are crucial for
different biological systems. In large animals such as ruminants, the
catabolic processing of N containing compounds, such as true
proteins and non-protein N compounds, releases carbon, hydrogen
and oxygen and stores them as carbohydrates and fats. However, a
nitrogenous compound produces toxic NHs which raises the pH of
body fluids. Excess NHj is excreted from the body after liver
detoxification, and converted to the less toxic compound, urea
(Weiner et al., 2015; Jin et al., 2018), however a portion is recycled
by ruminants (Lapierre and Lobley, 2001). The relationship be-
tween dietary crude protein and ruminal degradable protein con-
centration determines the N balance, the quantities recycled to
gastrointestinal tracts, and how much is used by microorganisms in
different animals (Weiner et al., 2015; Mutsvangwa et al., 2016;
Oliva et al., 2019).

Urea is produced in the liver from the degradation products of
N-containing molecules. In most animals, urea produced this way is
considered a waste, and is excreted (Hediger et al., 1996). However,
in ruminants, urea produced in the liver and ingested with feed is
not only a simple waste product of N metabolism, but also an
important precursor in protein biosynthesis.

It is accepted that urea enters the rumen from animal feed and
endogenous sources as recycled urea and is hydrolysed to produce
NH3 and carbon dioxide by bacterial urease. As different studies
indicate, bacteria hydrolyse urea for 2 main purposes. The first is to
use NHs as a source of N and carbon in amino acid biosynthesis
(Pengpeng and Tan, 2013). For the second, particularly for gastric
tract dwelling bacteria, NH3 may be used as a buffering and survival
agent against highly acidic environments of the gastrointestinal
tract (Arioli et al., 2010). For this purpose, urea must be transported
to the gastrointestinal tract and be in contact with active ureases
produced by bacteria.
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2.1. Urea transporters in rumen epithelium

Numerous studies, as reviewed by Patra and Aschenbach (2018)
and Abdoun et al. (2006), have shown that blood urea crosses the
rumen epithelium. This process is nutritionally beneficial, because
bacteria inside the rumen can use urea N for protein and amino acid
biosynthesis (Rodriguez et al., 2007), after hydrolysing it to CO, and
NH3 by ureases (Stewart and Smith, 2005). So, different research
findings show that for urea to be utilized by ruminal bacteria, it
must influx to the area where urea hydrolysing microbes exist and
cross the ruminal wall.

Urea influxes into the rumen via several routes (Stewart and
Smith, 2015; Alemneh, 2019). The saliva route accounts for 10% to
40% of urea entry, whereas entry via the gastrointestinal wall is the
major entry route, particularly across ruminal epithelium (Berends
et al,, 2014). A minor entry route involves bile and pancreatic juice
secretion (Varady et al., 1979).

Work by Alemneh (2019) described urea inflow into the rumen
lumen, as urea crossing the ruminal epithelium by simple diffusion
into rumen lumen, based on concentration gradients. However,
Santos et al. (2015) indicated that because urea had a stronger
dipole moment of 4.6 D (debyes), which was greater than that (1.8
D) of water, its diffusion across lipid bilayered ruminal epithelium
was very low. This was tested on artificial lipid bilayers by Brahm
(2013) and Klein et al. (2011), showing that the rate of urea
permeability was low (4 x 10~% cm/s) for bilayers that lack any urea
transport proteins. Many studies have found that urea absorbency
supporting proteins, such as aquaporin (AQP) and urea trans-
porters, are present in different cell membranes of different tissues
and organs, such as the kidney and red blood cells (Klein et al.,
2011; Klein and Sands, 2016). Similarly, in ruminants, urea flow
into the rumen lumen is facilitated by transport proteins. Addi-
tionally, other studies have confirmed that salivary glands and
rumen epithelia express urea transporting proteins (Marini et al.,
2008; Dix et al., 2013).

Rumen based urea transporter proteins are generated from 2
closely related genes; solute carrier family 14 member 1 (SLC14a1)
or the urea transporter B (UT-B), and SLC14a2 or the urea trans-
porter A (UT-A) (Lu et al.,, 2005; Strugatsky et al., 2013). Walpole
et al. (2018) reported that both AQP and UT-B facilitated urea
transportation into the rumen (Fig. 1). Therefore, facilitative urea
transport systems function between the bloodstream and rumen,
thus playing significant roles in urea-N regulation and salvaging
processes (Zhao et al., 2015).

