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Abstract: Thinking in patient safety has evolved over time from more simplistic accident causa-
tion models to more robust frameworks of work system design. Throughout this evolution, less
consideration has been given to the role of the built environment in supporting safety. The aim of
this paper is to theoretically explore how we think about harm as a systems problem by mitigating
the risk of adverse events through proactive healthcare facility design. We review the evolution of
thinking in safety as a safety science. Using falls as a case study topic, we use a previously published
model (SCOPE: Safety as Complexity of the Organization, People, and Environment) to develop
an expanded framework. The resulting theoretical model and matrix, DEEP SCOPE (DEsigning
with Ergonomic Principles), provide a way to synthesize design interventions into a systems-based
model for healthcare facility design using human factors/ergonomics (HF/E) design principles. The
DEEP SCOPE matrix is proposed to highlight the design of safe healthcare facilities as an ergonomic
problem of design that fits the environment to the user by understanding built environments that
support the “human” factor.

Keywords: patient safety; facility design; falls; HF/E design principles; theoretical framework

1. Introduction

Twenty years after the seminal Institute of Medicine (IOM) reports “To Err is Human”
and “Crossing the Quality Chasm,” there continue to be questions about safety and the
speed of progress (or lack thereof). According to some, we have investigated preventable
adverse healthcare events to make sense of the factors that contribute to error [1], but
in too many evaluations of patient safety, the search for causation ends with a blame-
and-retrain mentality [2]. In fact, a key message in the IOM studies was emphasizing
error as a systems problem and identifying human factors as an important component
of patient safety [3]. Two decades later, there continue to be challenges in using human
factors/ergonomics (HF/E) principles and understanding the latent conditions that un-
derlie the safety problems that need to be solved. Designing a safe healthcare facility is no
exception.

1.1. The Challenges of Complexity

Safety scientists have documented the movement from behavioral and linear Newto-
nian thinking (representative of a complicated system) into newer views of complexity [4].
While the terms are sometimes used interchangeably, the difference between complicated
and complex systems is important. Complicated systems are described as stable, closed
to the environment, knowable, and controllable with a pre-existing order of any outcome,
whereas complex systems are more than a sum of the parts—always changing due to
relationships and interactions between parts [4–6]. However, in past efforts to improve
safety, we have often searched for empirical research that supported an improved outcome
for a specific intervention. By focusing on this limited view of complex systems (whether
work systems, productions systems, or other), there may be a danger of missing the larger
multi-factorial problems that exist.
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Further, our understanding of the complexity in systems (such as the delivery of care)
may be exacerbated by organizational silos, often departments or service lines that operate
independently, avoid sharing information, and do not always recognize their potential
role in upstream or downstream events. An incomplete understanding of a situation or
problem may be equally prevalent in healthcare design, where both user input and technical
expertise may be siloed. While not specific to facility design, the following sentiment may
resonate with the healthcare design community:

Although healthcare providers work together, they are trained in separate disciplines,
where the primary emphasis is the mastery of the skills and knowledge to diagnose
ailments and render care. In the pursuit of becoming as knowledgeable and skillful as
possible in their individual disciplines, a challenge facing nursing, medicine, and the
other care specialties is to be aware of the reality that they are but one component of a very
intricate and fragmented web of interacting subsystems of care where no single person or
entity is in charge. [7] (p. 3)

In a real-world context of limited time and financial pressures, it becomes tempting
to focus on simple fixes—the low-hanging fruit—rather than address the fundamental
underlying issues that take a more prolonged period to study [8]. Even the best-intentioned
architects and designers may seek evidence-based solutions only to end up asking about
the elusive black and white answer to solve a problem.

1.2. An Evolution in Conceptualizing Patient Safety

In the past three decades, there has been an evolution in how we think about patient
safety in healthcare, even though “patient safety” was first included as a MeSH (Medical
Subject Heading) term in 2012 [9]. Whereas the field of human factors/ergonomics has
largely influenced safety in other industries (e.g., nuclear power, aviation), its use in the
complex arena of healthcare is more recent.

