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Biopsy bacterial signature can 
predict patient tissue malignancy
Glenn Hogan1,2,7, Julia Eckenberger3,4,7, Neegam Narayanen5,6, Sidney P. Walker1,2, 
Marcus J. Claesson3,4, Mark Corrigan5, Deirdre O’Hanlon5,6 & Mark Tangney1,2,3*

Considerable recent research has indicated the presence of bacteria in a variety of human tumours 
and matched normal tissue. Rather than focusing on further identification of bacteria within 
tumour samples, we reversed the hypothesis to query if establishing the bacterial profile of a tissue 
biopsy could reveal its histology / malignancy status. The aim of the present study was therefore 
to differentiate between malignant and non-malignant fresh breast biopsy specimens, collected 
specifically for this purpose, based on bacterial sequence data alone. Fresh tissue biopsies were 
obtained from breast cancer patients and subjected to 16S rRNA gene sequencing. Progressive 
microbiological and bioinformatic contamination control practices were imparted at all points of 
specimen handling and bioinformatic manipulation. Differences in breast tumour and matched normal 
tissues were probed using a variety of statistical and machine-learning-based strategies. Breast 
tumour and matched normal tissue microbiome profiles proved sufficiently different to indicate that 
a classification strategy using bacterial biomarkers could be effective. Leave-one-out cross-validation 
of the predictive model confirmed the ability to identify malignant breast tissue from its bacterial 
signature with 84.78% accuracy, with a corresponding area under the receiver operating characteristic 
curve of 0.888. This study provides proof-of-concept data, from fit-for-purpose study material, on the 
potential to use the bacterial signature of tissue biopsies to identify their malignancy status. 

High-throughput 16S rRNA gene sequencing has recently been used to describe the microbial communities of 
in vivo compartments that were up until that point described as “sterile”. Among these is the microbiome of the 
human breast, for which fresh tumour and matched normal tissues have been characterised by our  group1–3 and 
substantiated by other  investigators4–7. Some of these studies have attempted to define significant differences 
between breast tumour and matched normal tissues in terms of their overall bacterial profiles, but have been 
largely unsuccessful 4,5,7. Nonetheless, these preliminary analyses have invited discussion and evaluation of the 
wider relevance of these data, such as their utility within medical and diagnostic contexts.

Recently, a comprehensive microbiome analysis across 33 cancer types suggested that differences in bacterial 
diversity exist between malignant and healthy tissues, as well as between different cancer  types8. This presents 
the possibility of exploiting such differences diagnostically. However, these findings are based on microbiome 
data drawn from tissues that were collected for The Cancer Genome Atlas (TCGA) project. These specimens are 
potentially unsuitable for analysis of microbial DNA, due to a high likelihood of contamination, a lack of negative 
controls, and DNA extraction techniques that are incompatible with bacterial  cells9. While robust bioinformatic 
contamination control was applied to these microbiome data, no method exists that can decontaminate samples 
completely, in silico. Furthermore, efforts to characterise the breast microbiota suggest that breast tissues are 
low-biomass  specimens3,10, which are especially prone to undue influence by  contamination11.

The apparent low biomass of breast tissue has created ambiguity in breast microbiome studies, given the 
limitations that deep sequencing techniques have in relation to low-biomass samples. The revelation that DNA 
extraction kits contain bacterial  DNA12 reinforces concern that low-biomass samples may be especially affected 
by kit contaminants if samples are not handled properly. Furthermore, a review of the sample collection protocols 
of breast microbiome studies reveals that inconsistencies arise here. Some studies utilise negative controls that 
aim to capture environmental contamination of samples that might arise in the operating theatre, while omitting 
controls that would indicate contamination originating from the patient’s  skin3–5, while other studies control 
for the  reverse6, and one study utilised both skin and environmental contamination  controls2. Additionally, 
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investigators of the breast microbiome often report relatively high levels of sample manipulation prior to DNA 
extraction, including excision of the breast specimen, followed by further handling in a pathology  laboratory4,6.

