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Mammalian mannose-binding proteins (MBP)' were first isolated from the
serum of rabbits (1), and subsequently were found in the liver and serum ofhumans
(2-5) and rodents (5-8). Analysis of the encodedhuman MBP, like its two rat homo-
logues (9), reveals that the protein is divided into three domains: a cysteine-rich
NH2-terminal domain which stabilizes the a helix of the second collagen-like do-
main, and a third COOH-terminal carbohydrate-binding region (10) . MBP may
have a role in host defense; this is suggested first by its ability to bind high mannose
glycans, which are present in the cell walls of many pathogens, including some Gram-
negative bacteria (11-13), mycobacteria (14), yeasts and fungi, certain parasites (15),
and envelope glycoproteins of certain viruses, such as the human immunodeficiency
virus (HIV) (16, 17) . Second, the synthesis of human MBP appears to be stress in-
duced, as it is an acute-phase protein (10) . Third, human MBP is a member of a
family of homologous lectin-like proteins (18) that includes proteins found in the
coelomic fluid of sea urchins (19) and in the hemolymph of Sacraphaga perigintaa
(20), which may have a role in the host defense of these organisms .
We wish to evaluate whether the high mannose oligosaccharides identified on the

HIV envelope glycoprotein (gp120) were potential ligands for MBP. gp120, isolated
from HIVinfected CD4+ H9 lymphoblasts (18) and recombinant gp120 expressed
in Chinese Hamster Ovary (CHO) cells (Gregory, T., and M. Spellman, a personal
communication) has been shown to possess high mannose glycans. The importance
of these high-mannose oligosaccharides in HIV target interaction is suggested by
studies showing that plant lectins that recognize certain configurations ofhigh-mannose
oligosaccharides inhibit HIV infection and syncytia formation in vitro (21) . These
conclusions are supported by studies that show that deglycosylated forms of gp120
(22) as well as bacterially expressed recombinant gp120 bind with reduced affinity

This work was supported by National Institutes of Health grant ROI-AI-23706, by a grant-in-aid from
the Squibb Medical Institute (R . A. B. Ezekowitz), and by NIH grants HL-33744 and AI/HL-24475
(R . A. Byrn andJ. E. Groopman). Address correspondence to R. A. B. Ezekowitz, Harvard Medical
School, Division ofHematology/Oncology, Department of Pediatrics, The Children's Hospital, Enders
Building, 7th floor, 300 Longwood Avenue, Boston, MA 02115 .

1 Abbreviations used in this paper: CHO, Chinese Hamster Ovary cells ; MBP, mannose-binding pro-
tein ; OPD, o-phenylene diamine; RT, reverse transcriptase .

J. Exp. MED. 0 The Rockefeller University Press - 0022-1007/89/01/0185/12 $2.00

	

185
Volume 169 January 1989 185-196



186 MANNOSE-BINDING PROTEIN AND HUMAN IMMUNODEFICIENCY VIRUS

to CD4 (22) . In this report, we demonstrate that MBP can inhibit HIV infection
ofH9 lymphoblasts at physiologically relevant concentrations, and that MBP binds
selectively to HIVinfected cells . Mannan-inhibitable, -saturable binding of recom-
binant gp120 to MBP suggests that the high mannose glycans on gp120 are indeed
the ligand recognized by MBP.

Materials and Methods
Reagents
DME, FCS, glutamine, penicillin, and streptomycin were obtained from Gibco Laborato-

ries (Grand Island, NY) . Yeast mannan was obtained from Sigma Chemical Co ., (St . Louis,
MO) and a glycoconjugate of mannose and BSA was used as described (23) . HIV antisera
were obtained from seropositive patients, gp120 antiserum, anti-gp120 mAb B56, and recom-
binant gp120, which were generously provided by Dr. T. Gregory, Genentech Inc ., San Fran-
cisco, CA . Anti-rabbit IgG coupled with rhodamine was obtained from Fisher Scientific Co .
(Pittsburgh, PA), and anti-rabbit IgG coupled with alkaline phosphatase was supplied by
Promega Biotec (Madison, WI) . Goat anti-mouse IgG coupled with horseradish peroxidase
was obtained from Bio-Rad Laboratories (Richmond, CA) .

