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ABSTRACT

Purpose: Activated leukocyte cell adhesion molecule (ALCAM), a member of the 
immunoglobulin superfamily, is highly expressed on dendritic cells. ALCAM and its receptor 
CD6 are co-stimulatory molecules in the immunological synapse; their interaction is required 
for T cell activation. While atopic dermatitis (AD) is recognized as a T helper 2 (Th2)-mediated 
allergic disease, the role of ALCAM in its pathogenesis is unclear.
Methods: ALCAM levels were measured in the serum of AD patients and AD-induced murine 
model by ovalbumin treatment. We next investigated transepidermal water loss, clinical 
score, Th2-immune responses, skin barrier gene expression and T-cell activation using 
wild-type (WT) and ALCAM deficiency mice. An oxazolone-induced AD-like model was also 
established and analyzed using WT- and ALCAM-deficient mice.
Results: We found that serum ALCAM levels were elevated in pediatric AD patients as well 
as WT AD mice, whereas Th2-type cytokine production and AD symptoms were suppressed 
in ALCAM-deficient mice. In addition, CD4+ effector T-cell counts in murine skin and skin-
draining lymph nodes were lower in ALCAM-deficient mice than in their WT counterparts. 
ALCAM deficiency was also linked to higher expression of skin barrier genes and number of 
lamellar bodies.
Conclusions: These findings indicate that ALCAM may contribute to AD pathogenesis by 
meditating a Th2-dominant immune response and disrupting the barrier function of the skin.
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INTRODUCTION

Atopic dermatitis (AD) is a common inflammatory cutaneous disorder1 caused by complex 
interactions among environmental factors, changes in skin barrier function, and immune 
system.2,3 AD is a risk factor that can predispose an individual to allergic diseases such as asthma 
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or rhinitis4,5 since disruption of the skin barrier in AD patients can lead to allergen sensitization, 
which can, in turn, induce allergic esophageal inflammation or food anaphylaxis.6,7

A number of studies have suggested that an imbalance in T helper (Th) 1/Th2 cells and 
skin barrier dysfunction contribute to AD pathogenesis.8 Defective skin barrier causes 
unregulated activation of proteases in the epidermis, leading to the production of Th2-type 
immune-inducing factors. AD is dominantly mediated by Th2 cells9,10 and is associated with 
increased immunoglobulin (Ig) E and the production of Th2 cytokines, such as interleukin 
(IL)-4 and IL-13 in AD lesions.11-13 Moreover, there is growing recognition that AD is not only 
associated with Th2 immune response, but that Th17 and Th22 inflammatory responses are 
also involved.14-16 Activated T cells are recruited to the skin in acute and chronic cutaneous 
inflammatory diseases.17 CD4+ T cells are key factors in allergic inflammatory diseases. 
Several studies have shown that inhibition of CD4+ T-cell activation inhibited Th1, Th2 and 
Th17 cell differentiation with capsiate treatment.18 These immune responses require specific 
signals for T-cell activation that engage receptor systems on T cells and dendritic cells (DCs). 
The initial interaction involves contact between T-cell receptor and the antigenic peptide 
bound to major histocompatibility complex class II on the DC surface,19 followed by adhesion 
and expression of co-stimulatory molecules on T cells (CD28, cytotoxic T-lymphocyte-
associated protein-4 and CD6) and DCs (CD80/B7.1 and CD86/B7.2).20

Activated leukocyte cell adhesion molecule (ALCAM) is a transmembrane protein of the 
Ig superfamily21,22 that is expressed on a variety of cell types. CD6 is highly expressed on T 
cells and binds to ALCAM on DCs.23 Crosslinking of CD6 and ALCAM contributes to both 
early and later stages of T-cell proliferation,24 suggesting that the CD6-ALCAM interaction is 
necessary for maximum antigen-specific T-cell activation. Indeed, blocking this interaction 
with an antibody suppressed IL-2 production.25 Lymphocyte function-associated antigen 
1 (LFA-1) and intercellular adhesion molecule (ICAM)-3 are also involved in effector T-cell 
function26; although this is similar to those of LFA-1 and ICAM-3 localized in the synapse, 
CD6-ALCAM accumulation at this site occurs independently of these adhesion molecules.23 
Another study reported that the engagement of CD6 with ALCAM at the synapse provided the 
co-stimulatory signal for activation of γδ T cells in response to cell-associated non-peptide 
antigens in a way that was similar to activation of αβ T cells by peptide antigen-loaded DCs, 
which involved immunological synapse stabilization.27 It is thus likely that the CD6-ALCAM 
interaction affects diverse subsets of T cells.