Although its mortality is decreasing, breast cancer remains the second most common cause of cancer death 
in women after lung cancer, and invasive breast cancer will afflict 1 in 8 women over a  lifetime13. Breast health is 
therefore still a key concern, and this is reflected in the myriad publications that aim to mobilise efforts to improve 
screening and diagnoses of breast cancer and, indeed, define its microbiome. However, the above factors have 
each stifled research in this field, as some studies analysing breast tissue, and low-biomass material in general, 
have been criticised for taking insufficient precautions in limiting the effect that environmental contamination 
may have on the  data11. Acknowledging the proneness to contamination that breast specimens may have, mini-
mising human interaction with them prior to analyses, and adopting appropriate analytical measures, is apt. Thus, 
the approaches described below aim to approach with greater sensitivity the potential sources of contamination 
that can come to bear at many points of specimen collection and processing.

Despite the above complications, data on the tumour microbiome to date indicate the potential for a new 
class of bacteria-based oncological biomarkers. To expand on this, we wished to examine if microbiome-based 
detection of malignancy is still effective when the confounding factors listed above have been accounted for, in 
an ‘in-practice’ setting (biopsies). The aim of the present study, therefore, was to derive high-quality bacterial 
profile data from fresh biopsy specimens, collected specifically for this purpose, to examine bacterial signature 
as a predictor of patient tissue malignancy.

Results
Bespoke tissue collection strategy produces high-quality sequence data. As the biopsies under 
study are low-biomass specimens, it was necessary to remove human-genome-aligning  reads14, and ensure that 
any biological signal was not distorted by environmental contaminants or by inter-patient variation. Source-
Tracker (v1.0)15 indicated low-to-moderate levels of contamination, which was subsequently removed with 
Decontam (v1.0.0)16 (Fig. 1), per published guidelines 9. For only four samples, more than half the sequencing 
data comprised contaminants (Fig. 1b). The strong correlation between numbers of sequencing reads before and 
after contamination removal reinforces the deduction, facilitated by the SourceTracker algorithm, that the bio-
logical signal of these samples has not been significantly distorted during collection and processing, increasing 
the likelihood of identifying genuinely distinct microbial signatures that are specific to malignant tissue.

Prior to contamination removal, 714,392 sequencing reads were available for analysis, equating to 
10,353 ± 2352 reads per sample, on average. Following removal, 605,852 reads remained, equating to 8780 ± 2272 
reads per sample, on average. Pairwise distances of samples taken from the same patient decreased after contami-
nation removal in all but 9 samples. Hence, removing contamination can potentially improve the discriminability 
of samples between sampling sites (Fig. 1c).

Differentially abundant bacteria exist between breast tumour and matched normal tissues, 
and skin surface swabs. Sample composition plots at phylum level indicated elevated numbers of Proteo-
bacteria and Fusobacteria, and decreased numbers of Firmicutes, in tumour samples compared with matched 
normal tissue and skin swabs (Fig. 2). Limited differences between matched normal tissue and skin swabs were 
observed in terms of sample composition. The Dirichlet-Multinomial test comparison confirmed this, by failing 
to reject the null hypothesis of no significant difference between skin swabs versus matched normal tissue (Xdc:− 
1.99, P = 1), while the comparison of tumour tissue with both skin swabs and matched normal tissue showed 
statistically significant differences (Xdc:33.82, P = 7.3e−6; Xdc:44.89, P = 4.9e−8, respectively).

To further compare the microbial composition of skin swabs, breast tumour, and matched normal tissue, 
sequencing reads were collapsed into species level (where possible) and filtered based on presence in at least 5% 
of the samples. All comparisons showed that all three specimen types had distinct microbial signatures (PER-
MANOVA P = 0.001) (Fig. 3a). Differential abundance analysis with ALDEx2 revealed 11 significantly increased 
taxa and three decreased taxa in matched normal tissue compared with tumour tissue—most prominently 
Staphylococcus epidermidis and Brevibacterium sanguinis, respectively. Six taxa were significantly increased (espe-
cially Clostridoides difficile) while four taxa were decreased (especially Ralstonia spp.) in matched normal breast 
tissue when compared with skin swabs. Finally, nine taxa were differentially abundant when comparing skin 
swabs with tumour tissues, with six taxa being increased and three decreased in skin swabs—most importantly 
Staphylococcus spp. and C. difficile (Fig. 3b, Supplementary tables 1–3). The presence of some of these bacteria is 
corroborated by reports from other groups—for example, Clostridia have been shown to be elevated in tumours 
of patients that respond well to immunotherapy 7.