Purification of Human MBP
Human MBP was purified from human plasma from patients undergoing plasmapheresis

as described (2) . Briefly, the plasma was incubated with mannan-Sepharose beads in the pres-
ence of 20 mmol calcium chloride, and after extensive washing, the beads were loaded onto
a column and a protein peak was eluted with 10 mmol Tris/EDTA . The protein peak was
collected, recalcified, and passed down a second mannan-Sepharose column and was eluted
with 50 mmo1 D-mannose . C-reactive protein and serum amyloid A protein were retained
on the column in the presence of 50 mmol D-mannose, and only MBP was eluted . Subse-
quent elution of this second column with 10 mmol Tris/EDTA released these other proteins .
Binding assays using ' 25I-mannose-BSA that was radiolabeled as described (23) revealed a
3,000-fold purification . Specific binding was not observed in the absence ofcalcium (not shown) .
An aliquot of MBP was boiled in the presence of 2% SDS and 2% beta-mercaptoethanol
and separated on 10% SDS PAGE (Laemmli system [24]) . The gels were either fixed in 10%
methanol and proteins were detected with Coomassie Brilliant Blue, or transferred to nitrocel-
lulose by Western blotting . The procedure was performed on an Hoeffer Scientific Instru-
ments (San Francisco, CA) apparatus according to the manufacturer's instructions . There-
after the filter was incubated with a rabbit anti-human MBP antiserum (a gift from Dr. J .
Baenziger, Washington University School of Medicine, St . Louis, MO) for 1 h, washed, and
incubated with a goat anti-rabbit alkaline phosphatase-coupled second antibody (Promega
Biotec) . No staining was observed in the absence of the first antibody. The results shown
in Fig . 1 demonstrate a major band at 32 kD and minor band 64 kD. Both these species
react specifically with the antiserum . The upper band represents incompletely reduced dimers
of MBP.

Cell Lines
The CD4' and T cell lines H9 and CD4* myeloid-like cell line U937 have been described

in detail elsewhere (25) . Cell lines were maintained in DME supplemented with 20% heat-
inactivated FCS and 2 mm glutamine plus penicillin and streptomycin . Assays of free virus
infectivity were performed in the same medium .

HIV Preparation
Reverse Transcriptase (RT)Activity.

	

Magnesium-dependent activity was measured as described
(26) . 100% activity was equal to 1 .5 x 106 cpm and background counts were 5 x 10 3 cpm .
Values presented are means of duplicate assays with standard deviation of t 15% and are
representative of three independent experiments. Independent batches of MBP were used
and gave similar results .
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FIGURE 1.

	

Purification ofhuman mannose-binding pro-
tein . The closed circles represent the protein concentra-
tion of the peak eluted with 50 mmol n-mannose from
a mannan-Sepharose column (6) as determined by
013280 . The open circles represent calcium-dependent
binding assays across the peak with 1251-mannose-BSA
(sp act 2 x 10 6 cpm/ug). Fraction 42 contained the
maximum activity and protein content and was analyzed
by SDS-PAGE underdenaturing conditions and stained
with Coomassie blue. A sample run in parallel was trans-
ferred to nitrocellulose by Western procedure and
specifically stained with a rabbit anti-human MBPan-
tiserum and a goat anti-rabbit alkaline phosphatase-cou-
pled second antibody.

Assays of HIV Infectivity.

	

A HIV virus inoculum of 100 tissue culture infective dose 50s
(1 TCID50 is defined as the infective dose that infects half the wells in a 24-well tissue cul-
ture tray containing 2 x 105 cells/well) was preincubated for 60 min at 37°C with various
concentrations of MBP, ranging from 50 hg/ml to 1 wg/ml, in the presence or absence of
1 mg/ml of the mannose-rich yeast mannan . Similar pretreatment with 1 wg/ml or 10 ltg/ml
Con A or anti-gpl20 antisera was also performed. The treated and untreated virus inoculum
was then added to 2 x 10 5 H9 cells, incubated for 1 h at 37 °C, and transferred to 2 ml of
fresh media in a 24-well tissue culture tray. After 7 d of culture, RT activity was measured
in the supernatants as described (26) . Percent neutralization was calculated as percent RT
activity after various treatments over RT activity of untreated inoculum multiplied by 100.
Infectivity was also assessed by the presence of HIV proteins on the cell surface, as detected
by specific anti-HIV antiserum and fluorescent-labeled goat anti-human antibody. After 7 d
in culture, cells were fixed and then lightly counterstained with Evans' stain and examined
by fluorescence microscopy. Numerous fields of quadruplicate wells were examined and the
photomicrographs shown in Fig. 3 are representative of five independent experiments .

