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Abstract: Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused 

right now on the new findings of OTA, like being a complete carcinogen, information about 

OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important 

mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic  

effects have been described in combination with OTA. OTA is produced in foodstuffs by 

Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and 

Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, 

A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced 

in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder 

zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) 

and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). 

OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, 

vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was  

also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive,  

roasted nuts, spices), food supplements based on rice fermented with red microfungi  

Monascus purpureus and in foodstuffs of animal origin (e.g., cheese). 

Keywords: ochratoxin A; citrinin; producers; microfungi; dietary sources; foods 

 

OPEN ACCESS



Toxins 2013, 5  1575 

 

 

1. Introduction 

Ochratoxin A (OTA) is a very important mycotoxin. OTA is a nephrotoxic, hepatotoxic, 

embryotoxic, teratogenic, neurotoxic, immunotoxic, genotoxic and carcinogenic mycotoxin [1,2].  

OTA exposure may lead to the formation of DNA adducts, resulting in genotoxicity and 

carcinogenicity (human carcinogens of the 2B group). Now, it seems that OTA could be “a complete 

carcinogen” (not only an initiator, but also a promoter) and that its mutagenicity has been revised, 

obliging reinforcement of its monitorization in food [3–6].  

Recent OTA research is focused now on the new findings of OTA, like being a complete carcinogen, 

information about OTA producers and new exposure sources of OTA [2]. In the Czech Republic, one of 

the EU Member States, a new assessment of dietary exposure and health risk characterization of OTA is 

currently taking place for 10 population groups of both sexes aged 4–90 years (research project No. NT 

12051–3/2011, entitled “Ochratoxin A—health risk assessment for selected population groups in the 

Czech Republic”) [2].  

Citrinin (CIT), often found in the same food as OTA [7], is a powerful nephrotoxin. In repeat dose 

toxicity studies, the kidney was identified as the principal target organ for CIT, and significant species 

differences in the susceptibility to CIT have been observed [8,9]. The renal system of humans was found 

to be affected, and the mitochondrial respiratory chain was identified as a possible sensitive target for 

CIT [10]. A few studies have also addressed its potential for immunotoxicity [11]. Nevertheless, the 

studies of the immunotoxicity of CIT are rather incomplete, often non-specific and do not allow a 

conclusive evaluation. In vitro and in vivo studies provided clear evidence for reproductive toxicity and 

the teratogenic and embryotoxic effects of CIT [12–22]. CIT is not mutagenic in conventional bacterial 

assays, either with or without metabolic activation by the S9 fraction from rat or human liver or rat  

kidney [23]. CIT is not carcinogenic according to recent knowledge. The International Agency for 

Research on Cancer (IARC) (1986) concluded that there was limited evidence for the carcinogenicity of 

CIT to experimental animals and that no evaluation could be made of the carcinogenicity of CIT to 

humans. CIT is classified in group 3 (not classifiable as to its carcinogenicity to humans) [24], but has 

been shown to increase OTA carcinogenicity [25,26].  

Recent CIT research is oriented toward nephrotoxicity; both additive and synergistic effects have 

been described in combination with OTA [2,27–30]. With regard to the nephrotoxicity of CIT, the 

situation can be complicated by the fact that CIT interacts simultaneously with other naturally occurring 

mycotoxins—e.g., OTA. Besides, CIT and OTA have also been associated with alterations in renal 

function and/or with the development of renal pathologies. It has been demonstrated that the  

co-exposure to CIT and OTA simultaneously modifies DNA adduct formation with increasing formation 

of the C-C8dG-OTA adduct [29]. The recent CIT research has focused on the instability of CIT during 

food processing. The low levels of CIT in processed foods may result from the fact that CIT is  

heat-sensitive and decomposes during heat treatment to form other complex compounds, such as CIT H1 

and CIT H2, whose cytotoxicity, compared to the original CIT, is higher and lower, respectively [31–33]. 
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2. Ochratoxin A and Citrinin Producers 

2.1. OTA Producers 

OTA is produced worldwide in foodstuffs by microfungi of the genera, Aspergillus, mainly in 

subtropical and tropical areas, and Penicillium, especially in temperate and colder zones [34–41]. These 

toxigenic microfungi almost always produce several toxins at the same time, for example OTA, OTB  

(ochratoxin B) or OTC (ochratoxin C) [42], and this simultaneous occurrence can result in synergetic 

toxic effects. 