Prior studies demonstrated that ALCAM contributes to ovalbumin (OVA)-induced allergic 
asthma and food allergy by stimulating T-cell activation and proliferation.28,29 Although 
ALCAM is associated with hypersensitivity and T cell activation in the initiation of immune 
responses, its function in AD has not yet been demonstrated. Therefore, the present study 
examined the role of ALCAM in AD pathogenesis using an OVA-induced AD-like allergic skin 
inflammation mouse model and compared ALCAM-deficient and wild-type (WT) mice in 
terms of molecular and histological changes.

MATERIALS AND METHODS

Subjects
ALCAM levels were measured in the serum of children who visited the allergy clinic at 
Severance Children's Hospital for AD or for a general health checkup between June 2010 and 
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November 2014. Children with AD fulfilled the revised Hanifin and Rajka criteria30 and were 
subdivided into the following 3 groups according to disease severity based on the SCORing 
AD (SCORAD) index:31,32 mild (SCORAD index ≤ 25), moderate (25 < SCORAD index ≤ 50) 
and severe (SCORAD index > 50). They had no symptoms of other allergic diseases such as 
asthma or allergic rhinitis. Healthy controls had no history of AD or other allergic diseases 
such as asthma, allergic rhinitis, or inflammatory disease. At the first visit, blood samples 
were obtained from all subjects. Eosinophil count was determined using a hematological 
analyzer (NE-8000; Sysmex, Kobe, Japan), and IgE level was measured with the CAP assay 
(Pharmacia, Uppsala, Sweden). The study protocol was approved by the Institutional Review 
Board (IRB) of Severance Hospital, and written informed consent was obtained from subjects 
or their parents (IRB No. 4-2004-0036).

Skin biopsy samples were obtained from 1 healthy control and 1 AD patient who were diagnosed 
according to the criteria of Hanifin and Rajka.33 This study was approved by the IRB of Yonsei 
University Health System, Severance Hospital (No. 4-2013-0624), and informed consent 
was obtained from all subjects before they participated in the study. This study protocol was 
performed in accordance with the ethical guidelines of the Korean Bioethics and Safety Act.

Mice
C57BL/6 (B6) mice were purchased from Orient Bio (Sungnam, Korea). ALCAM-deficient 
mice on the B6 genetic background were purchased from Jackson Laboratory (Bar Harbor, 
ME, USA). Mice were maintained under pathogen-free conditions with controlled humidity 
and temperature. Animal experiments in this study were carried out in accordance with the 
Laboratory Animals Welfare Act, the Guide for the Care and Use of Laboratory Animals and 
the Guidelines and Policies for Rodent experiment provided by the Institutional Animal 
Care and Use Committee (IACUC) and were approved by the IACUC of the Yonsei University 
Health System (reference No.2014-0282).

Induction of AD
The OVA-induced AD model was established as previously described.34 Mice were anesthetized, 
and their back skin was shaved and tape-stripped 5 times with cellophane tapes (Nichiban, 
Tokyo, Japan). For epicutaneous (EC) sensitization, 100 μg OVA (grade V; Sigma-Aldrich, St. 
Louis, MO, USA) in 100 μL of normal saline was placed on a 1×1 cm2-patch of sterilized gauze 
attached to the dorsal skin with Tegaderm (1,624W; 3M Health Care, Maplewood, MN, USA). 
Mice were thus subjected to a total of three 1-week EC sensitizations with a 2-week interval 
between individual sensitization periods. Transepidermal water loss (TEWL; Delfin, Kuopio, 
Finland) and clinical score were assessed during the experimental period.