MBP Binding to HIVinfected U937 Cells
CD4' U937 were cultivated in the presence of HIV as described above for H9 cells .

30-50% ofthe population expressed gpl20 on the cell surface as detected by a specific gpl20
antiserum and a fluorescently labeled second antibody (not shown) . To detect MBP binding
to the surface of infected cells, fixed cells were incubated with 10 4g/ml of MBP in the pres-
ence of 10 mmol calcium chloride for 30 min at room temperature. The cells were then washed
three times in HBSS and incubated for 30 min with a rabbit anti-human MBP antiserum,
which was detected by a goat anti-rabbit antibody coupled to alkaline phosphatase . After
five washes, nitroblue tetrazolium and BCIP were added according to the manufacturers in-
structions (Promega Biotec).

Measurement of MBP Levels in Serum
Two dilutions of 78 coded serum samples from 4 groups, healthy volunteers, patients who

were seropositive for HIV but asymptomatic, patients with AIDS-related complex (ARC),
and patients with AIDS were incubated with a 1 :5,000 dilution of anti-MBP antiserum for
30 min and then added to a 96-well Immulon II plate (Dynatech Laboratories, Inc., Alexan-
dria, VA) that had been precoated with 50 ng/well of MBP After a 30-min incubation at
room temperature, the wells were washed with PBS and 0.05% Triton and a goat anti-rabbit
horseradish peroxidase second antibody was added. Specific binding was detected by a soluble



188 MANNOSE-BINDING PROTEIN AND HUMAN IMMUNODEFICIENCY VIRUS

chromalten o-phenylene diamine (OPD) (Sigma Chemical Co.) and read against known stan-
dards in an ELISA reader. The values of MBP in serum were calculated on a Cricket graph
program on a Macintosh computer . The code of the samples was broken after values had
been attained and were ranked within the four groups described . In five samples, the values
obtained from the two dilutions gave values that were varied by >15% and these were re-
moved from the analysis .

Binding of Recombinant g;ó120 to MBP
1 wg/well of human MBP was bound to Immulon II Elisa plates in phosphate buffer, pH

9.5, overnight at 37°C . The plates were washed three times in PBS and 0.5% Triton 100 .
Thereafter, varying concentrations of recombinant gp120 (0.9 ng to 9 4g) that was expressed
in CHO cells (gift from Dr. T. Gregory, Genentech, Inc .) were incubated with MBP in 100
ul of HBSS at room temperature for 1 h . The plates were then washed three times and a
1 :100 dilution of a mouse anti-gpl20 mAb was added to each well . This antibody, BC5, is
directed against a domain ofgpl20 that does not interfere with the binding of gpl20 to CD4
(Gregory, T., personal communication) . After 60 min at 37'C .the plate was washed three
times with HBSS and 0.5% Triton and a goat anti-mouse horseradish peroxidase-coupled
second antibody (Bio-Rad Laboratories) was added . OPD was added and the reaction was
read on an Elisa reader. To remove all the carbohydrate moieties, 20 wg of gp120 was in-
cubated overnight at 37°C in 0.1% SDS and 0.55 M sodium phosphate buffer, pH 8.6, with
10 U of N-glycanase . The reaction was terminated by the addition of sodium citrate according
to manufacturers instructions (Genzyme Corp., Boston, MA). Detailed analysis of gp120 so
treated revealed removal ofthe high mannose glycans (Gregory, T., Genentech, personal com-
munication) .

Results

Human MBP Inhibits HIV Infection of H9 Cells
Reverse Transcriptase.

	

Pretreatment of HIV with MBP inhibited in vitro infection
of CD4+ H9 cells in a dose-dependent manner (Fig . 2), as determined by the mea-
surement of RT activity in the media of the cultured cells (26) . Inhibition was de-
pendent on the concentration of MBP with 25% inhibition observed at 1 wg/ml and

FIGURE 2 .