Due to considerable revisions in taxonomy, particularly within the genus Penicillium, and difficulties 

in correct species assignation to isolates within that genus, this identity has changed over time [43]. 

Tables 1 and 2 give an overview of the current identity of microfungi Aspergillus and Penicillium 

species that are apparently able to produce OTA in foodstuffs [43,44]. 

Table 1. Aspergillus species as ochratoxin A (OTA) producers in foodstuffs. 

Genera Section Species Foodstuffs (example) 

Aspergillus 

Circumdati 

A. ochraceus G. Wilh.  
Soya bean, nuts, red pepper, 

cereals, green coffee beans 

A. steynii Frisvad & Samson Coffee beans 

A. westerdijkiae Frisvad & Samson Coffee beans 

Nigri 

A. carbonarius (Bainier) Thom Grapes, red pepper, coffee beans 

A. foetidus Thom & Raper Grapes 

A. lacticoffeatus Frisvad & Samson Coffee beans 

A. niger Tiegh Grapes, peanuts 

A. sclerotioniger Frisvad & Samson Coffee beans 

A. tubingensis Mosseray Grapes 

Table 2. Penicillium species as OTA producers in foodstuffs. 

Genera Subgenus Series Species Foodstuffs (example) 

Penicillium Penicillium 
Verrucosa P. verrucosum Dierckx Cereals 

Verrucosa P. nordicum Dragoni & Cantoni Dry ham, salami 

Three major OTA producing species, Aspergillus ochraceus, A. carbonarius and  

Penicillium verrucosum, have quite different ecologies and physiologies, making it relatively easy to 

determine which species are responsible for OTA formation in a particular food or geographical location.  

In brief, Aspergillus ochraceus and closely related species grow at low water activities and at 

moderate temperatures. They are mostly associated with dried and stored foods, especially cereals. 

Although many papers describe A. ochraceus as the main producer of OTA, production by this and 

related species has not often been reported, and their importance appears to have been overstated [45].  

The second producing Aspergillus species, A. carbonarius (and the closely related A. niger, which 

produces OTA less often), grows well at high temperatures and produces pigmented hyphae and spores, 

making it resistant to UV light. Consequently, A. carbonarius is commonly found in grapes and similar 

fruit that mature in sunlight and at high temperatures [45]. Black Aspergilli are considered as the primary 
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source of OTA on grapes, produced on the berries during the growing season, mainly from maturing to 

ripening. In particular, A. carbonarius is the most important producer of OTA; however, A. niger and  

A. tubingensis can contribute to some extent in the vineyard. OTA contents can reach high levels in wine 

in some parts of the Mediterranean basin and in dried vine fruits in South America, Australia and 

Europe. OTA production is influenced by various factors, including climatic conditions/geographic 

areas, grape varieties/crop systems and berry damage caused by insects, fungal infection or excessive 

irrigation/rainfall. Fungicidal and insecticidal treatments can reduce infection by OTA-producing fungi 

and, consequently, OTA contamination [37,39,46]. 

The main food habitat for Penicillium verrucosum appears to be cereals grown in the cool temperate 

zones, ranging across Northern and Central Europe and Canada. It seems certain that growth of  

P. verrucosum in cereals is the major source of OTA in Northern Europe and other cool temperate zone 

areas. Higher amounts of OTA were produced on wheat than on other substrates, including maize, 

peanuts, rapeseeds and soybeans. P. verrucosum also produces CIT [45]. 

OTA can also be produced by toxigenic microfungi that grow on products made of pork meat during 

their ripening (direct contamination). Penicillium nordicum, a potent OTA producer, has been proven to 

grow on meat and meat products [47,48]. OTA is also found in meat products originating from  

animals that are fed with feedstuffs made from contaminated cereals as a major dietary component  

(indirect contamination) [49].  

2.2. CIT Producers  

CIT is produced worldwide in foodstuffs by microfungi of the genera, Penicillium [43,44,50] and 

Monascus [51]. Tables 3 and 4 give an overview of the current identity of microfungi Penicillium and 

Monascus species that are apparently able to produce CIT in foodstuffs [43,44,50–53]. 

