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Abstract: The relationship between the wear process and the adaptive response of the coated cutting
tool to external stimuli is demonstrated in this review paper. The goal of the featured case studies
is to achieve control over the behavior of the tool/workpiece tribo-system, using an example of
severe tribological conditions present under machining with intensive built-up edge (BUE) formation.
The built-ups developed during the machining process are dynamic structures with a dual role.
On one hand they exhibit protective functions but, on the other hand, the process of built-up edge
formation is similar to an avalanche. Periodical growth and breakage of BUE eventually leads to
tooltip failure and catastrophe of the entire tribo-system. The process of BUE formation is governed
by the stick–slip phenomenon occurring at the chip/tool interface which is associated with the
self-organized critical process (SOC). This process could be potentially brought under control through
the engineered adaptive response of the tribo-system, with the goal of reducing the scale and frequency
of the occurring avalanches (built-ups). A number of multiscale frictional processes could be used
to achieve this task. Such processes are associated with the strongly non-equilibrium process of
self-organization during friction (nano-scale tribo-films formation) as well as physical–chemical and
mechanical processes that develop on a microscopic scale inside the coating layer and the carbide
substrate. Various strategies for achieving control over wear behavior are presented in this paper
using specific machining case studies of several hard-to-cut materials such as stainless steels, titanium
alloy (TiAl6V4), compacted graphitic iron (CGI), each of which typically undergoes strong built-up
edge formation. Various categories of hard coatings deposited by different physical vapor deposition
(PVD) and chemical vapor deposition (CVD) methods are applied on cutting tools and the results of
their tribological and wear performance studies are presented. Future research trends are outlined
as well.

Keywords: built-up edge formation; self-organization; self-organized criticality; the adaptive response
of surface engineered system

1. Introduction

Adaptive response to external stimuli is mostly observed and studied in natural systems [1].
This phenomenon is directed at protecting a system against damage [2]. In recent times, several scientific
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institutions have gained interest in conducting research on this effect in the field of nanomaterials
and tribology [3,4]. Adaptive response in tribo-systems strives to limit the influence of external
stimuli, i.e., friction. The major consequences of friction are wear and surface damage. An adaptive
response can reduce the intensity of both processes, and as a result, lower the entropy production [5].
The processes associated with adaptive response develop at two different scales:

- The nano-scale process of tribo-film formation (a non-equilibrium process related to
self-organization) caused by the indirect influence of friction [5]. This process is initiated
by the surface modification of cutting tools with further interaction with the environment
(tribo-oxidation), which forms protective/lubricating tribo-films [5,6]. Such processes commence
abruptly and result in negative entropy production [6]. Although they are not directly related
to friction, a part of friction energy is consumed during tribo-film generation, which would be
otherwise spent on the wear process. As a result, the general entropy production goes down.

- The micro-scale process that is a direct result of friction caused by the mechanical response of
the surface engineered layer due to energy dissipation within the alternating nano-layers of the
multilayered coatings [7] or within a layer of a High Entropy Alloy coating [8] or as an integrative
mechanical response of the coating/carbide tool system [9]. Such processes develop gradually
and also contribute to the reduction in entropy production.

In this review paper, the wear performance of a number of surface engineered tribo-systems is
considered in relation to their adaptive response to external stimuli, based on several case studies.

This research chiefly focuses on extreme cutting conditions of hard to machine materials (such as
stainless steels, Ti alloys, Compacted Graphitic Iron (CGI)) associated with strong built-up edge
formation. Machining of hard-to-cut materials with intensive built-up edge formation is a very complex
tribological phenomenon. Several simultaneous processes take place within the tribo-system during
cutting under the outlined conditions [9]. The cutting tool is a critical part of the tribo-system that
enables control over the overall frictional process [10]. For cemented carbide cutting tools which have
the most widespread use with and without coatings, these processes are the following: (1) transfer of
material from the counter body (chips and workpiece) to the surface of the tool; (2) intensive adhesion
of the material to the surface that results in built-up edge formation (Figure 1); (3) interaction of
adhered fragments of workpiece material with the surface of the tool as well as the (4) the environment
and (5) complex tool/chip/workpiece interface phase transformations [11–13]. As was outlined above,
the dynamically formed built-up layer consists of heavily deformed and refined particles of machining
material, as well as various compounds generated during cutting. The built-up layer is similar in many
ways to a composite material [10,11]. The “ceramic-like” built-up layer offers some protection to the
tool surface. However, the stability of a built-up layer as a structure is very low, especially when the
tool, composed of a cemented carbide is used under the outlined attrition wear conditions [12].