To induce oxazolone (OXA)-AD-like model, the dorsal skin of mice was sensitized with 50 
μL of 3% OXA (Sigma-Aldrich) at day 0. After 5 days, the ear was challenged by 20 μL of 
0.6% OXA every other day until day 13. TEWL, clinical score and ear thickness (Mitutoyo, 
Kanagawa, Japan) were measured during the experimental periods. On day 14, mice were 
sacrificed to collect the skin biopsy specimen and blood.

The clinical severity of skin lesions was scored according to the macroscopic diagnostic 
criteria that were used for the NC/Nga mouse. The severity of dermatitis was evaluated once a 
week, just before each elicitation. The development of 1) erythema/hemorrhage, 2) scarring/
dryness, 3) edema and 4) excoriation/erosion was scored as 0 (none), 1 (mild), 2 (moderate) 
and 3 (severe). The average of the individual scores was taken as the clinical score.35
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Quantitative real-time polymerase chain reaction (PCR)
AD skin lesion samples were obtained after the last sensitization to assess messenger RNA 
(mRNA) expression levels. Total RNA was isolated with TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA), and 2 μg were used to synthesize complementary DNA using superscript II 
reverse transcriptase (Invitrogen). Quantitative real-time PCR was performed on an Applied 
biosystem (Foster City, CA, USA) and target gene levels were quantified with AccuPower 
Greenstar qPCR PreMix (Bioneer, Daejeon, Korea) according to the manufacturer's 
instructions. Forward and reverse primers for target gene amplification were synthesized by 
Integrated DNA Technologies (Coralville, IA, USA). The primer details are shown in Table 1. 
Target gene mRNA levels were quantified relative to that of β-actin.

Enzyme-linked immunosorbent assay (ELISA)
Mice were bled by cardiac puncture and serum was collected by centrifugation and stored 
at −70°C until use. Serum levels of total IgE were quantified with a specific ELISA kit (BD 
Biosciences, San Diego, CA, USA) according to the manufacturer's protocol. ALCAM levels 
in mouse skin homogenate were quantified by ELISA (R&D Systems, Minneapolis, MN, USA) 
according to manufacturer instructions.

Hematoxylin and eosin (H&E) staining
Dorsal skin was fixed in 10% buffered formalin, and samples were embedded in paraffin and 
cut into sections at a thickness of 4 μm that were mounted onto slides and stained with H&E. 
Histological changes were scored (0−4) according to the degree of inflammation, immune 
cell infiltration, edema and epithelial hyperplasia by visualization under a light microscope 
(BX40; Olympus, Center Valley, PA, USA).35

Electron microscopy
Skin samples were pre-fixed in Karnovsky's fixative solution (2% glutaraldehyde-
paraformaldehyde in 0.1 M phosphate buffer, pH 7.4) for 7 days, then rinsed with phosphate-
buffer saline and pre-fixed with 1% osmium tetroxide. Samples were dehydrated in a graded 
series of ethanol, then infiltrated with propylene oxide and embedded using the Ply/Bed 812 kit 
(Polysciences, Warrington, PA, USA). Thin sections (70 nm) were cut and stained with 7% uranyl 
acetate and lead citrate and observed under a JEM-1011 transmission electron microscope (JEOL, 
Tokyo, Japan). Images were obtained with a Mega View III camera (Olympus, Tokyo, Japan).
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Table 1. Sequences of the primers used for quantitative real-time polymerase chain reaction
Gene Direction Sequence
ALCAM Forward 5′-TGG TAC ACT GTC AAC TCA GCA-3′

Reverse 5′-ACC CAT CGG GCT TTT CAT ATT TC-3′
IL-4 Forward 5′-GGT CTC AAC CCC CAG CTA GT-3′

Reverse 5′-GCC GAT GAT CTC TCT CAA GTG AT-3′
IL-5 Forward 5′-CTC TGT TGA CAA GCA ATG AGA CG-3′

Reverse 5′-TCT TCA GTA TGT CTA GCC CCT G-3′
IL-13 Forward 5′-CCT GGC TCT TGC TTG CCT T-3′