One description of the evolution of systems approaches for patient safety [10] traced
thinking back to Reason’s 1990 accident causation model [11], Vincent, Taylor-Adams, and
Stanhope’s 1998 framework for analyzing risk and safety in medicine [12], the use of the
Haddon matrix at the turn of the century [13], and the subsequent development of the
Systems Engineering Initiative for Patient Safety (SEIPS) model of work system design for
patient safety in 2006 [10].

1.2.1. Work System Design: Human Factors/Ergonomics for Safety in Healthcare

The SEIPS model was originally developed as a result of the lack of models to guide
studies to empirically examine work system design [10], and the model has continued to
evolve to better incorporate patient activity [14] and the care processes across the patient
journey [15]. SEIPS is based on the Donabedian structure–process–outcome framework [16,17],
and the model categorizes the work system, process, and outcomes and includes technology
and tools, tasks, the organization, the person, and the environment. The SEIPS model
references the layout of the environment (e.g., visibility), noise, lighting, temperature,
humidity and air quality, and workstation design, and proposes that plans are reviewed for
workflow and questions are asked about the physical environment sources that promote
error or safety. The original model promoted the structure of the work system, building
on prior research for balanced job design to reduce stress [18,19]. It was described for
application both proactively and reactively by focusing on the design of work and has
subsequently been revised to more clearly focus on patient work [14,15].

1.2.2. Resilience and Safety-II

There has also been work [20] to track an evolution from “old” thinking about human
error to “new” thinking in healthcare-based resilience engineering [21], in which the
focus is not just on what went wrong (Safety-I) but better understanding the everyday
performance that usually succeeds (Safety-II). Safety-II considers the ability of systems to
adapt to variation, disruption, and degradation of expected conditions [22,23]. One can
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see the transition through papers about accident barrier classification and analysis [24], to
a recognition that a reactive approach was insufficient, necessitating accident prevention
and a proactive approach [25], to safety as a dynamic non-event (i.e., the absence of events)
using a framework of resilience. Importantly, the reactive approach of Safety-I should be
complemented (not replaced) by proactive Safety-II approaches that attempt to develop
ways to support things that “go right” [21]. With calls for the recognition of patient
safety science as a profession [26], recent advances include practical activities of a safety
professional through the Safety-II lens [27].

From a resilience perspective, the built structure is one part of a functioning system,
such that a hospital needs to adapt through continual rebuilding—both organizationally
and physically [28]. Even so, the role of structures is not often described in Safety-II, and
according to Hassler and Kohler [29], “the composition and dynamic of the built environment
prove to be very complex and attempts at description remain very general”. Proponents have
urged taking into account that those remote from the clinical frontline base solutions on
“work as imagined”, rather than “work as done” [21], and there continues to be criticism
about conceptualizing safety events in healthcare as a linear chain of events rather than
drawing on a larger body of safety science [30].

2. Theoretical Underpinning

A safety risk assessment (SRA) is a process that has been developed to proactively
consider the influence of healthcare facility design in mitigating the risk of harm to users
(e.g., patients, staff) [31,32], yet challenges remain. As previously described, safety is a
systems problem. This section presents the theoretical underpinning of an expanded model
for mitigating the risk of adverse events, furthering a HF/E systems approach. Based on
earlier work, falls continue to be used as the “case study” example.

2.1. Designing to Mitigate Risk

Previous publications describe the development and testing of a safety risk assess-
ment for healthcare facility design to proactively consider six safety issues (i.e., falls,
patient handling, infection prevention, medication safety, harm associated with behavioral
health, and security) that may be influenced by the underlying conditions of the built
environment: [31,33]. While testing the “Falls” module of the SRA toolkit, there were often
difficulties in solving design problems [33]. For example, during hypothetical scenarios
and pilot tests, participant discussions included bathroom location (proximity versus iden-
tification), floor transitions (shower curbs or smooth transitions), and existing standards.
These were often tradeoff decisions, and supporting research was inadequate to address
the “lived-in” challenges raised by participants evaluating the tool.