Stewart et al. (2005) indicated that urea influx was reduced by
UT-B inhibitors such as phloretin. Their findings confirmed that UT-
A or UT-B transporters were associated with urea transport in
ruminal epithelia. Furthermore, when dietary treatments contain
urea, AQP-3 gene expression is down-regulated, suggesting a
portion of urea flux occurs via facilitated diffusion through AQP
(Sacca et al., 2018). The expression of UT-B and AQP-3 is up-
regulated as an incremental supplementation of calves with solid
feeds with minimal nitrogen contents, which is also an indication of
facilitated urea recycling in ruminants (Berends et al., 2014).

Bovine UT-B forms a trimer whose interface is formed by
equivalent protein helices, revealing a quaternary structure
(Fig. 1A). At the center of the trimer interface is a large cavity sealed
off from solvent, which is packed with partially ordered lipid or
detergent molecules (Levin et al., 2012). The UT fold contains 2
homologous halves with opposite orientations in the membrane,
giving the structure an internal pseudo-2-fold symmetry axis. Each
half contains 5 transmembrane helices, and one tilted reentrant
helix spanning roughly half the membrane. An amphipathic
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Fig. 1. The ruminal epithelium and bacterial urea transporters. (A) Schematic showing the relationship between the rumen and ruminal bacteria in terms of urea transporters. (B)
The structure of a ruminal epithelium urea transporter B protomer, as viewed from within the plane of the membrane (left), and extracellular membrane view (right). The black
arrow passing through 2 T3 (green) shows the urea permeation pathway (Levin et al., 2012). (C) Structural model of a bacteria proton gated urea transporter (urel) (left). The ribbon
diagram (right) shows the closed urea transporter, PL1 (yellow)(Sachs et al., 2006). (D) Structure of an ATP-dependent ABC urea transporter. PL (1 and 2) = periplasmic loops, T (1 to

6) = transmembrane helices (Lu et al., 2005).

membrane-spanning pore is formed at the interface of the 2 halves
in each promoter, and is lined by residues from conserved urea
signature sequences (Levin et al., 2009). This pore has a restricted
region which serves as a selective filter that opens into 2 wide
vestibules on both sides and is a designated urea permeation
pathway.

2.2. Urea transporters in ruminal bacteria

Most bacterial species in the rumen have counterparts in other
areas of the mammalian digestive system, including the human gut.
There is limited information regarding urea transporters and their
role in ruminal bacteria so in this review we provide some of the
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description by taking bacteria of the other mammalian animals as a
model. In most bacterial species, ureases are found in the bacterial
cytoplasm, although they are considered extracellular in some bac-
teria (Mobley and Hausinger, 1989). Thus, urease location in ureolytic
bacteria is controversial. Hawtin et al. (1990) indicated that bacterial
ureases were located on cell surfaces, and in materials shed from
these surfaces. In other research, the hydrolysis of urea molecules
surrounding the bacteria have produced ammonium H ions associ-
ated with a consequent rise in local pH (Mobley and Hausinger,
1989). This observation may suggest urease activity is localized
outside the cell. However, in a study investigating whether ureases
were surface associated or not, the results showed that urease ac-
tivity was located in the cytoplasm of fresh log-phase cultures, but as
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the cultures aged, urease activity was found on the cell surface, or
shed into the medium (Bode et al.,, 1993; Phadnis et al., 1996). This
may have been due to cell autolysis. Dunn et al. (1997) and Mobley
and Hausinger (1989) also concluded that ureases were cell mem-
brane bound, when human gastric biopsies and urinary specimens
were examined. In ruminal bacteria, cyto-chemical localization
studies of ureases by McLean et al. (1985) confirmed that urease in
Staphylococcus sp. H3-22 was located in the cytoplasm. Thus, for
bacterial urea hydrolysis, urea must enter the cytoplasm.

In rumen bacteria, even though it is controversial, members of
the UT protein family are involved in the selective and speedy
transport of urea across concentration gradients. Currently, 2
evolutionarily distant, but distinct UT have been identified (Levin
and Zhou, 2014). These UT form common UT folds, involving 2
structurally homologous domains which appear as a continuous
membrane-spanning pore, suggesting urea is transported by UT via
a channel-like mechanism (Levin and Zhou, 2014). This finding has
underpinned the concept of urea transport, and its role in urea
entry into the cytoplasm.