	

Percent RT activity measured in the tissue culture media of H9 cells . 100% activity
was equal to 1 .5 x 10 6 cpm and background counts were 5 x 103 cpm . Values presented are
means of duplicate assays and representative of four independent experiments.
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100% inhibition at 50 gg/ml of MBP. The results were highly reproducible with
four independent batches of MBP The inhibition of virus infection by MBP was
specifically abrogated by preincubation of MBP with the mannose-rich yeast mannan.
Pretreatment of the viral inoculum with Con A at 1 gg/ml and anti-gp120 antiserum
also inhibited virion infectivity, as has previously been shown (25) . Higher concen-
trations of Con A adversely affected cell viability.
HIV Surface Antigens .

	

We next examined the H9 cells for the presence of HIV
surface proteins, a hallmark of a productive infection, using a specific heteroantiserum
and a fluorescently labeled second antibody. As expected, untreated virus resulted
in a productive infection . Fig. 3 A reveals the presence of specific staining against
the background red Evans' counterstain . The absence of HIV surface proteins on
the cells that received HIV plus 50 jig/ml MBP is shown in Fig. 3 C, consistent
with the 100% inhibition of RT activity. The inhibition of virus infection by MBP
could be specifically abrogated by the mannose-rich yeast manman, as evidence by
the reappearance of HIV surface proteins (Fig. 3 E) .
MBPBinds Specifically to HIVinfected Cells. H9 Lymphoblasts .

	

Studies with recom-
binant vaccinia virus containing the HIV envelope gene demonstrated that Con
A-mediated inhibition ofHIVinduced cell fusion involved lectin binding to the viral
envelope glycoprotein (21) . It seemed reasonable, therefore, that human MBP in-
hibited HIV virus infectivity by binding to mannose residues of the viral envelope
glycoprotein . To evaluate this possibility we stained HIV-infected and uninfected
H9 cells with directly fluoresceinated MBP Direct specific calcium-dependent binding
was observed on the surface of HIV-infected cells (Fig . 4 A) . The binding was
specifically inhibited by the neoglycoprotein mannose-BSA (Fig . 4 C) and no specific
fluorescence was detected on uninfected H9 cells (Fig . 4 B), although in some rare
cells nonspecific cytoplasmic staining was observed (not shown) .
U937 Cells.

	

We next examined whether MBP would selectively recognize the
HIV envelope glycoprotein expressed on the surface of nonlymphoid cells . U937
cells, a CD4+ monocyte cell line, were infected with HIV, fixed with methanol, and
incubated with MBP The calcium-dependent binding of MBP to infected U937
cells was detected by a sandwich technique with anti-MBP antibody followed by
a second antibody coupled to alkaline phosphatase. The reaction product catalyzed
by this enzyme revealed a pattern of staining in infected HIV U937 cells (Fig. 5 a) .
No specific staining was observed in the untreated control cells (Fig . 5 b), and the
binding ofMBP to infected cells was specifically inhibited by 200 N g mannose-BSA
(Fig. 5 c) . These results suggest that MBP selectively recognizes the configurations
of high mannose glycans on the gp120 expressed on the surface of HIV-infected my-
eloid as well as lymphoid cells .

Recombinant gp120 Binding to MBP.

	

Our next goal was to assess direct binding
of gp120 to MBP. As gp120 is difficult to radiolabel, we used an ELISA method to
demonstrate specific saturable binding of gp120 to 1 wg of MBP (Fig . 6) . Inhibition
studies with 1 mg/ml ofyeast manman, the decreased binding ofN-glycanase-treated
gpl20, and the divalent cation dependence of the interaction, strongly implicate the
carbohydrate moieties on gp120 as the ligand recognized by MBP The anti-gp120
mAbdid not react with MBPin the absence of gp120. Similarly, the goat anti-mouse
IgG-coupled horseradish peroxidase antibody did not bind to the MBP in the ab-
sence of gp120 and the mouse anti-gp120 mAb.
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FIGURE 3 .

	

Inhibition ofHIV infection of H9 cells in vitro . Infectivity was assessed by the pres-
ence of HIV proteins as detected by specific anti-HIV antisera and a fluorescent-labeled goat
and human antibody on fixed preparations after 7 d of culture . (A) The expression ofHIV pro-
teins, a hallmark of a productive infection after 7 d of culture in the presence of stock virus titer
(100 TCID5o) . (B) Phase-contrast micrograph of the same field . (C) After preincubation of stock
virus with 50 4g/ml MBP, no HIV proteins were detected by specific immunofluorescence . (D)
Phase-contrast micrograph ; the cells appear healthy, viable, and do not form obvious syncytia.
(E) Specific appearance of HIV proteins after addition of I mg/ml yeast mannan . (F) Phase-
contrast micrography. Original magnification was x400 .