From a tribological viewpoint, machining of these materials proceeds under conditions of seizure
at the tool/chip interface, which by itself, represents a catastrophic wear mode [10]. When certain
hard-to-machine materials such as stainless steels are machined, the essential feature of chip formation
is varying shear strength of the work material at the chip/tool interface: a phenomenon that is
similar to stick–slip conditions [9]. The stick–slip phenomenon is related to self-organized critical
processes [14–18] which occur during tribological processes in general [19,20] and metal cutting in
particular [21].

Due to the cyclic growth, the built-up eventually begins to behave like an avalanche, leading to
catastrophic failure of the entire tribo-system (Figure 1) [22–25]. Control over this process aims to
reduce (a) the probability of occurrence and (b) the size of energy dissipation bursts, i.e., avalanches
(built-ups) [23–25]. The dissipation of energy into a lower energy state in a self-organized critical
system can be quite damaging when large avalanches cause a catastrophe of the entire system [23–25].
When the system’s energy is released through the triggering of smaller avalanches, the large
avalanches are postponed or even potentially prevented [23–27]. For example, the generation
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of self-protective/lubricating tribo-films on the surface of specially designed adaptive PVD coatings
could lead to the formation of small, unstable built-ups [28]. As they break away, energy in the system
is dissipated through smaller-scale surface damaging processes. Such an outcome can be efficiently
accomplished by the adaptive response of surface engineered tools. In this way, wear resistance of the
system could be improved.

The discovery of self-organizing processes is one of the most significant recent achievements in
fundamental science [29]. This concept is widely applied in the understanding of various processes
in different fields of science and technology [30]). However, there exists a very limited amount
of such studies related to contemporary thin-film coatings which function under strongly far from
equilibrium tribological conditions with the extremely heavy loads and high-temperatures present
in high-performance machining [10]. As such, the outlined case studies provide a perfect subject for
the investigation of self-organizing processes. All the case studies presented below are based on the
results of statistically validated cutting tests (see below Figures 1, 2, 4, 9, 10, 13 and 16) according to the
general practice used in machining studies.
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Figure 1. Schematic presentation of super duplex stainless steel (SDSS) machining with built-up edge
formation using an uncoated cemented carbide cutting tool. Wear resistance data with progressive
Scanning Electron Microscope (SEM) studies of built-up edge formation on the friction surface.
Reproduced from [31].

To understand this approach in greater detail, the wear performance of an uncoated cemented
carbide cutting tool is considered first, during the machining of one of the most difficult to machine
super duplex stainless steels (SDSS) (see Figure 1) [31]. Figure 1 shows that machining with a strong
built-up edge is similar to avalanche-like behavior (see a schematic display with the built-up SEM
image at the top left corner of Figure 1). Progressive SEM studies of the worn surface (Figure 1) show
that the built-up generates, gradually accumulates and eventually breaks down during the running-in
phase of wear. [31]. As cutting progresses, similar behavior occurs repeatedly. When a large sized



Nanomaterials 2020, 10, 2489 4 of 22

built-up (avalanche) eventually breaks away, it can easily damage the edge of the tool and cause its
failure (SEM image at the top of Figure 1).

Several coatings were developed with enhanced adaptive performance [26]. They are capable of
presenting the adaptive response to external stimuli of the coated tool tribo-system at two major levels:
the nanoscale and the micro-scale. A first group of coatings can protect and lubricate the surface during
friction via the adaptive response at the nano-scale level, in particular through the formation of thermal
barrier [27] or lubricating [28] tribo-films on the cutting tool surface. The other group of coatings can
exhibit the adaptive response at the micro-scale level, in particular: (a) through the gradual flaking
of the entire surface engineered layer [32] or (b) through the response of the whole coating/substrate
tooling material [8].