Rumen bacteria express 3 different UT, which have distinct
functional activities. The first is a pH-independent UT, e.g. Yut
(Sebbane et al., 2002). Yut is a pH-independent protein found in
Yersinia, and is homologous to mammalian UT, with a sequence
identity to human UT-B (Levin et al., 2009).

The second is a proton-gated (pH-dependent) UT, common in
Helicobacter pylori. It has a channel like structure, which is closed
and opened at neutral and acidic pH, respectively (Fig. 1C). When
the channel opens at an acidic pH, it allows rapid urea entry to
access cytoplasmic ureases (Levin and Zhou, 2014; Tanaka et al.,
2018).

The structure of the pH-dependent UT, as described by Cui et al.
(2019), contains oligomers of 6 channel protomers, arranged in a
hexamer, with a lipid core at the center. Six-fold symmetry pro-
vides a 3-dimensional (3D) reconstruction, and extends the reso-
lution of the closed and open channel. Each channel is roughly
divided into 3 sections: the first one is a periplasmic domain and
vestibule formed by N and C termini, the second periplasmic loop 1
(PL1) and PL2, and the third one is transmembrane helices on the
periplasmic side of the urea filter (Fig. 1C). The urea filter near the
center of the membrane is composed of a ring of side chains from
several hydrophobic residues, and a cytoplasmic domain and ves-
tibule composed of transmembrane helices and loops on the
cytoplasmic side of the filter. The urea gating or filtration mecha-
nism is accomplished by conformational changes in PL1, PL2 and
the C terminus (Fig. 1C).

The third transporter is an ATP-activated UT (Jahns et al., 1988).
Some ruminal bacteria, such as Corynebacterium glutamicum allow
urea transport into the cytoplasm, crossing cell membranes
accompanied by ATP hydrolysis. For this process, the ATP binding
cassette, the ABC-type transporter, encoded by urtABCDE genes, is
vital (Leng and Nolan, 2010; Jin et al., 2017). Furthermore, evidence
(14C urea uptake) shows that an energy-dependent UT exists in
Alcaligenes eutrophus H16 and Klebsiella pneumoniae M5al (Jahns
et al., 1988). Thus, UT in these organisms facilitate urea as a N
source (Weeks and Sachs, 2001; Sebbane et al., 2002; Valladares
et al., 2002; Beckers et al., 2004).

Structurally, ABC-transporters consist of a urea binding protein
(UBP) which delivers urea to the transporter. The UBP is located in
the periplasm of Gram-negative bacteria, but is tied to the cyto-
plasmic membrane or transporter in Gram-positive bacteria
(Poolman and van der Heide 2002). The other component of ABC-
transporters are transmembrane domains (TMD), which are
embedded in lipid bilayers to form translocation channels and
nucleotide-binding domains (NBD) for ATP hydrolysis (Nicholas
and Yung, 2018) (Fig. 1D).
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Most UT protein and transportation studies have focussed on
bacteria in humans, other non-ruminants or bacteria from soil and
water (Li et al., 2012; Strugatsky et al., 2013; Esteva-Font et al.,
2015). However, there is a dearth of information on the precise
sites where urea hydrolysis occurs in ruminal bacteria, and the
presence of UT proteins. Some information exists in bacteria, e.g.
Succinovibrio dextrinosolvens strain 22B, has a urtE gene, and
S. dextrinosolvens strain Z6 have urtABCDE genes (Hailemariam
et al,, 2020), suggesting the presence of UT proteins. Those genes
are the subunit for urea ABC-transporter (ATP-binding) as indicated
in NCBI assembly results in GenBank accession GCA_900114195.1
and CP047056, respectively. However, the exact function of this
gene is not known. Furthermore, UT mechanisms into the cyto-
plasm of ruminal bacteria are also unknown. Studying such
mechanisms can be a potential area for regulation of urea hydro-
lysis, efficient utilization and tackling the impact of nitrogenous
compound pollution to the environment.