Machine learning predictions based on bacterial signature are effective in differentiating 
malignant and non-malignant tissues. The distinctiveness of different patient sample types, in terms 
of their bacterial profile, was determined using the ‘Extreme Gradient Boosting’ machine learning technique, 
including bacterial species present in at least 5% of all samples, and proportionally normalised. The binary 
classifiers were able to distinguish between breast tumour and matched normal tissues (0.888 AUC, 84.78% 
accuracy), as well as between skin swabs and matched normal tissue (0.917 AUC, 89.13% accuracy) and skin 
swabs and tumour tissue (0.951 AUC, 95.65% accuracy). While S. epidermidis was the most important feature 
to differentiate between tumour and matched normal tissue, the presence of C. difficile allows for extremely 
accurate discrimination between skin swab samples and both tumour and matched normal tissues (Fig. 4, Sup-
plementary tables 4–6).
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Discussion
There is debate concerning the extent to which microbes are incidental colonisers of tumours, or if they are 
themselves tumourigenic. Whatever the relationship, the possibility of using microbial profiling to diagnose 
malignant disease is an attractive concept and its feasibility is considered in this study using a more authentic 
foundation than what can be provided via TCGA project source material.
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Figure 1.  Investigation of the effect of contamination removal on the number of sequencing reads per patient 
sample. (a) Correlation of reads per sample by tissue type prior to, and following, contamination removal. (b) 
Box plots of reads per sample by tissue type, prior to, and following, contamination removal. Red lines indicate 
samples that lost more than half their total reads following contamination removal. (c) Calculation of pairwise 
distances, before and after contamination removal, between tumour tissue (TT), matched normal tissue (MN), 
skin swabs (SS).
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The workflow followed in this study was calibrated to minimise the probability of contamination in both a 
wet laboratory and bioinformatic context using several approaches. First, a progressive contamination control 
strategy was implemented in line with the RIDE  checklist11. Second, all patient samples were provided directly 
by the breast surgeon, from the operating theatre, to laboratory personnel during the patient’s surgery. This 
was a favourable truncation of the traditional procedure, as investigators of the breast microbiome often report 
relatively high levels of sample manipulation prior to DNA extraction, including excision of the breast specimen, 
followed by further handling in a pathology  laboratory4,6. By removing this step, patient tissues were handled 
by less people over a shorter timeframe and were not exposed to the environmental contamination that might 
arise in the pathology department. Third, all patient samples were provided by a single surgical team under one 
consultant breast surgeon, providing a more consistent and reliable foundation for specimen collection.