Reverse 5′-GGT CTT GTG TGA TGT TGC TCA-3′
Filaggrin Forward 5′-CAC TGA GCA AAG AAG AGC TGA A-3′

Reverse 5′-CGA TGT CTT GGT CAT CTG GA-3′
Loricrin Forward 5′-TCC TTC CCT CAC TCA TCT TCC-3′

Reverse 5′-CTC CTC CAC CAG AGG TCT TT-3′
Involucrin Forward 5′-CTC CTG TGA GTT TGT TTG GTC T-3′

Reverse 5′-GGA TGT GGA GTT GGT TGC TT-3′
β-actin Forward 5′-GGC TGT ATT CCC CTC CAT CG-3′

Reverse 5′-CCA GTT GGT AAC AAT GCC ATG T-3′



Flow cytometry
Cell suspensions were isolated from the skin and skin draining lymph nodes (LNs) of mice. 
To collect whole skin cells, skin was detached from the body and incubated for 1 hour in 
Roswell Park Memorial Institute (RPMI) 1640 medium (Hyclone, Logan, UT, USA) containing 
1 mg/mL dispase II (Sigma-Aldrich). The samples were cut into small pieces and incubated 
for 1.5 hours in RPMI 1640 medium containing 10% fetal bovine serum (FBS), 0.8 mg/mL 
collagenase type II (Worthington Biochemical, Lakewood, NJ, USA), and 50 μg/mL DNase I 
(Roche, Freehold, NJ, USA).36 The LNs were cut into small pieces and digested in collagenase 
type II (0.5 mg/mL; Worthington Biochemical) or DNase I (Roche; 0.02 mg/mL) at 37°C for 45 
minutes. Digested skin draining LNs and skin were passed through a 40-µm cell strainer (BD 
Biosciences). Red blood cells were lysed using ammonium chloride-potassium lysing buffer, 
and the remaining cells were washed and resuspended in phosphate-buffered saline (PBS) 
containing 5% FBS.

Single-cell suspensions were then stained with antibodies for flow cytometry. The following 
antibodies were used: CD3 (17A2), CD4 (GK1.5), CD44 (IM7), CD62L (MEL-14) and isotype 
controls (rat IgG) (eBioscience, San Diego, CA, USA). Fixable Viability Dye (eBioscience) was 
used to exclude dead cells. Stained cells were analyzed by flow cytometry using an LSR II (BD 
Biosciences), and data were analyzed with Flow Jo software (Tree Star, Ashland, OR, USA).

Statistical analysis
Continuous data were tested for normality using the Kolmogorov-Smirnov test or Shapiro-
Wilk test and reported accordingly as the mean ± standard error of the mean. The Student's 
t-test and 1-way analysis of variance were used to evaluate differences between continuous 
variables. Categorical data are presented as counts and percentages, and the χ2 test was used 
for comparisons. Correlations between ALCAM level and SCORAD index were evaluated by 
Pearson correlation analysis. Statistical analyses were performed with SPSS v.20 software 
(SPSS Inc., Chicago, IL, USA). Differences were deemed significant at P < 0.05.

RESULTS

ALCAM levels are altered in serum from human AD and OVA-induced AD model
The clinical characteristics of the study subjects are summarized in Table 2. The AD group 
was significantly younger in age and included more males than the control group. Serum 
total eosinophil count and IgE level were higher in the AD group than in healthy controls, and 
the former also showed elevated serum ALCAM levels (26 ± 3.4 ng/mL vs. 30.8 ± 3.5 ng/mL,  
P < 0.001) (Fig. 1A) even after adjusting for age and sex (β = 3.68, P < 0.001). Moreover, 
ALCAM levels in children with AD tended to increase with AD severity (Fig. 1B), as evidenced 
by the positive correlation with the SCORAD score (r = 0.392, P < 0.001) (Fig. 1C).
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Table 2. Characteristics of the study population
Characteristics Control (n = 44) Atopic dermatitis (n = 114)
Age (yr) 8.9 ± 2.7 4.0 ± 4.0†

Sex (male) 24 (54.5) 89 (78.1)*
Blood eosinophils (/µL) 183.7 ± 148.5 870.6 ± 767†

Total immunoglobulin E (IU/mL) 45.7 ± 33.2 1,036.1 ± 1,262.2†

Values represent mean ± standard deviation or number (%).
*P < 0.05; †P < 0.001 vs. healthy control (Student's t-test).