3. Composition of ruminal ureolytic bacterial communities

Ureolytic bacteria are the most important organisms in the
rumen (Leng and Nolan 2010; Jin et al., 2017). They produce
ureases which breakdown urea to NHs for microbial protein
synthesis. However, little is known about the diversity and dis-
tribution of rumen ureolytic microorganisms, by using different
microbiological mechanism ruminal bacteria from diverse taxa
possess urease enzymes synthesis system. Previously, approxi-
mately 35% of rumen bacteria detected by culture dependent
methods belonged to ureolytic species, e.g. Staphylococcus spp.,
Lactobacillus casei and Klebsiella aerogenes (Mobley et al., 1995). Jin
et al. (2016) identified abundant ureolytic bacteria, using urea and
urease inhibitors and selection methods, from Pseudomonas,
Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus
genera, and unclassified genera, Succinivibrionaceae. Using recent
microbiological and molecular technology, the new bacteria spe-
cies and strains can be identified. Jin et al. (2017) used the ureC
gene as a biomarker in their phylogenetic analyses to identify
ruminal ureolytic bacteria. They obtained better compositional
estimates of ureolytic bacteria in the rumen. Importantly, more
than 55% of sequenced bacterial samples were not assigned to any
known phylum, suggesting the rumen may contain more undis-
covered urease producing bacteria.

The ureases produced by ruminal ureolytic bacteria rapidly
hydrolyze urea to NHs. In nature, urea is hydrolyzed by urea ami-
nohydrolase, which is a multi-subunit nickel dependent metal-
loenzyme. The rate of urea hydrolysis by ureases is approximately
10™ times faster than uncatalyzed reactions (Kafarski and Talma,
2018a). As described by Callahan et al. (2005), uncatalyzed urea
degradation will take an elimination time of up to 40 years at 25 °C.
Urea hydrolysis yields NH3 and carbamate, which is an unstable
compound, and spontaneously hydrolyses to produce more NHj
and carbonic acid. However, urease activity levels in different
ureolytic bacteria are variable. For instance, levels are generally
higher in bacterial species loosely adhered with the solid feed
particles than in bacteria species tightly bound with solid feed
particles (Kumar and Rudolf, 2018). The urea kinetics constant
shows differences in the same bacterial species and different
strains. Breitenbach and Hausinger (2015) and Jin and Murray
(2010) reported that various Proteus mirabilis strains exhibited
urease K, values ranging from 13 to 60 mmol/L. These observations
show urea hydrolysis rates and quantities depend on bacterial
species and strains. Therefore, the isolation and identification of
ruminal ureolytic bacteria may provide regulatory targets to miti-
gate urea hydrolysis, and increase urea N efficiency in ruminants
(Jin et al., 2016).
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4. Factors affecting urea hydrolysis and transportation in the
rumen

The rate of urea hydrolysis in ruminants is variable and depends
on different factors. Mechanisms that regulate urea hydrolysis
could lead to improved N utilization, support efforts to reduce N
excretion, and improve environmental sustainability of animal
production.

Urea is hydrolyzed by ureases and therefore the presence of any
factors that influence urease synthesis and activity directly affects
urea hydrolytic processes. In most bacteria, urease synthesis and
activity are regulated by several factors, such as hydrolysis product
concentrations i.e., NH3 and N levels consumed by host ruminants,
urea concentrations, and the pH of the surrounding medium where
hydrolysis occurs. The following sections include brief analyses of
these factors and provide more information on urea metabolism
and host ruminants.

4.1. Urea, NH3 and other N concentrations

To regulate efficient urea use in ruminants, the effects of urea
concentrations on urea hydrolysis rates and the relative accumu-
lation of NH3 must be understood. It is accepted that for different
enzyme reactions, the concentration of the substrate affects
enzyme biosynthesis and activity. Many studies have indicated that
urea hydrolysis by bacterial ureases follows simple
Michaelis—Menten kinetics, whereby increasing substrate (urea)
concentrations increase reaction rates, until the concentration
satisfies urease saturation (Kurtz, 1970). As indicated by Patra and
Aschenbach (2018), in the rusitec system, urea hydrolysis was
increased, by increasing urea infusion rates from 10 to 170 mg/d for
a forage-based diet, and 40 to 170 mg/d for a concentrate-based
diet. In addition to the other required condition for urea hydroly-
sis to take place, the concentration of urea in the medium is a
determinant. In a study by Pearson and Smith (1943), the effect of
urea concentration on the rate of urea hydrolysis was known by
liberated NHj. Their results confirmed a direct relationship be-
tween liberated NH3, The study conducted by Marini and Van
Amburgh (2003) and Recktenwald et al. (2014) also indicated that
ruminal ammonia concentration increased by increasing N intake.
Furthermore, several research papers have indicated that control-
ling the release rate of ammonia from dietary urea hydrolysis al-
lows more efficient incorporation of nitrogen into ruminal
microbial protein (Jones and Milligan, 1975; Makkar et al., 1981;
Berends et al., 2014; Wang et al., 2018). However, as the concen-
tration of urea increased beyond the maximum ammonia produc-
tion level, the rate of urea hydrolysis was either unchanged or
decreased, because the medium was saturated with accumulated
ammonia (Patra and Aschenbach, 2018). In certain bacteria, urease
is inducible, and is synthesized and activated in the presence of
urea. Thus, urea in the surrounding medium initiates urease syn-
thesis. In this type of bacteria there are regulatory genes, whose
product is induced by the presence of urea (Konieczna et al., 2013).
For these bacteria, if the regulatory genes were initiated, the urease
structural and accessory genes were activated to form the active
urease.