The goal of this review paper is to demonstrate how control over the wear performance of coated
cutting tools could be achieved through the adaptive response of various coating types to ensure
superior wear performance of the surface engineered tribo-system under severe conditions prevalent
during strong built-up edge formation.

2. Case Studies

2.1. Coatings That Produce Different Types of Tribo-Films during Cutting through the Adaptive Response of the
Tribo-System at the Nano-Scale

2.1.1. Coatings that Create a Layer of Lubricating Tribo-Films. Machining of a Ti Alloy with Strong
Built-Up Edge (BUE) Formation

It is a significant challenge to develop a wear resistant PVD coating for the machining of Ti alloys.
One of the main reasons for this is the intensive sticking of the titanium workpiece to the tool surface
which quite often results in the detachment of the entire coatings layer [9]. Therefore, an uncoated
tool often outperforms a coated one, such as the widely used AlTiN (Figure 2). An effective way to
control built-up edge formation during the machining of Ti alloys is the application of self-lubricating
adaptive coatings. Application of the boride family of coatings [33] presents a very promising avenue
in this regard.
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The detailed wear performance studies in this topic are performed for the self-lubricating TiB2

PVD coating [20]. Figure 2 presents the data concerning the wear resistance of the uncoated cutting
tool and several coated tools during rough turning of a Ti alloy with intensive BUE formation [28].

The results show that the wear performance of the uncoated tool is strongly surpassed by that
of the TiB2 coating. (Figure 2). This is confirmed by SEM investigations of worn surfaces (Figure 2).
SEM analysis indicates strong built-up formation in the uncoated tool and a very low-scale built-up in
the TiB2 coated tool. Chip types and undersurface indicate different frictional phenomena occurring at
the tool/chip interface. SEM images of the chip types and undersurfaces are presented in Figure 3.

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 24 

 

Figure 2. Tool life of TiB2 coated and uncoated tools after full-scale testing during rough turning of 
TiAl6V4 alloy. Reproduced from [28], with permission from Elsevier, 2017. 

The results show that the wear performance of the uncoated tool is strongly surpassed by that 
of the TiB2 coating. (Figure 2). This is confirmed by SEM investigations of worn surfaces (Figure 2). 
SEM analysis indicates strong built-up formation in the uncoated tool and a very low-scale built-up 
in the TiB2 coated tool. Chip types and undersurface indicate different frictional phenomena 
occurring at the tool/chip interface. SEM images of the chip types and undersurfaces are presented 
in Figure 3. 

 

Figure 3. Type of chips and morphology of the chip undersurface for the (a,b) uncoated and (c,d) TiB2 
coated cutting tools during rough turning of Ti6Al4V alloy. Reproduced from [28], with permission 
from Elsevier, 2017. 

They show that the typical stick–slip phenomenon [15,16] occurs on the undersurface of the 
chips formed by the uncoated tools (Figure 3b) [28]. This phenomenon is strongly diminished in the 

Figure 3. Type of chips and morphology of the chip undersurface for the (a,b) uncoated and (c,d) TiB2
coated cutting tools during rough turning of Ti6Al4V alloy. Reproduced from [28], with permission
from Elsevier, 2017.

They show that the typical stick–slip phenomenon [15,16] occurs on the undersurface of the chips
formed by the uncoated tools (Figure 3b) [28]. This phenomenon is strongly diminished in the tool with
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a TiB2 self-lubricating coating. Different zones of stick and slip phenomena typical for the uncoated
tool are not present there, and a very smooth chip undersurface forms (Figure 3d).