Table 3. Penicillium species as citrinin (CIT) producers in foodstuffs. 

Genera Subgenus Series Species Foodstuffs (example) 

Penicillium 

Furcatum - P. citrinum Thom Cereals, nuts, fruit 

Penicillium Expansa P. expansum Link Fruit, cereals 

Penicillium Corymbifera P. radicicola Overy & Frisvad Bulbs and root vegetables 

Penicillium Verrucosa P. verrucosum Dierckx Cereals 

Table 4. Monascus species as CIT producers in foodstuffs. 

Genera Species Foodstuffs (example) 

Monascus 
M. purpureus Went Food supplements with fermented red rice 

M. ruber Tiegh Soya bean, sorghum, rice, oat 

Penicillium citrinum is one of the commonest microfungi on Earth, occurring in all kinds of food and 

feed, in almost all climates. CIT is produced over the range of 15–30 °C and optimally at 30 °C. 

Penicillium expansum is known as a postharvest pathogen of fruits (e.g., apple) and vegetables.  

P. expansum also produces patulin [45].  
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A recent concern, although not related to CIT as a Penicillium toxin, is the presence of CIT in food 

colorings traditionally made in Asia from rice fermented with Monascus purpureus (“red mold rice”), 

which have been used for centuries for meat preservation and food coloring [51]. 

3. Important Dietary Sources of Ochratoxin A (OTA) and Citrinin (CIT)  

3.1. Important Dietary Sources of OTA 

The consumption of foodstuffs contaminated by OTA represents a major source of exposure to  

OTA in humans [54], while dermal contact or inhalation exposures to OTA show minor importance for  

the general population [55].  

As such, OTA has been detected in foodstuffs of both plant and animal origin. In foodstuffs of plant 

origin, OTA has been found, in particular, in cereal products, beer, coffee, cacao, chocolate, spices  

(e.g., dried red pepper, chili powder, black pepper, cayenne pepper, nutmeg, coriander, ginger, 

curcuma), vegetables, green tea, pistachios, figs, raisins, grape juice, wine [56–66], liquorice and 

chestnuts [67,68]. Foodstuffs of animal origin, such as raw pork meat, pork blood products,  

kidney or poultry liver, are indirectly contaminated by OTA when animals are fed with contaminated 

feedstuffs [49,54,66,69]. However, meat products, such as raw ham muscle, cured meats, salami or  

dry-cured ham, may also be contaminated by OTA in a direct way. In particular, OTA is produced by the 

ochratoxigenic microfungi, Penicillium nordicum, growing on products made of pork meat during their 

ripening [47,48,54,69,70]. Cheese is also directly contaminated by OTA. The occurrence of OTA on the 

surface of hard cheese wheels has been repeatedly described in the literature [71]. The occurrence of 

OTA in blue cheese has also been reported. The available data clearly demonstrate that the 

contamination did not derive from contaminated milk, but it resulted from the molded spots of the 

ochratoxigenic microfungi (e.g., Penicillium nordicum as a contaminant in protein-rich food) on  

blue cheese [72]. 

The preliminary recent results of Czech research project No. NT 12051–3/2011 concerning  

the occurrence of OTA in foodstuffs of plant and animal origin in the years 2011–2013 are shown in  

Tables 5 and 6 [66]. 

The occurrence of OTA in animal products is not generally considered to be of major public health 

concern. In line with this opinion, we do consider, preliminarily, the risk associated with the 

consumption of food derived from animals fed with OTA-contaminated feeds to be negligible. 

The analytical results will serve as a basis for an assessment of dietary exposure and health risk 

characterization of OTA for ten population groups 4–90 years of age for both sexes.  

The dietary exposure of humans to OTA can be assessed by analyzing levels of OTA in biological 

materials, too. The use of biological markers in approximately the last two decades has indicated that 

humans are chronically exposed to OTA [3,73–75]. 
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Table 5. The occurrence and amount of OTA in foodstuffs of plant origin. 