The results of this can be seen in Fig. 1—approximately 20% of reads had to be discarded as contamination, 
with sufficient sequencing depth remaining to conduct robust statistical analysis. Comparisons of the overall 
bacterial community structure at the phylum level prior to and following contamination removal corroborate 
these findings, suggesting that the bespoke workflow is highly effective at eliminating contamination.
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Figure 2.  Composition of breast cancer patient specimens in terms of bacterial phyla. (a) Comparison of 
abundances of various bacterial phyla between patient sampling sites. (b) Sample composition at the phylum 
level, grouped by patient sample type.
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One confounding factor potentially affecting this study included a lack of comparison between tumour 
tissues and matched tissues taken from non-cancer patients. While the precedent investigation on this topic 
also did not acquire these  data8, the diagnostic authenticity of the approach is likely unaffected by this, given 
that the ability to distinguish between tumour and matched normal tissues within the same patient is probably 
more powerful than the ability to distinguish between corresponding tissues in cancer and non-cancer patients. 
Indeed, some microbiome studies have employed matched normal tissues as substitutes for tumour tissues, 
due to their anticipated similarities in terms of their microbial  communities2,6. Another potential limitation of 
this study is that only palpable tumours were biopsied and included in the final selection. This means that very 
small lesions were excluded from the current cohort, as they were not tangible. Yet, the range of tumour sizes 
biopsied varied widely, and tumours as small as 0.2 cm were in fact palpable and resected (Table 1). It remains 
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Figure 3.  Microbiota composition in tumour and matched normal tissues and skins swabs. (a) Principal 
component analysis, based on Aitchison distances, of all bacterial species that are present in at least 5% of 
samples. Paired samples are connected by grey lines. (b) Differentially abundant taxa with an adjusted p-value of 
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Figure 4.  Pairwise machine learning classification of breast cancer patient specimens. Receiver operating characteristic 
curves (ROC) for the boosted tree models based on species abundance with proportional normalisation on species present 
in at least 5% of samples. Illustrated are comparisons of: (a) tumour and matched normal tissue, (b) skin swabs and 
matched normal tissue, and (c) skin swabs and tumour tissue. A model with an area under the curve (AUC) of 0.5 has no 
discriminatory capacity, whereas an AUC of 1 indicates perfect separation of the response variables. The solid black line tracks 
the consensus AUC, while the surrounding, shaded area defines the 95% confidence interval. Beside each ROC curve, feature 
importance plots show the relative importance for the 10 taxa with the highest gain, normalised by the frequency a particular 
taxon is chosen for a model, for each comparison alongside their highest known classification. The labels within the bars 
indicate the sample type in which the respective taxa are significantly increased. Bars without labels indicate that the respective 
taxon is not differentially abundant in any sample type.
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a possibility, though, that tumours smaller than this were filtered out mid-study and are unrepresented in this 
work. A final, potential complicating factor concerns the different ways in which the breast tumour and matched 
normal tissues were obtained in this study—via a biopsy needle and diathermia, respectively. While different 
sampling methodologies could introduce variability and distort data interpretability, it is unlikely in this case 
that variations in sampling technique introduced significant changes to the tissues in terms of their microbiome 
composition. This is because both sampling techniques were similar in that they were implemented consecutively 
during invasive surgery, to sample patient tissues directly with minimal probability of cross-contamination from 
other tissue types. In fact, even when breast tissues are sampled in a minimally invasive context (i.e., the patient’s 
skin is contacted) using biopsy needles, and compared with invasive surgical excision biopsies (where the skin is 
not contacted), the respective microbiomes are not significantly influenced by the sampling technique variation 5.

We have shown that our predictive, machine learning model is accurate when used to determine the malig-
nancy status of human tissue, strongly suggesting that intratumoural bacteria may have the facility to act as 
cancer biomarkers. The classification accuracy of 84.78% is impressive and compares favourably with established 
clinical cancer diagnostics that are known to underperform. An example of this is the high false-positive rate 
observed (between 30 and 87%) when attempting to differentiate ductal carcinoma in situ from benign breast 
 disease17. Despite its good performance, it may be premature to pronounce on the true diagnostic utility of our 
technology, due to the high variability of sequence-based analyses of bacterial communities 18. However, with 
the increasing, widespread availability of bacterial DNA sequence data, from this and other tumour microbiome 
studies, a sufficiently varied training data set will soon be publicly available to bridge this gap.

Prospective work on this topic should investigate alternative tumour types to establish how broadly a cancer 
diagnostic approach that incorporates microbial profiling can be applied. It is reported that malignancies beyond 
breast cancer are associated with a microbiome, and these are being explored for various microbiome-based 
medical applications. For example, it has been proposed that the pancreatic ductal adenocarcinoma microbi-
ome has the capacity to generate oncogenic signals via tumour immunosuppression, that could be potentially 
intercepted to disrupt disease  progression19. Given that diagnostic algorithms for pancreatic adenocarcinoma 

Table 1.  Biographical, histological, surgical, and medical information for enrolled breast cancer patients. 
a Some patients had overlapping cancer types (e.g., both lobular carcinoma and ductal invasive carcinoma). 
b One patient did not provide information.