XPS analysis of the worn surface indicates the formation of lubricating B2O3 tribo-films (Figure 4a).
At temperatures of around 450–500 ◦C, this compound melts [34,35] and forms a liquid lubricant
which greatly improves the frictional conditions. Coefficient of friction (COF) values drop at operating
temperatures within 450–680 ◦C [36], Figure 4b. As a result, built-up size is greatly reduced (SEM images
in Figure 2) and control over the built-up edge formations is thereby established.
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2.1.2. Coatings That Create a Layer of Thermal Barrier Tribo-Films

Machining of SDSS with Intensive Built-Up Edge Formation

Wear performance of the coating that creates a thermal barrier nano-layer of tribo-films was
investigated during the machining of super duplex stainless steel (SDSS). Figure 5 presents the results
of wear resistance studies of the uncoated cutting and coated tools. The coatings tested were as
follows: a benchmark AlTiN PVD coating widely used in industrial applications for stainless steel
machining [31] and adaptive TiAlCrSiYN/TiAlCrN nano-multilayer coatings [31]. Adaptive coatings
under optimized machining conditions have been shown to improve tool life up to 40% and up to 35%
compared to the respective uncoated and AlTiN coated samples (see Figure 5). Figure 6 presents the
flank wear vs. length of cut data for uncoated and coated cutting tools. The highest wear rate was
observed on the uncoated insert. The SEM image of the cutting edge depicts the intensive formation of
a built-up edge.
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The application of an adaptive TiAlCrSiYN/TiAlCrN nano-multilayer coating under optimized
machining conditions [37–39] significantly reduces the wear rate and leads to the formation of
down-scaled built-ups that are smaller and thinner. (Figure 6).

Chip undersurfaces are excellent fingerprints of the frictional surface phenomenon. SEM data of
the chip undersurface were combined with frictional (cutting) force data at the very beginning of the
process, as presented in Figure 7.
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SEM images show that the typical stick–slip phenomenon [21] occurs on the undersurface of the
chips formed by uncoated tools (Figure 7a). Spikes of frictional forces are the most intensive in the
uncoated cutting tool, which indicates that the stick–slip phenomenon (wave-like patterns on the chip
undersurface indicated by arrows in Figure 7a), is directly related to the process of self-organized
criticality [16,17]. This phenomenon is severely diminished in the coated tool—the wave-like patterns
are practically eliminated on the chip undersurface (Figure 7b) and frictional force spikes are brief and
seldom for the coated tools under optimized machining conditions (Figure 7b). This is a direct indication
of a significant improvement in the frictional performance. Tribo-film formation on the friction surface
that results from tribo-oxidation of the coating layer, plays a critical role in the adaptive response of
the surface-engineered systems, especially under extreme frictional conditions [10]. Different types
of tribo-films form on the surface of the cutting tools with TiAlCrSiYN/TiAlCrN multilayer coatings,
such as sapphire and mullite thermal barrier ceramic films (Figure 8) [26,27,31].

A major feature of the TiAlCrSiYN/TiAlCrN adaptive coatings is their ability to form a nanoscale
tribo-ceramic layer with an extremely high protective capacity, which radically alters the thermal
properties of the friction surface [4,31]. This case study mainly illustrates the effects of protective,
thermal barrier tribo-ceramics, which control the performance of the surface engineered layer [31].
They play an unprecedented role when the system operates under the severe conditions associated with
strong built-up edge formation during SDSS machining. Figure 8 shows the photoelectron line Al2s
components corresponding to the different types of aluminum chemical bonds in simple and complex
oxide tribo-films and nitride coatings. The phase composition of aluminum-based compounds on the
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worn surface is regulated by chemical shifts in the Al2s component. Al-Si-O bonds are formed in the
composite oxide with a mullite structure. Al-O bonds are typical of the Al2O3 composite and Al-N
bonds are the residual parts of the initial nitride coating that were not oxidized during the cutting
process. A certain amount of Al-Al dangling bonds was observed, indicating the amorphous-like layer
structure [26]. All of this directly affects the tool life and wear performance (Figure 6), demonstrating
the efficiency of the outlined BUE control strategy.
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film coating during running-in stage (after turning of 1000 m): Photoelectron Al2s spectra on the rake
surface of the worn coated tool tested. Reproduced from [31].