Because bathroom location influences the structural grid and overall unit size, a
primary discussion for inpatient unit design was room layout: inboard (hallway side),
outboard (window side), or nested toilets (between rooms on hallway and window side), as
well as whether the bathroom is located on the headwall or footwall [34]. One participant
commented that there was an intuitive response to locate the bathroom as close as possible
to the patient, without definitive research to support the decision. Visibility into the
bathroom may result in a loss of patient privacy, and, in many projects, the desire for an
identifiable bathroom was sacrificed for proximity and privacy.

Multiple views were also offered about bathroom/shower floor transitions and real-
world implications (e.g., wiping water from the floor). In the case of one pilot site, nursing
leadership stated that clinical procedures would guide the decision of a curbless shower
and nurses would wipe the floor, yet there was not a follow-on discussion of what design
features would best support nurses in this task. The reverse was the case in the hypothetical
scenario test. Introducing a curb to eliminate the wet floors was not discussed with respect
to facilitating patient movement into the shower.

Grab bars or emergency pull cords may be placed according to code or manufacturer
recommendations for accessibility, but, without awareness of the physical limitations of
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movement or manipulation that might be experienced by an ill or aging patient, these may
not be suitably located. Participants referenced this solely as a code issue. These examples
illustrate that when framed as an environmental condition, the interaction of end-users in
the system is often lost. Introducing HF/E design principles is proposed to reframe the
conversation into a problem of design that fits the environment to the user [35].

2.2. The SCOPE Model

As presented in a systematic mixed studies review for patient falls [36], safety can be
conceptualized in a SCOPE model—the complexity of interactions with the organization,
people, and environment (Safety = Complexity × (Organization + People + Environment)).
The SCOPE model expanded Hignett’s [37] Dial-F systems model describing building
design and stability at the core of mitigating the risk of falls. People (the primary “human”
factor in design) possess an interrelated set of intrinsic conditions that both influence and
are influenced by the built environment. The SCOPE framework was divided into three
broad categories of organization (i.e., policies and procedures), people (i.e., patients, staff,
caregivers), or environment (the physical setting in which activities take place) [36]. As
the term environment can have different meanings, four subset “components” were used
in the SCOPE framework: the workspace envelope as the wider workplace including
the building characteristics, adjacencies, and space constraints; personal workspaces that
include the layout of the staff or patient “workstation” or immediate area of use; products,
such as the selection/specification of equipment, furniture, or controls; and the ambient
environment—thermal, air, noise, and illumination considerations. While the categories of
organization, people, and environment have the potential to address a systems approach,
they are potentially discrete units [38] that may benefit from additional integration. This
paper reframes the SCOPE framework for safety more definitively as an ergonomic design
problem, continuing to use falls as an example.

2.3. HF/E Design Principles

To understand fit, it is important to understand the active participants (patients and
staff). Designing for an unknown future user in a HC facility is complex and must consider
the general conditions of human performance, behavior, and user characteristics. Five
HF/E healthcare design principles have been adapted from pre-SEIPS work [39] to re-
establish a foundation of HF/E design principles to address user fit. These principles,
originally proposed for manufacturing [40] and office environments [41,42], include:

• Optimizing opportunities for movement;
• Minimizing manipulation time;
• Minimizing the need for human strength;
• Minimizing perception time, and
• Minimizing decision-making time.

2.3.1. Optimizing Opportunity for Movement (Mv)

The human body is not built to stay in the same position for lengthy periods and
optimal design must balance the need for movement in patient care duties and sitting or
standing for charting or other stationary activities [39,41,42]. Equipment and materials
should be conveniently located and easily accessible, with technology (e.g., cell phones,
laptops) allowing for freedom of movement from workstations [39,41,42]. In some instances,
the speed of movement needs to be considered. According to Sanders and McCormick [43],
response time is considered as a combination of reaction time (i.e., from signal onset to
the beginning response) and movement time (i.e., the beginning response through to the
completion of the response). This aspect of movement can also be related to decision-
making. Accordingly, designers should:

• support healthy/neutral postures that provide comfort without annoyance, allowing
flexibility in furniture (e.g., chairs, standing workstations, resilient flooring) [39,41,42,44];
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• place all things that a user must operate with their hands in front of the user, at elbow
height, and within reach [39,41,42,44];

• locate visual displays within a normal line of sight and cone of easy eye rotation [45].