Demographic and clinical information for breast cancer patients (n = 23)

Age, median (range) 70 (40–83)

Sex, n (%)
2 (8.70%) Male

21 (91.30%) Female

Cancer  typea, n (%)

16 (69.57%) Ductal invasive

5 (21.74%) Lobular invasive

2 (8.70%) Invasive solid papillary carcinoma

1 (4.35%) Metastatic spindle cell carcinoma

Tumour grade, n (%)
16 (69.57%) Grade 2

7 (30.43%) Grade 3

Surgery type, n (%)
15 (65.22%) Mastectomy

8 (34.78%) Wide local excision

Tumour size in cm, median (range) 3 (0.2–10)

Largest metastatic focus in cm, median (range) 1.1 (0.1–3)

Antibiotic use within 1 month prior to  surgeryb, n (%) 2 (8.70%)

Regular probiotic  useb, n (%) 11 (47.83%)

History of  breastfeedingb, n (%) 6 (26.09%)

History of adjuvant therapy, n (%) 0 (0%)

History of neoadjuvant therapy, n (%) 1 (4.35%)

Tumour necrosis, n (%) 9 (39.13%)

Calcifications—malignancy-associated, n (%) 8 (34.78%)

Calcifications—benign tissue-associated, n (%) 11 (47.83%)

Oestrogen receptor positive, n (%) 21 (91.30%)

Progesterone receptor positive, n (%) 18 (78.26%)

HER-2 receptor positive, n (%) 0 (0%)

Ductal ectasia, n (%) 3 (13.04%)

Focal lactational change, n (%) 1 (4.35%)

Lymphovascular invasion, n (%) 12 (52.17%)

Extranodal extension, n (%) 9 (39.13%)

Extensive intraductal component, n (%) 1 (4.35%)

Skin involvement, n (%) 8 (34.78%)
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are poorly  defined20, the exploration of microbiome data as a diagnostic tool for this cancer is a worthy pursuit. 
Microbiome research is continually advancing, bringing with it pushes for increased refinement and standardi-
sation in the way data are collected and  analysed21. As this occurs, the true applicability of these data to health 
and disease should become clear.

Materials and methods
Independent validation of study material. Clinical research was approved by the Clinical Research 
Ethics Committee (CREC) of University College Cork, Cork, Ireland. All experimental procedures were carried 
out in accordance with the relevant guidelines and regulations. Breast cancer was confirmed in each patient 
using a ‘triple assessment’  approach22. This protocol is the gold standard for breast cancer diagnosis, incorporat-
ing physical examination, imaging (e.g., mammography), and core biopsy. When used individually, each of these 
modalities is associated with an appreciable degree of unreliability, especially when compared with their use in 
concert. When combined, triple assessment yields a positive predictive value of 100%, as well as a sensitivity 
(the extent to which the diagnostic can confirm breast cancer) and specificity (the capacity of the diagnostic 
to determine the absence of breast cancer) of 94.7% and 100%, respectively. Following a positive diagnosis, it 
was ensured that tumour biopsies retrieved only tissue from within the patient’s lump by working with palpable 
masses only (i.e., tumours were not biopsied if they were not palpable). Matched normal tissue was biopsied by 
removing tissue 3–4 cm from the primary tumour margin.