High Speed Machining of Ti Alloys: Combination of Built-Up Edge Formation and Cratering

Wear phenomena during the machining of a TiAl6V4 alloy are highly complex [10,13,28].
Intense adhesive interaction at the workpiece–tool interface occur in combination with built-up
edge formation [28]. The built-up predominantly forms at lower speeds and partially protects the
surface of the tool [28]. On the other hand, the built-up is an unstable structure with a temporal
avalanche-like performance that eventually leads to severe surface damage once the structure is
destroyed (turned off) during cutting [18]. Moreover, during the machining of Ti, a dynamically
formed thermal barrier TiC interlayer is formed at the built-up–carbide tool interface [28]. However,
the predominant wear mechanism of the cutting tool is significantly altered as the cutting speed
increases [40]. The intensity of built-up edge formation is lower at higher speeds (built-up is intensively
worn out) [40]. Therefore, the thermal barrier TiC layer is no longer capable of effectively performing
its protective role at the tool–chip interface. This is combined with the rapid (thermally enhanced)
diffusion of the cutting tool material into chips [40]. For this reason, the cratering wear mechanism
determines the overall tool life under the outlined conditions.

In general, the CrN coating is a good candidate for non-ferrous alloy machining because it has a
very low affinity with workpieces [41]. CrN is also known to have high chemical stability, resulting
in good corrosion and oxidation resistance [42], tribological properties (low coefficient of friction),
and toughness [43–46]. These properties are highly useful for the machining of sticky titanium alloys.
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Tool life and wear performance studies were conducted at a cutting speed of 150 m/min where
built-up formation is diminished, and tool life is short due to intensive crater wear [40]. Figure 9
presents flank wear vs. length of cut data for the wet turning of both coated and uncoated tools at a
cutting speed of 150 m/min. The CrN coated tool outperforms the AlTiN coated tool by ~129% and the
uncoated tool by ~45%.
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Two wear mechanisms are prevalent for the outlined conditions: (1) crater wear combined
with (2) intensive adhesive interaction at the tool–chip interface resulting in built-up edge formation.
At elevated cutting speeds, crater wear predominates on the rake face due to the generation of high
cutting temperatures [47]. Crater wear propagates overtime of the cutting, and rapid tool failure occurs
when crater wear expands to the flank edge of the cutting tool.

Figure 10 shows that machining with built-up edge formation features similarities to the behavior
of an avalanche. 3D progressive studies of wear show that the built-up periodically forms, accumulates
and breaks down [31]. This behavior occurs in combination with intensive cratering during the ongoing
cutting process.

The tribological performance of the tool/chip tribo-system is strongly related to the adaptive
response of the coating layer. This is due to the formation of tribo-films on the friction surface [13].
During high-speed cutting, a strong temperature gradient is created with the highest temperature
being present on the rake surface [31] of the tool where crater wear is most intensely propagating.
Investigation of tribo-film formation on the worn surface of the tool through XPS analysis helps explain
the superior performance of the CrN coating (Figure 11).
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The obtained data show that the CrN coating layer tribo-oxidizes, forming a Cr2O3 tribo-ceramic
layer on the rake surface of the tool. These films have a corundum structure [48] and provide thermal
barrier properties at high temperatures of cutting [49]. The temperature at the tool–chip interface
under the outlined conditions is around 900–950 ◦C [40], at which these tribo-films perform fairly
effectively. This can indirectly, by function, replace the thermal barrier TiC interlayer that had formed
at lower speeds [50] and helps to reduce crater wear intensity, thereby improving tool life. Due to
the enhanced ability of the CrN coating to form thermal barrier Cr2O3 tribo-films under operation,
the intensity of crater wear is strongly diminished and tool life is increased (Figure 9).

This also substantially improves the tribological performance, resulting in the formation of more
curled chips in the tool with a CrN coating (Figure 12a). The chips on the uncoated tool clearly
indicated a stick-slip phenomenon on their undersurface (Figure 12b). In chips formed by CrN coated
tools, the undersurface morphology was smoother and mostly slipping was observed.Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 24 
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As a result, built-up size is significantly reduced (SEM images in Figure 10), and the wear
performance is brought under control.