Foodstuffs n n+% 
Mean a  

(μg/kg) 

Median a 

(μg/kg) 

Range 

minimum-maximum 

(μg/kg) 

hot red pepper 12 100 19.00 12.10 0.2–91.8 

sweet red pepper  12 100 16.00 13.50 0.2–38.4 

chili 12 92 6.70 3.43 0.1–32.7 

spices mix 12 83 1.64 1.06 0.1–9.4 

coffee instant 12 92 1.04 0.79 0.1–4.91 

cocoa powder 12 50 0.94 0.31 0.1–4.1 

black pepper 12 92 0.83 0.66 0.1–2.82 

non-chocolate sweets 12 83 0.67 0.78 0.1–1.78 

biscuits 12 58 0.57 0.22 0.1–1.69 

raisins 12 42 0.46 0.10 0.1–2.17 

rice 12 8 0.41 0.10 0.1–3.76 

sponge biscuits 12 58 0.41 0.15 0.1–2.14 

coffee 12 58 0.41 0.22 0.1–1.04 

chocolate sweets 12 50 0.29 0.17 0.1–1.16 

bitter chocolate 12 42 0.29 0.10 0.1–1.01 

chocolate wafers 12 75 0.24 0.22 0.1–0.56 

muesli 12 17 0.23 0.10 0.1–1.44 

beer 10° 12 83 0.066 0.05 0.005–0.26 

lager beer  12 100 0.064 0.05 0.01–0.18 

red wine  12 25 0.069 0.005 0.005–0.7 

white wine  12 42 0.017 0.005 0.005–0.036 

Abbreviations: n+ (%), percentage of positive samples; a OTA levels < 0.2 μg/kg considered ½ limit of quantification 

(LOQ) = 0.1 μg/kg and OTA levels < 0.01 μg/kg considered ½ LOQ = 0.005 μg/kg, respectively (for drinks).  

Table 6. The occurrence and amount of OTA in foodstuffs of animal origin. 

Foodstuffs n n+% Mean a (μg/kg) Median a (μg/kg) Range minimum-maximum (μg/kg) 

pork kidney 12 8 0.13 0.10 0.10–0.46 

pork meat  12 8 0.11 0.10 0.10–0.20 

chicken liver  12 8 0.12 0.10 0.10–0.28 

Abbreviations: n+ (%), percentage of positive samples; a OTA levels < 0.2 μg/kg considered ½ LOQ = 0.1 μg/kg.  

3.2. Important Dietary Sources of CIT 

CIT was found in foodstuffs of vegetable origin, e.g., cereals and cereal products, rice, pomaceous 

fruits (e.g., apples), fruit juices, black olive, roasted nuts (almonds, peanuts, hazelnuts, pistachio nuts), 

sunflower seeds, spices (e.g., turmeric, coriander, fennel, black pepper, cardamom and cumin) and food 

supplements based on rice fermented with red microfungi Monascus purpureus [51,59,76–82]. Cheese 

is also contaminated by CIT where toxigenic strains directly grow in the cheese mass [83]. An overview 

of previously reported literature data on the occurrence of CIT in foodstuffs in the years 1972–2010 was 

prepared by European Food Safety Authority (EFSA) [84]. 
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The results of selected recent studies (2009–2013) on the occurrence of CIT in red mold rice are 

shown in Table 7. 

Table 7. The occurrence and amount of CIT in red mold rice. 

Foodstuffs n n+% Mean (mg/kg) Range minimum-maximum (mg/kg) References

Red mold rice 1 100 - 1.43 [85] 
Red mold rice 1 100 - 15.21 [86] 
Red mold rice 12 33 - 24–189 [87] 
Red mold rice 50 100 4.03 0.23–20.65 [88] 

Abbreviations: n+ (%), percentage of positive samples. 

In addition to CIT, several bioactive compounds (monascin, ankaflavin, lactone and acid forms of 

monacolin K) were determined to be in red mold rice used as an ingredient in food supplements [89]. 

The maximum level of the CIT in food supplements based on red mold rice is being prepared by the 

European Commission (Directorate General for Health and Consumers) right now [90]. 

4. Conclusions 

All the recent information on both the “relevant” OTA and CIT producers and the new sources of 

exposure to OTA and CIT is very important for health risk assessment. It is recommended to promote the 

correct use of agrotechnological practices with regard to raw materials (e.g., good agricultural practices 

(GAP)) and processed products (hazard analysis and critical control points (HACCP)) in order to reduce 

the concentration of OTA and CIT in foodstuffs and to avoid the harmful effects resulting from the 

consumption of foods contaminated by OTA and CIT. 
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