MBPConcentrations Active In Vitro Are within the PhysiologicalRange.

	

MBPlevels were
measured in serum from a total of 78 randomly coded samples of HIV anti-
body-seronegative hospital workers, HIV antibody-seropositive patients, patients
with AIDS-related complex (ARC), and patients with AIDS. The results shown in
Fig. 7 demonstrate that although MBP serum levels were significantly higher in the
ARC and AIDS groups compared with the seronegative and seropositive groups,



EZEKOWITZ ET AL .

	

191

=wu a

ó 'CJ
4cli

4

y

O

Û4r UO m
C
O .~

t
t "m
ro C

0 . 5

>.C

~ -3
.t t
-C u

-. u

O
.V U
n. u
.2 3

-° ç
U -(7x wr.

2 .5 :n
C - -r

U "a
ÛCJ
FFu4.
wwG

aGe a
V h O

ti u t
O U C

Z 7:
tt O

O C4J U
V

.52 t

av

á u v7 Û U
O ~ O)
~;. .2 x



192 MANNOSE-BINDING PROTEIN AND HUMAN IMMUNODEFICIENCY VIRUS

FIGURE 5 .

	

Staining of HIVinfected and uninfected U937 cells with human MBP shows alka-
line phosphatase-catalyzed reaction product in which MBP bound is detected by rabbit anti-MBP
antiserum, which in turn is detected by a horseradish peroxidase goat anti-rabbit Ig . (a) Binding
to HIV infected U937 cells . (b) Lack of binding to uninfected cells . (c) Manman inhibition of
MBP binding to HIV-infected cells .

34 of 37 patients had values below the effective in vitro inhibitory concentration of
50 ug/ml . As the MBP is an acute-phase reactant, we would predict that the one
patient in the AIDS group who did have MBP serum levels between 50-60 Pg/ml
most likely had an acute infection . Review of the medical records of this patient
revealed that he had an acute episode of pneumocystis pneumonia . Of the two ARC
patients with high MBP levels, one had acute cytomegalovirus infection and the
other appeared to be well . The medical records ofthe other patients were not avail-
able for review. Unfortunately, serial samples were not available and therefore no
definitive statement can be made from this limited information on whether any corre-
lation exists between lower than expected MBP serum levels and disease progres-
sion, or conversely, whether high levels confer protection in vivo .

Discussion
In this study we show that preincubation of HIV I with human mannose-binding

protein results in almost a 100% inhibition of HIV infection of CD4+ H9 lympho-
blasts in vitro. The mannose-rich yeast manman, which binds with high affinity to
MBP, abrogates the inhibitory effects of MBP on HIV tropism of the target cells .
More direct evidence that MBP selectively recognizes high mannose glycans known
to be present on gp120 comes from the demonstration that recombinant gp120 binds
directly to MBP. The binding saturable can be inhibited by mannan and N-glycanase

0.3

0.2

ó
0 0.1

9P 120 (pq /ml)

FIGURE6 .

	

Binding of recombinant gp120
to 1 ug/well of human MBP. (0) gp120 in
increasing concentrations from 0 .9 ng to
2 .7 wg/ml . (0) gp120 treated with N-gly-
canase, which removes carbohydrate moi-
eties . (0) gp120 plus 1 mg/ml mannan .
(O) gp120 plus 10 mmol EDTA . gp120 was
detected by a specific mouse anti-gp120
mAb that bound a goat anti-mouse IgG
coupled to horseradish peroxidase . The
color reaction was initiated by addition of
OPD and H202 and read at OD441 .
Results shown are representative of four
independent experiments .
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FIGURE 7.