2.3.2. Minimizing Manipulation Time (Ma)

Manipulation includes physical affordances and constraints to optimize use. Wick-
ens [44] posits that structural (static) and functional (dynamic) anthropometric data can
help designers prevent awkward positions (i.e., heights, reach, grip, clearances) while rec-
ognizing human variability (i.e., age, gender, ethnicity, occupation). However, dimensional
characteristics (e.g., reach) do not guarantee the ability to lift or manipulate an object, and
mechanical forces also must be taken into consideration [44].

With respect to design, parts or equipment should be easy to move, easy to grip/grasp,
and should not tangle, while materials should not be weak, easy to bend (unless intended),
or likely to chip or crack [39–41]. In addition, the transfer of training (e.g., how to use
equipment) should be considered so that previously acquired skills can be applied to new
products or workstation layout to avoid confusion and loss of efficiency [39,40]. Identified
options [44] for design consideration include:

• designing for the extreme (e.g., clearance for the largest, reach for the smallest);
• designing for adjustability (e.g., seats);
• designing for the average (e.g., a registration counter);
• designing for a percentile (e.g., the 5th or 95th to define upper and lower limits).

2.3.3. Minimizing the Need for Human Strength (St)

Strength is influenced by motivation and will [45], and is most often associated with
muscles in the arm, leg, or back and can be dynamic (e.g., lifting) or static (e.g., holding,
gripping) [43]. A lack of strength can result in musculoskeletal injury or whole-body
fatigue [44]. Biomechanical analysis is one approach for assessing dynamic capacity for
infrequent manual handling tasks, while physiological approaches are often used for
frequent tasks done over a period of time [43]. Psychophysical approaches take into
account biomechanical and physiological stresses but also consider perceived stress [43,45].
Studies have shown that strength exhibits an accelerated decline starting at age 51–55 (an
80% decrease from peak strength), with a 60% strength capacity (as compared to peaks) by
ages 71–75 [43]. This has implications for both patients and an aging healthcare workforce.
As a result, designers should incorporate mechanical devices to reduce or eliminate the
need for human strength [39,41,42].

2.3.4. Minimizing Perception Time (Pe)

Information is collected by the senses (a bottom-up process of what is there through
visual legibility, audibility, familiar representations) and is influenced by expectations
that are a result of short- and long-term memory, a top-down process of what should be
there through discriminating features, context, and redundancy [44,46]. Research in this
area [39,40] suggests that designers should:

• Understand that hidden or invisible parts are sometimes forgotten (e.g., small fonts
on display monitors);

• Use visual discrimination such as size or color coding to form families of parts that
belong together and enhance stimulus response for reduced reaction time (e.g., red for
alarms);

• Recognize that touch (texture and size) can be a discriminating factor (e.g., sanded
door knob finish to indicate no entry).

2.3.5. Minimizing Decision-Making Time (Dm)

Decision-making is influenced by mental effort and attentiveness: selective, focused,
and divided [44,47]. Researchers have described the decision-making task as choosing from
more than one alternative through information available relative to the options, and choice
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may be associated with uncertainty and no clear best option [44]. Decision-making follows
the delivery of perceptual information, which is interpreted through the working memory
(impacted by capacity and time) [44,47]. While decision-making in situ varies from decision
theory and choice behavior in controlled settings, some cognitive task analysis methods,
inclusive of those individuals performing the work, have been developed to bridge this gap
(e.g., field observations, work domain analysis, goal-directed task analysis, critical decision
methods) [48]. As mental models help organize the execution of a task, and task visibility
is important in creating a mental model, researchers [39,40] suggests that designers should:

• Consider the user’s mental model and recognize that diverse tasks result in different
mental models to achieve different things with differing priorities (e.g., visibility,
different alarm sounds);

• Minimize the number of (or co-locate) components and related tools (also saving
space) to reduce choice reaction time (e.g., code button at the bed);

• Locate work elements in sequential order with task items that belong together in close
physical proximity (e.g., crash carts) to improve spatial compatibility and improve
stimulus response;

• Incorporate visual, tactile, or auditory feedback to indicate that the task was completed
(e.g., electronic sound for touchscreen functions).

3. Results: An Expanded Model for Safety

The addition of these design principles results in an expanded framework for safety:
DEEP SCOPE (DEsigning with Ergonomic Principles).

3.1. The Development of DEEP SCOPE

The DEEP SCOPE model is proposed by integrating the relationships of the organiza-
tion, people, and environment previously set forth in the SCOPE model for falls [36]. The
expanded thinking provides a way to synthesize findings for safety into a systems-based
model for building. By better understanding building design as a systems problem, archi-
tects and designers can be better positioned to define the problem to address appropriate
fit for an evidence-based and human-centered design.

Numerous interventions were categorized according to layers of stability across the
categories of organization, people, and environment in the original SCOPE model for
falls. These design conditions are now further categorized according to the principles of
ergonomic design. For example, the principle of movement related to falls would include
walking surfaces (floor materials and transitions, weather/contamination protection), trip-
ping hazards (clutter, cords, equipment), understanding organizational policies for surface
maintenance (cleaning, repair, accessibility of supplies), recognizing necessary movement
aids for people (walking aids, bedside commodes), and facilitating the reach of personal
items. Transfer assistance to prevent falls could be categorized as manipulation (“ma-
nipulating” people as compared to inanimate objects), and this would include providing
necessary space to support organizational policies of patient handling, along with wide
doors to allow assisted ambulation (which could also be movement, highlighting that not
every intervention exists as a one-to-one relationship). Other considerations would include
the manipulation of objects: call systems, doors (while the patient is attached to an IV
or using a walking aid), and grab bars placed within a suitable reach. Strength, in the
context of the SCOPE model for falls, would include the room/bathroom configuration,
toilet location in the bathroom, the use of grab bars to support weaker patients (also in
manipulation for reachability), and the use of patent lifts to aid both patients (ambulation)
and staff (at risk of falling from reflex reactions during assistance). Organizational policies
for mobilization programs (and where this takes place) could influence design decisions
(e.g., activities on unit hallways or in patient rooms, versus an occupational/physiotherapy
area).

As it pertains to mitigating the risk of falls, perception in the expanded model would
include fall alert visual cues inside and outside the patient room, the ability to leave doors
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open, lighting, decisions for technology to reduce noise (e.g., alarms, paging), and a recog-
nition of patient conditions of care (e.g., medications) that result in an overestimation of
abilities or other changes in perception. Lastly, the model suggests that decision-making
to mitigate the risk of falls would most likely include considerations in an organizational
context. From a design perspective, this would necessitate an awareness of organizational
policies that may result in spatial or other design considerations. For example, the use of
patient sitters and facilitation of family presence may require space for furniture; video
monitoring may require space for monitors at a centralized location, as well as the neces-
sary infrastructure for technology; fall documentation may require space at the bedside
and/or another location; universal versus customized protocols may require storage space;
segregation of populations and intent for patient placement may influence unit size and
configuration, and access to patient education materials may need to be considered in the
context of technology, whiteboards, or placement of other written materials. Design also
should take into account unit layout and surveillance options as needed, especially as they
pertain to the general workflow of care (fitting the environment to the user). Researchers
found that the physical environment was one of four work process constraints contributing
to the risk of falls as a result of workarounds that included written and mental chunking
schemas, bed alarms, informal querying of the previous care nurse, and informal video
and audio surveillance [49]. Such workarounds have been called “first order problem solving
that adapts work to cope with inefficiencies” [50] (p. 140).