In many bacterial species, urease biosynthesis and activity ap-
pears to be tightly regulated by factors related to different N con-
taining compounds, and N regulatory systems (Konieczna et al.,
2013). However, there are pronounced differences between bacte-
rial species. In some bacteria, the presence of NHs and/or N rich
compounds which release NH3 upon degradation, inhibit urease
synthesis and activity; and are derepressed under N-limiting or N
starvation conditions (Morou-Bermudez and Burne, 1999). As cited
by Patra and Aschenbach (2018), urea hydrolysis by Selenomonas
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ruminantium ureases was low when cells were grown at high NH3
levels. Hydrolysis processes increased several folds in cells grown
under the condition of low urea; conditions where NH3 did not
accumulate in the medium. Thus, ruminal NH3 concentrations
impact negatively on ruminal urea clearance rates.

The rate of urea degradation/hydrolysis per plasma urea con-
centration is affected in steers given different diets containing
different nitrogen sources (Holder et al., 2013; Batista et al., 2016).
More specifically, the rate of urea hydrolysis by ruminal urease
activity is affected by crude protein levels fed to animals. As the
animal is fed higher proteins levels, urease activities reduce.
Kappaun et al. (2018) reported that rumen bacteria showed lower
urease activities when sheep were fed a high protein diet (137 g
protein/d), but when fed a low protein diet (23 g protein/d), the
greatest urease activity was found in some bacteria.

The activity of urea transporters are also affected by different
dietary nitrogen contents. Sacca et al. (2018) and Rgjen et al. (2011)
showed that mRNA expression of the urea transporters, AQP3,
AQP7, AQP10 and UT-B genes, appeared responsive to dietary N
treatments. Furthermore, the transport of urea-N across rumen
epithelia was determined by NH3 absorption from the rumen, and
by urea influx into the rumen (Abdoun et al., 2006). As indicated by
Kristensen et al. (2010) arterial urea extraction across the rumen
increased from 7.1% to 23.8% when cows were changed from high-N
to low-N, respectively. This is used to balance the level of nitrogen
by using the endogenous sources. Kristensen et al. (2010)
concluded that urea transport across gut epithelia in cattle adapts
to N status, which is regulated by the expression or activity of
facilitative urea transporters.

4.2. Fermentable carbohydrates or microbial activity

As indicated earlier, urea hydrolysis rates are inhibited by NH3
accumulation in the surrounding medium. However, NH3 is
assimilated and incorporated into cells. In an energy-rich (glucose-
containing), N-poor environment, the action of glutamine synthe-
tase and glutamate synthase forms an NHs assimilatory cycle,
where NHj3 is incorporated into L-glutamate, to form L-glutamine.
Therefore, when sufficient fermentable carbohydrates are available,
NHj3 is converted to amino acids, which may create additional space
for urea hydrolysis. Studies have confirmed that highly fermentable
carbohydrate supplementation increases urea and urea-N hydro-
lysis influx into the rumen (Abdoun et al., 2006). Other research
conducted by Seram et al. (2019) found that ruminal ammonia-N
concentration decreased linearly as the total sugar content of the
diet fed to dairy cows increased. In steers fed hay diets supple-
mented with 0, 150, or 300 g sucrose per d, the rate of urea
disappearance from the rumen significantly increased as the su-
crose levels were increased. This improved fermentation status
could create a higher demand for NH3-N by ruminal bacteria.
Various studies have confirmed that ruminal fermentable carbo-
hydrate supplementation decreases NHs levels in the rumen
through the enhanced uptake of NHj3 for microbial protein syn-
thesis (Hristov et al., 2019).