To examine whether development of OVA-sensitized AD can regulate the levels of ALCAM in 
WT mice. OVA-sensitized mice showed increased serum ALCAM level (Fig. 1D) compared to 
PBS mice.

ALCAM deficiency alleviates skin barrier disturbance
One of the common features of AD is an impaired skin barrier. In this AD model, clinical 
score and TEWL level, which shows the abnormal skin barrier function, was significantly 
increased from day 7 in WT/OVA mice (Fig. 2A and B). However, ALCAM−/−/OVA mice had 
markedly decreased clinical score and TEWL compared to WT mice (Fig. 2A and B). We 
next examined lamellar body (LB) morphology and permeability barrier gene expression in 
ALCAM−/− and WT mice. LB is a unique organelle that delivers lipids to the stratum corneum. 
Failure of LB secretion was previously reported as a feature of AD.16,37 Electron microscopy 
demonstrated the empty and abnormal-shape of LBs in the epidermis of WT/OVA, whereas 
ALCAM−/−/OVA LBs showed normal density and shape (Fig. 2C, insert C). In addition, 
ALCAM−/−/OVA showed higher LB count than WT/OVA (Fig. 2D). Quantitative real-time 
PCR analysis revealed that the levels of skin barrier genes including filaggrin, loricrin and 
involucrin were downregulated in WT/OVA, an effect that was mitigated by ALCAM-deficient 
mice (Fig. 2E). These findings suggest that ALCAM regulates the skin barrier function in AD.
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Fig. 1. ALCAM expression in pediatric AD patients and OVA-induced AD mice. (A-C) ALCAM level was measured by ELISA in serum samples from healthy controls 
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ALCAM deficiency suppresses Th-2 inflammation
To investigate the contribution of ALCAM to Th2 inflammation, ALCAM−/− and WT mice 
were epicutaneously sensitized with OVA, and their inflammatory responses were compared. 
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Infiltration of inflammatory cells and histological score were significantly increased in 
WT mice compared to those in ALCAM−/− mice following the EC OVA treatments (Fig. 3A). 
Moreover, WT/OVA mice manifest significantly increased total IgE accumulation (Fig. 3B) and 
heightened IL-4, IL-5, IL-13, interferon (IFN)-γ, IL-17A and IL-22 mRNA expression (Fig. 3C-H) 
compared with ALCAM−/−/OVA mice.
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ALCAM deficiency suppresses CD4 T cell activation
Next, we investigated whether ALCAM deficiency affects Th2 cell activation in skin and 
skin-draining LNs by flow cytometry. After OVA sensitization, a lower accumulation of 
CD3+CD4+ T cells was detected in skin lesions (Fig. 4A) and skin draining LNs (Fig. 4C) of 
ALCAM-deficient mice than in those of WT mice. T cells were categorized as CD44loCD62Lhi 
(naïve), and CD44hiCD62Llo (effector memory).38 Interestingly, ALCAM-deficient mice had 
a reduced population of CD44hiCD62Llo cells in both skin and skin draining LNs relative to 
WT counterparts (Fig. 4A-D). These findings indicate that ALCAM mediates Th2-dominant 
inflammation via activation of CD4+ T cells in the skin and skin-draining LNs.