3.1.1. The DEEP SCOPE Model

The resulting DEEP SCOPE model (Figure 1) builds on the SCOPE systems model by
incorporating the HF/E design principles. The updated model adds a color-coded design
principle that supplements the three categories of organization, people, and environment.

As shown, there is a range of interventions that cross all of the HF/E design prin-
ciples, as well as the subcomponents of the physical environment. The organizational
considerations are marked by a prevalence of decision-making interventions, whether
associated with communication, culture, patient assessment, or patient-based interventions.
People-based interventions focus primarily on the patient and span a range of the HF/E
design principles. Figure 2 illustrates the evolution of the SCOPE framework.

3.1.2. The DEEP SCOPE Matrix

A second visualization takes the form of a matrix (Figure 3), furthering the framework
for design considerations. The DEEP SCOPE matrix includes the correlates of falls and
suggests the alignment of interventions that have been tested or used as part of a multifac-
torial bundle. It allows for interventions to be placed with more than one principle (e.g.,
grab bars support weak patients and are placed within reach.)
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Figure 1. DEEP SCOPE: Designing with Ergonomic principles—Expansion of the SCOPE model
(Safety = Complexity * (Organization + People + Environment)) [36].
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Figure 2. The evolution of the SCOPE and DEEP SCOPE model.
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Figure 3. The DEEP SCOPE Matrix for Falls. (C: Correlated for falls).

4. Discussion

The understanding of falls is complex. The aim of this paper was to theoretically
explore how we think about the challenge of safety in healthcare facility design rather
than to experimentally quantify the effect of specific interventions. When design teams
are assembled, HF/E experts are typically not considered as a necessary or value-adding
member. Further, experts in HF/E may not be well versed in the process for designing
built environments (although the lack of experience in designing a building project is
not restricted to the discipline of HF/E). The proposed DEEP SCOPE model presents the
opportunity to frame safe building design as an HF/E problem, not just an architectural
problem of structure, space, and articulated function. The model offers a way to incorporate
design principles used in HF/E with evidence-based design strategies. The blended
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approach can be used by the team as part of a systems approach to mitigating risk. In this
paper, the model has been populated using the case study example from the previously
published SCOPE model. As a bridge integrating HF/E and evidence-based design, the
DEEP SCOPE model advances a systems-based process, purposefully developed to address
the design of the built environment, to more fully address the complexity of safety and
falls in healthcare. As a result, it is important to frame this approach within the context of
prior models.

4.1. The Proposed Model in Context

The literature surrounding thinking for patient safety has evolved since the devel-
opment of Reason’s [11] accident causation model, often used as a basis for the role of
the environment as a barrier to errors. However, while this model recognizes system
influences, Reason posits a sequential approach that originates in imperfect decisions and
line management deficiencies, further hampered by preconditions and unsafe acts that
pass through a limited window of accident opportunity [11].

The strength of sequential thinking for accident causation is the etiology of accidents
and adverse events with descriptions of contributing factors, while the lack of discussion
of processes and guidance for system redesign is a weakness [10]. As a result, guidance for
system redesign was addressed through the SEIPS models [10,14], where the work systems
(including the internal and external environment) influence processes that subsequently
influence outcomes. While the benefit of the SEIPS is the focus on the system design and
description and the resulting effect on processes and outcomes, its authors stated that its
weaknesses included its framework—a descriptive model with no specific guidance as
to the critical elements [10]. The original SEIPS model referenced the use of plans and
questions to determine the contribution of the environment to patient safety; many papers
that have cited the model as a framework in the study design have offered little detail on
the influence of the built environment in their results.