4.3. Application of inhibitors

Urea hydrolysis to NHs is rapid (Chalupa et al., 1964) and can
surpass its utilization by the ruminal microorganisms to produce
microbial protein, leading to NH3 toxicity, wastage of nitrogen and
environmental pollution (Jonker et al., 2002; Kumar and Rudolf,
2018). Therefore, balancing hydrolysis rates with NH3 assimilation
rates are crucial for efficient ruminant utilization of any N source.
Different methods have been employed to slow down urea hy-
drolysis rates, such as urease inhibitors (Modolo et al., 2015;
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Kafarski and Talma, 2018b) and slow the release of urea (Taylor-
Edwards et al., 2009).

Urease inhibitors decrease urease activity in the rumen. Several
compounds are available and have been reviewed by Kumar and
Rudolf (2018), including acetohydroxamic acid (AHA), phosphoric
phenyl ester diamide (PPD), N- (n-butyl) thiophosphoric triamide
(NBPT), boric acid, bismuth compounds and hydroquinone.

Natural products (mostly secondary metabolites from plants
such as tannins, saponins and essential oils) are sources of potential
compounds for urease inhibition (Modolo et al., 2015). Most
recently, Liu et al. (2020) reported that Biochanin A (a natural
compound) effectively inhibited rumen urease and subsequent
urea degradation, thereby reducing rumen NH3 production. The use
of urease protein vaccination also slowed down urease activity in
ruminants (Zhao et al., 2015). Zhao et al. (2015) reported that cows
vaccinated with UreC from H. pylori caused a 17% reduction in
urease activity. The other option to limit rapid urea hydrolysis in the
rumen can be achieved by manipulating the factors that affect urea
transporter activity. Even if there is no research conducted directly
on ruminal bacteria and rumen in other parts of ruminant and non-
ruminant animals, the use of urea transporter inhibitors are used as
means to reduce urea hydrolysis (Knepper and Miranda, 2013;
Sands, 2013). This might be one of the possibilities to manage the
rate of urea hydrolysis in the rumen to achieve efficient utilization.

5. Conclusions

Ruminants obtain urea from feedstock and endogenous sources,
which is recycled urea in the rumen. Ruminal microorganisms have
developed mechanisms to exploit urea hydrolysis. For ruminants to
utilize urea, it has to be converted to NH3 and eventually to mi-
crobial protein by those ureolytic bacteria and others. Approxi-
mately 35% of rumen bacteria, belonging to ureolytic species, can be
detected by culture dependent methods. However, be using mo-
lecular methods, more than 55% of new ureolytic bacteria were
identified, which were not previously found in any phylum. Ureases
produced by ureolytic bacteria such as Pseudomonas, Haemophilus,
Neisseria, Streptococcus, Actinomyces, Bacillus and Succinivi-
brionaceae in the rumen, are the most important elements of urea
utilization. Urea used by microbes in the rumen, especially
endogenous urea, must pass rumen epithelia, however the results
are controversial. Some studies argue that urea enters the rumen
from the bloodstream by simple diffusion, whereas others state
urea requires a dedicated UT for rumen entry. Most recently, re-
searchers have confirmed that urea transport proteins are
responsible for the influx of urea into the rumen and are dependent
on the type and concentration of nitrogen sources in the rumen.
These studies have also confirmed that urea transport across rumen
epithelia is mediated by diffusion down a concentration gradient,
via transport proteins, such as UT-B and certain AQP family mem-
bers that are known to transport urea. The other controversy relates
to the exact site of urease activity in bacteria. Two conflicting ideas
have been proposed; the first suggests that urease activity occurs
outside the cell, and the other suggests that urease activity is
completely cytosolic. However, recent research has indicated that
bacteria, especially some environmental bacteria and bacteria in
the human body, have 3 different urea transporters, i.e., pH-
independent, proton-gated and ATP-activated transporters.

6. Future research directions

Future research should focus on investigating the structure,
expression, and regulation of urea transporters, thus confirming
the physiological role of these entities in urea hydrolysis and NH3
utilization. The regulation of urea transporters in bacteria might
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play a great role in controlling the rate of urea hydrolysis in the
rumen and have the potential for enhancing efficient urea
utilization.
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