ALCAM deficiency suppresses skin inflammation and barrier disruption in the 
OXA- induced AD-like model
To further define the roles of ALCAM in allergic skin disease, we utilized AD-like mouse model 
that employed the OXA which could provoke an immune response. In these experiments, 
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WT and ALCAM−/− mice were sensitized to and challenged with OXA, and the responses were 
evaluated. After OXA sensitization and challenge, WT mice manifest significantly increased 
clinical sore, TEWL and ear thickness compared to ALCAM−/− mice (Fig. 5A-C). Histological 
evaluations demonstrated enhanced epidermal thickness and epidermis inflammatory cell 
infiltration in comparisons of WT and ALCAM−/− mice (Fig. 5D and E). Next, we examined the 
total serum IgE level and tissue Th2 cytokines production. OXA-induced AD like WT mice 
showed increased total IgE accumulation (Fig. 5F) and heightened mRNA expression of IL-4 
and IL-13 (Fig. 5G) compared to ALCAM−/− mice.
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The noted effects of ALCAM were not specific for allergens-induced inflammation because 
similar changes were noted in comparisons of skin tissues from ALCAM−/− and WT mice 
challenged with OXA.

DISCUSSION

In the present study, we addressed the involvement of ALCAM in AD pathogenesis using a 
murine model of OVA-induced AD. In our AD model, ALCAM levels were increased in serum 
relative to those in control mice. The serum ALCAM level was also more increased in AD patients 
that that in healthy controls; and was positively correlated with disease severity. Equivalent 
tendency of ALCAM alteration was described in our previous studies for allergic asthma and 
food allergy.28,29 Although alterations in ALCAM level have been described in various human 
cancers,21,24,39 alterations of ALCAM level in allergic disease has only recently been described, 
which is the first report providing evidence for the involvement of ALCAM in human AD.

Despite the repeated OVA exposure, ALCAM-deficient mice showed attenuated inflammatory 
responses and reduced production of Th2-type cytokines. We also observed a smaller 
population of CD3+CD4+ CD44hiCD62Llo T cells in the skin and skin-draining LNs of ALCAM-
deficient AD mice. These results provide evidence that ALCAM is involved in AD pathogenesis.

A recent study showed that ALCAM is structurally similar to receptors for advanced 
glycation end products and can interact with S100B to activate nuclear factor κB signaling 
in delayed-type hypersensitivity diseases.40,41 Although ALCAM may be associated with 
other inflammatory signaling pathways, our findings provide evidence that ALCAM–CD6 
interactions contribute to both early and later stages of DC-induced T-cell activation and 
proliferation. It has also been reported that ALCAM–CD6 modulates the activation of 
the mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, p38 and 
c-Jun N-terminal kinase cascades,24 which further supports our conclusion that ALCAM 
contributes to the immune response.

As confirmed by our data, mouse models of AD induced by EC sensitization are characterized 
by epidermal thickening, CD4+ T cell infiltration, and up-regulation of the Th2 cytokines, 
IL-4, IL-5 and IL-13.34 Th2 cytokines regulate skin homeostasis via the signal transducer and 
activator of transcription-6.42-44 Th2 inflammation also impairs the epidermal barrier, skin 
permeability, and cutaneous innate response.45 In AD mice, skin lesions showed reduced 
levels of skin barrier genes, filaggrin, loricrin, and involucrin and fewer lamellar bodies in 
the WT background than in the absence of ALCAM. Moreover, TEWL was less increased in 
ALCAM-deficient mice indicating the association of ALCAM with perturbation of the skin 
barrier. Hence, ALCAM may indirectly undermine the skin barrier function via modulation of 
the Th2 immune response.

In a psoriasis model, there is evidence that ALCAM affects T cell activation via Th17 cells.46 
In the present study, ALCAM-deficient mice showed reduced expression of not only Th2 type 
cytokines but also IFN-γ, IL-17A and IL-22. As AD is a heterogeneous disease involving Th1, 
Th2 and Th17 cells, the role of ALCAM in the activation of various types of helper T cells and 
whether ALCAM expression levels differ in Th1, Th17 or Th2-dominated diseases need to be 
further elucidated.
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In conclusion, the results presented here demonstrate that ALCAM can regulate Th2-type 
cytokine production and CD4+ T cell activation in AD-like skin lesions. In addition, our 
observations from clinical specimens suggest that ALCAM contributes to skin barrier 
dysfunction. These findings indicate that ALCAM mediates Th2-dominant immunological 
responses in AD pathogenesis and can be a potential target for disease treatment.
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