4.2. Designing Safe Facilities—An HF/E Problem

Several recent studies have incorporated the SEIPS model to frame how the built
environment supports safe and effective workflow as part of a complex system [51–54],
but the framework of the most recent SEIPS model maintains its focus on work systems,
albeit temporal and across settings. The physical environment is still shown in the SEIPS
3.0 model, but it seems to become lost across the outlined journey. However, the design
of the environment may take on an even more important role, as the design of each
healthcare workplace becomes the stage for each process [55]. In contrast, Hignett’s Dial-F
model proposes that safety includes layers of permanence, with the patient being the most
transient and the built environment being most stable [37]. The permanence of the built
environment results from the significant financial investment required to renovate or build
new facilities. A design that tries to fit the user to the environment, rather than designing
the environment to support the use, can thus continue to negatively influence safety over
time [37]. Dial-F makes a leap to highlight the prominent role of the environment, but was
not intended as a tool for healthcare facility design.

While the evolution of safety models offers significant contributions in delivering
healthcare, and each model is logical in the context of an intended audience, the intended
audience has never included architects or designers. As a result, the built environment is
too often considered the existing condition. With few avenues for recourse, users develop
workarounds, fitting themselves to the environment. What is missing from these prior
approaches is both a hierarchy of decision-making for interactions with the environment
(which we have addressed through HF/E design principles) and guidance for proactive
design (the conditions and built environment interventions to be considered during an
evidence-based design process for healthcare facilities). The DEEP SCOPE theoretical
framework furthers our understanding of safety, establishing building design as an HF/E
problem by:
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• establishing the stability of the built environment and identifying HF/E environ-
ment categories (workplace envelope, personal workspace, products, and ambient
environment);

• categorizing design interventions into three interacting categories (organization, peo-
ple, and environment);

• creating connections across the organization, people, and environment through five
HF/E design principles (manipulation, strength, movement, perception, decision-
making).

4.3. Strengths, Limitations, and Future Research

As discussed throughout the paper, there is no shortage of safety models, but no
model has been developed to address the specific concerns of designing built environments
for the safe delivery of care. This model may challenge design teams to think differently,
and may require additional expertise on the team, but the DEEP SCOPE matrix creates
a novel approach and visual roadmap for teams to consider established HF/E design
principles alongside evidence-based organizational strategies, strategies that may facilitate
tasks and activities for staff and patients, as well as built environment strategies across a
range of permanence within a facility. The theoretical framework is an integrated approach
for proactively considering the opportunities for safer building design.

There are limitations with the proposed model, as the case study example only ad-
dresses patient falls. As previously discussed, the Safety Risk Assessment process for
healthcare settings considers other areas of safety, as well. There is an opportunity to
develop the evidence-based strategies within this model to include issues such as infection
prevention, medication safety, and others. The benefit of continuing the development of the
framework for specific topics is that the approach allows the integration of HF/E design
principles across multiple issues, again advancing a systems approach for designing safe
healthcare facilities.

Additionally, this paper only presents the theoretical approach and does not present
an example fusing a specific facility design project. However, another paper incorporates
the theoretical framework and DEEP SCOPE matrix for the analysis of data collected as part
of a project to proactively design a patient room for stability as a fall-reduction strategy [56].
The DEEP SCOPE framework will continue to be used as the room design develops, and
this may serve as an example of how teams can use the matrix to inform design decisions
in projects, whether addressing a specific room type (e.g., a medication prep room) or an
overall unit layout (e.g., designing a medical–surgical unit to mitigate risk).

5. Conclusions

The DEEP SCOPE model is intended to proactively advance safer healthcare facility
design. There is significant worth in discussing evidence-based design in healthcare
facilities as a HF/E problem. This goes beyond “work as imagined” (which is often what
is provided in the project brief) and offers opportunities to address “work as done”—
what may promote or impede desired behaviors for safety, rather than trying to modify
behavior (or environments) after the fact. The proposed model offers a framework that
has been purposively developed as a proactive approach for safety in facility design that
serves as a bridge for the domains of EBD and HF/E. In summary, an understanding of
HF/E conditions through the SCOPE and DEEP SCOPE models can advance a framework
for more fully considering the ongoing problems that we face with improving safety by
understanding built environment solutions that support the “human” factor.
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