2.2. Coatings That Create an Adaptive Response at the Micro-Scale through Partial Flaking of the Surface
Engineered Layer

The tool life during machining of a compacted graphite iron (CGI) tool was analyzed under the
extreme conditions of dry (coolant-free) turning. Figure 13 shows the tool life figures of the benchmark
Al60Ti40N (KC 5010) arc PVD coating and the novel, low stress multilayer superfine cathode (SFC) PVD
coating (T2) with the same composition [51]. The new coating achieved a ~35% tool life improvement
over the benchmark coating, due to the the significantly lower intensity of built-up edge formation
(see SEM images in Figure 13a). This can be attributed to the top surface of the coating undergoing
gradual flaking [51] instead of the entire coating layer being fractured in depth (Figure 13b).Nanomaterials 2019, 9, x FOR PEER REVIEW 14 of 24 
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Figure 13. Flank wear versus cutting length for different PVD coatings during machining of compacted
graphitic iron (CGI): (a) flank wear data combined with SEM images of built-up; (b) SEM data after
builtup removal (by chemical etching). Reproduced from [32], with permission from Elsevier, 2019.

Cross-sectional TEM images of the worn area (Figure 14) show that the built-up had formed on
the rake face of the turning coated inserts after a length of cut of 400 m.
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Figure 14. Cross-sectional TEM images of the rake face inserts: (a) AlTiN-benchmark coating with,
High Angle Annular Dark Field (HAADF) magnified TEM image of (b) SFC-AlTiN 10um; length of cut
of 400 m. Reproduced from [32], with permission from Elsevier, 2019.

As a result of this interaction, the entire layer of the AlTiN (benchmark) coating had worn out
(destroyed) and the built-up formed directly on the WC-Co substrate (Figure 14a). However, in the
case of the SFC–AlTiN multilayer, the coating layer is still clearly present (Figure 14b). A High Angle
Annular Dark Field (HAADF) image of the same area (Figure 14a) shows that the built-up had directly
formed on the WC-Co substrate, where heavily deformed large WC grains are visible in the benchmark
coating. There are no visible WC grains in the SFC–AlTiN multilayer coating and the built-up has
formed directly on the coating layer. (Figure 14b). The magnified TEM image (Figure 14b) confirms
that the built-up/coating interface is sharp and no interlayer has formed on it. Most importantly,
no deformation (bending) of the AlTiN coating columnar structure can be observed, which is typical
for a coating that cannot withstand high frictional forces during cutting.

Figure 14 shows that due to the adaptive response of the surface engineered layer (through partial
flaking, Figure 13) the size of the energy dissipation burst of the self-organized critical systems
(built-ups) becomes significantly lower. In this way, large avalanches (Figure 14a) are prevented,
and surface damage is substantially reduced (Figure 14b).

An analysis of the chip undersurface was made for the benchmark and the novel low-stress coated
cutting tools (Figure 15). Intensive stick–slip phenomena combined with deep surface damage is
typical for the benchmark coating (Figure 15a). In the new low-stress coating, the intensity of this
catastrophic phenomenon is greatly reduced—mostly slip areas are visible (Figure 15b).
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2.3. Surface Engineered Layer That Demonstrates the Adaptive Response of the Entire Coated Carbide
Tool System

The tool/chip/workpiece is a tribo-system (or structure) whose constituent parts are interconnected
or functionally integrated. The term “structure” is used here in the generic sense [18]. A failure of one
part may cause the entire structure to fall apart as well. An integrative approach is critically needed to
control such complex engineering systems (structures) [18].

Results of flank wear and SEM studies of built-up formation in the two combinations of coated
carbide tools in comparison with the uncoated tool, are presented in Figure 16.

The results presented show the growth and further detachment of the built-ups which indicate
self-organized critical performance that is similar to avalanches [18]. As can be seen in Figure 16,
this eventually leads to the catastrophic failure of the entire tribo-system (SEM images, Figure 16).