	

MBP levels in serum from 18 HIV antibody-seronegative
hospital workers, 24 HIVantibody-seropositive patients, 18 ARCpatients,
and 18AIDS patients . MBPlevels were determined by inhibition ELISA
against a known standard . Points represent a mean of assays performed
in triplicate ± 10% SD.

treatment of gp120 and is dependent on the presence of cations, a characteristic
common to lectin-ligand interactions (18) .
The precise molecular basis for MBP-mediated inhibition of HIV infection in

vitro is not clear. It is possible that through its interaction with the exposed mannose
chains on the envelope glycoprotein, MBP interferes with the topology of the ligand
either by masking those epitopes required for adhesion to the receptor or by inducing
a conformational change of the ligand . Alternatively, MBP maynot affect the initial
adhesion event, but may mask fusigenic domains on the virus and thereby inhibit
viral fusion and entry of the virus into the cell . It would appear most likely, however,
that MBP recognizes in large part exposed high mannose glycans on gpl20. It is
intriguing to note that the region from amino acid 397 to 439 of the HIV I gp120,
which appears critical for the interaction of gp120 with CD4 (27), has two N-linked
glycosylation sites, both of which have high mannose oligosaccharides (Gregory, T,
and M. Spellman, a personal communication) . Ligation ofthese sites by MBPwould
mask the domain on gp120 required for binding to CD4. It has been suggested by
Laskey et al . (27) that this CD4 interaction site of gp120 may be found in a cleft,
hence rendering it relatively antigenically inaccessible . This same tertiary confor-
mation may explain the presence of high chains at these sites as steric accessibility
of oligosaccharides is an important factor in processing of high mannose oligosac-
charides to complex sugars (28, 29). The conservation of this region and the poten-
tial glycosylation sites in different isolates of HIV I as well as between HIV I and
HIV 2 (30), raises the possibility that these high mannose glycans could provide
conserved targets for potential therapeutic agents . A hybrid molecule containing
the mannose-binding domain of MBP, coupled to a toxin, may have potential in
this regard .
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The lack of high affinity binding of MBP to normal cells implies that the configu-
rations ofcarbohydrate normally present on cell surface glycoproteins are not recog-
nized by MBP. This is confirmed by the failure of MBP to bind to lymphocytes,
polymorphonuclear leukocytes (PMN), and monocytes in the absence of ligand
(Ezekowitz, R . A . B ., unpublished data), and contrasts with the mannose-binding
plant lectin Con A, which has been shown to bind to lymphocytes, PMN, and mono-
cytes (31) . These differences are not surprising as these two proteins bear no struc-
tural homology to one another (32) and illustrate that MBP appears to have a more
restricted specificity than Con A.
The measurement of MBP levels in AIDS patients' sera serves only to illustrate

that the concentrations of MBP that inhibit HIV infection of CD4+ cells in vitro
are within the range found in vivo . Understanding the precise role of MBP in HIV
infection in vivo is complicated by studies in which we have shown that MBP is able
to opsonize mannose-rich bacteria that are then taken up by PMN and monocytes
(Kuhlman, M ., K. Joiner, R . A . B . Ezekowitz, submitted for publication) . There-
fore, while MBP may mask the CD4-binding domain of gpl20, its physiological role
may be to clear free virus, virally infected cells, or circulating gp120 from the circu-
lation into monocytes and PMN. This may enhance HIV entry into monocytes via
a CD4-independent pathway.
This study is the first step in examining the role ofthis naturally occurring lectin-

like protein in HIV I infection . The selective binding of MBP to HIV infected cells
provides some insights into the specificity of this host defense molecule, and suggests
that mannose-binding proteins may be part of a primitive host response to infection .
Present studies are aimed at examining whether MBP will selectively recognize other
viruses and virally infected cells, which may express exposed high mannose oligosac-
charides as part of their viral envelope on the surface of infected cells .

Summary
In vitro infection by the human immunodeficiency virus (HIV) of CD4+ H9 lym-

phoblasts is inhibited by a mannose-binding protein (MBP) purified from human
serum . In addition, MBP is able to selectively bind to HIVinfected H9 cells and
HIVinfected cells from the monocyte cell line U937. These results indicate MBP
most likely recognizes high mannose glycans known to be present on gp120 in the
domain that is recognized by CD4 and thereby inhibits viral entry to susceptible
cells . In support of this contention, recombinant gp120 binds directly to MBP; the
binding is saturable, mannan inhibitable, removed by N-glycanase treatment, and
dependent on divalent cations .

We are grateful to Drs . Gregory and Spellman from Genentech, Inc . for gifts of reagents
and for communicating unpublished observations . We would also like to acknowledge Dr. S .
Lux for his advice and encouragement .
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