It was demonstrated that superior wear performance and longer tool life can be attributed to a
surface engineered carbide material with an optimal combination of the coating/substrate properties
as a whole [8]. Such a structure has the potential to present adaptive response on two scales:
nano- and micro. Under severe frictional conditions associated with self-organized critical performance
(i.e., strong built-up edge formation), the mechanical properties which determine the overall resistance
of the coated carbide tool to severe external impact have a direct effect on the length of tool life
(Table 1) [8].
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The fracture toughness [52,53] of two different coating systems is shown in Table 1. The 
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toughness of the CVD coating on the medium-grain carbide substrate is greater (2 N/μm). In the PVD 

Figure 16. Wear performance data on SS 304 machining with built-up edge formation on the friction
surface of coated carbide tools: flank wear vs. length of cut, m with Scanning Electron Microscope
(SEM) studies of the worn surface at the end of tool life. Reproduced from [9], with permission from
Elsevier, 2020.

Table 1. Composition, structural characteristics and micro-mechanical characteristics for the
coatings/carbide substrates [9]. (Reproduced from [9], with permission from publisher Elsevier, 2019.).

Coated Carbide
Tool Material

Chemical
Composition,

Wt.%

Structural
Characteristics

Hardness,
GPa

Elastic Modulus,
GPa H/E Plasticity

Index (PI)

Fracture Toughness,
N/µm

(Load 100 N)

Physical vapor deposition (PVD) coated

Carbide
substrate material

WC-92.5
Co-7.5

Fine-grained
cemented carbide 22.6 550 0.0414 0.635

Coating layer Al60Ti40N Nano-crystalline 30 360 0.083 1.35

Chemical vapor deposition (CVD) coated

Carbide
substrate material

WC-87.3
Co-10

TiC-2.7

Medium-grained
cemented carbide 16.8 538.7 0.0325 0.692

Bi-layer coating: Al2O3 top layer
TiCN sublayer

33
30

390
420

0.085
0.071 2.0

The fracture toughness [52,53] of two different coating systems is shown in Table 1. The toughness
of the PVD coating on the fine-grained carbide substrate is 1.35 N/µm, whereas the toughness of the
CVD coating on the medium-grain carbide substrate is greater (2 N/µm). In the PVD coated carbide
tool, the substrate hardness is 22.6 GPa and the coating hardness is 30 GPa. In the bi-layer CVD coating;
however, the hardness of the Al-oxide outer layer is 33 GPa and the hardness of the TiCN sublayer
is 30 GPa. The hardness of the CVD coated substrate is 16.8 GPa. As shown in Table 1, the lower
Co content of the PVD coated carbide alloy contributes to the higher hardness. Conversely, a higher
Co content leads to lower carbide material hardness, which could in turn improve the toughness.
This should be considered in combination with plasticity index (PI) values (Table 1) [54]. Higher values
of PI are associated with higher energy dissipation under loading [54]. The more energy becomes
dissipated, the less of it is spent on deformation and damage of the carbide. The amount of energy is
insufficient to begin the deformation of the carbide material. Both of these parameters could be used
in a complementary fashion to determine the wear behavior of heavily loaded tribo-systems under
conditions of unstable attrition wear which result in strong built-up edge formation. Therefore, a CVD
coated carbide material with lower hardness and higher PI and toughness, exhibits superior wear
performance as well as longer tool life.

Stick–slip wear patterns observed on the chip undersurface were produced by the uncoated tool
(Figure 17a,b). However, no sticking is present on the chip undersurface generated by the PVD coated
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tool, but the slip is severe (Figure 17c,d). In the CVD coated tool, only a mild slip pattern can be
observed (Figure 17e,f). It can be concluded that tribological conditions are strongly improved at the
tool/chip interface and the self-organized critical (SOC) process is brought under control in the CVD
coated carbide material with the optimal combination of micro-mechanical properties. This is a direct
indication of integrative system behavior.
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Figure 17. SEM images of chip undersurface combined surface texture obtained by Infinite Focus G5
focus variation microscope (Alicona) with for (a,b) uncoated too; (c,d) PVD coated tool; (e,f) CVD coated
tool. Reproduced from [9], with permission from Elsevier, 2020.

3. Future Research Directions for Achieving Better Control over Wear Performance during
Machining with BUE Formation: Multi-Functional Coatings

Up to now, the majority of the PVD coatings used in cutting tool applications belong to the
category of nitride-based coatings which contain a limited number of alloying elements (usually 2–3).
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However, a promising new group of coatings has been recently introduced, which are multifunctional
coatings [55]. These coatings are able to address various wear mechanisms, thereby further improving
wear resistance [33]. Two major categories of multifunctional coatings show strong potential in
achieving control over severe BUE formation during machining. The first is the boride family of
coatings, which possess high hardness and chemical stability of the transition metal borides [33,56–62].
During cutting they also exhibit self-lubricating/protective properties [28]. The second type is high
entropy alloy coatings [63], whose combination of protective/lubrication characteristics with beneficial
micro-mechanical properties is responsible for their superior wear performance during machining
with BUE formation.

3.1. Multifunctional Boride Coatings

At the moment, the most widely used boride coating for cutting tool applications is TiB2. As was
mentioned previously, this coating is highly efficient in the controlling of BUE formation during Ti
alloy machining [28]. However, a wide variety of transition metal-based boride coatings has recently
appeared on the market [33,56]. In addition to the beneficial micro-mechanical properties [58–62] the
major advantage of these coatings is their strong potential to deliver multi-functional performance
due to the formation of various tribo-films under operation. This provides extra opportunities to
control BUE formation in a several ways, such as the improvement of thermal barrier and lubricating
properties of the coated tools.

3.2. High Entropy Alloyed Coatings (HEAC)

In contrast to typical PVD coatings, which mostly contain no more than three alloying elements
responsible for their basic properties, the high entropy alloy coatings contain five and more alloying
elements [63]. In contrast to the TiAlCrSiYN/TiAlCrN multilayer coating presented in [31], which is
designed on the principle of finding the of a coating’s emergent characteristics, HEAC are developed
using a different basis, when five or more alloying elements are present in equal or relatively large
proportions [63]. The term “high-entropy alloys” was introduced because the entropy increase in
mixing is substantially higher when there is a greater number of elements in the composition and
when their proportions are more or less equal [63]. Such coatings exhibit improved frictional and
micro-mechanical properties, such as the combination of high hardness and improved toughness
as well as high thermal and oxidation stability [64–76]. Therefore, they have the potential, on one
hand, to form several beneficial tribo-films (protective and lubricating) on the friction surface and,
on the other hand, provide energy dissipation within the body of the coating layer, with the goal of
reducing the surface damage caused by the detachment of built-up. The amount of published works
concerning the wear performance of HEAC during cutting is limited [77,78] and these publications
lack in-depth studies of their wear performance. As such, this presents a promising subject for future
detailed research in the outlined direction.

4. Conclusions

Machining of various hard to machine materials usually occurs alongside intense built-up edge
(BUE) formation. Metal cutting with BUE formation is associated with the stick–slip phenomenon at
the tool/chip interface and constitutes a self-organized critical (SOC) process. Since the built-up edge
is a semi-protective, very low-stability structure, it generally acts like an avalanche that eventually
results in the catastrophic failure of the entire cutting tool/workpiece tribo-system. To address this
issue, it is of primary importance to bring the self-organized critical processes under control. The chief
goal of this control is to reduce (a) the probability of occurrence and (b) size of avalanches (built-ups).
In this way, the large avalanches are postponed and even possibly prevented. One of the most
efficient ways to implement such a strategy is through the adaptive response of the surface-engineered
cutting tools. Several PVD and CVD coatings can be used to accomplish this task. These different
coatings are designed to control built-up formation at different scales in a number of ways that can
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lead to improved wear performance. Such coatings can be classified into two categories: those that
enhance the adaptive response at the nanoscale by providing self-lubricating and thermal barrier
capacities, and those that produce an adaptive response at the micro-scale via the partial flaking of the
coating layer. An integrative approach to coating/substrate design was also considered in this study.
Other groups of coatings also demonstrate a strong potential to effectively control BUE formation.
Multifunctional boride coatings can reduce the intensity of built-up edge formation via the generation
of various tribo-films with protective and lubricating abilities. High entropy alloy coatings can also
produce an adaptive response at two scales: nanoscale via formation of several beneficial tribo-films
and simultaneously provide energy dissipation at the micro-scale within the body of the coating layer.
Both of these processes act together to reduce surface damage once the built-up becomes detached
from the surface of the tool.
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