Clinical specimen collection and transportation. Approval for this study was received from the Clini-
cal Research Ethics Committee of the Cork Teaching Hospitals (ECM 4 (h) 04/06/13). Informed consent was 
sought from each patient and/or their legal guardian(s) before their inclusion. 21 female patients and 2 male 
patients with breast cancer were enrolled in the study. Demographic and clinical information for these patients 
are detailed in Table 1. Three sample types were retrieved ipsilaterally from each patient: a skin swab, breast 
tumour tissue, and matched normal breast tissue. Overall, 23 breast tumour samples, 23 matched normal tissue 
samples, and 23 skin swab samples were obtained from 23 breast cancer patients—i.e., all three specimen types 
were sampled from every patient. First, the patient’s skin was disinfected at their surgical site with ChloraPrep 
with Tint (CareFusion, USA) and the intact epidermis of the patient’s breast was subsequently swabbed with a 
sterile gauze pad at the point of surgical incision, prior to surgical incision. The gauze pad was then left exposed 
to the operating theatre’s environment until all samples were collected. Breast tumour tissue was extracted from 
each patient using a sterile, 14-French biopsy needle (ACHIEVE programmable automatic biopsy system, Merit 
Medical, USA). This was accomplished by passing the needle through the centre of the tumour during open 
surgery, prior to resection of the entire tumour by the surgeon. Matched normal tissue was excised from each 
patient using a sterile diathermy needle, during open surgery also, directly after tumour biopsy. The site at 
which matched normal tissue was removed was guided by the location of the tumour alone and was consistently 
resected outside of the marginal zone, between 3 and 4 cm from the edge of the tumour. All tissues and skin 
swabs were retrieved by a single breast surgeon, and a consistent sampling technique was used for every speci-
men type. Breast tissues were divided and placed into 30-ml universal containers. Skin swabs were stored and 
transported in 1 ml reinforced clostridial medium (RCM) (Oxoid, United Kingdom). Samples were transferred 
from the operating theatre to the laboratory within 20 min of collection. Tubes containing skin swab samples 
were vortexed, followed by removal of the gauze pad with a sterile forceps. Breast tissues and some volume of 
RCM from the skin swab samples were flash-frozen and stored in a −80 C freezer for subsequent bacterial DNA 
extraction. These samples were processed, subsequently passed quality control tests, and proceeded to down-
stream analyses, as described below.

DNA extraction, 16S rRNA library preparation, and sequencing. DNA from 23 patient tissues and 
skin swabs was subjected to 16S rRNA sequencing. DNA was first extracted from flash-frozen patient breast 
tissue and skin swab samples using the Ultra-Deep Microbiome Prep kit (Molzym, Germany). Skin swabs and 
tissue samples were processed per ‘Protocol 1’ and ‘Protocol 2’ of the kit manual, respectively. Steps requiring 
use of a thermomixer were performed using a T-Shaker (EuroClone, Italy) at 1000 rpm. 1 ml Buffer SU was run 
through the kit as a negative control, per ‘Protocol 1’. In total, 12 sets of DNA extractions were performed, each 
with a corresponding negative kit control. These negative kit controls were combined into three separate pools, 
and sequenced, as described below.

Eluted DNA was quantified using a Qubit fluorometer (Invitrogen, USA) using the ‘High Sensitivity’ assay, 
and PCR-amplified using primers targeting the V3-V4 region of the 16S rRNA gene (forward primer 5’-TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC AG-3’ and reverse primer 
5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3’). 
35-µl reactions were set-up per the following recipe: 17.5 µl NEBNext Ultra II Q5 Master Mix (New England 
Biolabs, USA), 1.75 µl forward and reverse primers (final concentration: 0.5 µM), and 14 µl template DNA. Two 
sets of amplicon PCRs were conducted in total, both with corresponding negative controls that were made by 
replacing 14 µl template DNA in the above recipe with 14 µl microbial DNA-free water (Qiagen, Germany). 
Both PCR negative controls were sequenced separately, as described below. Reactions were run in a Mastercycler 
Gradient per the following protocol: 98 C for 30 s, followed by 25 cycles of 98 C for 10 s, 60 C for 30 s, and 72 C 
for 40 s, followed by a final extension step of 72 C for 5 min. The product was approximately 460 bp.

Reactions were cleaned per the ‘16S Metagenomic Sequencing Library Preparation’ protocol (Illumina, USA), 
with the exception that samples were dried for 90 s following removal of ethanol, rather than for 10 min. Samples 
were eluted in 30 µl Buffer EB (Qiagen, Germany). Purified DNA proceeded to index PCR per the Illumina pro-
tocol, with the exception that 15 µl template was used, while PCR-grade water was omitted from the recipe. Index 
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PCR products were cleaned per the Illumina protocol, reducing the drying time, as above. DNA quantification 
was performed using a Qubit fluorometer, as above. Samples were normalised separately by pooling 40 ng DNA 
per sample. Samples that were too dilute to be normalised to these quantities had their total volume added to the 
pool. A paired-end, 300-bp run was subsequently completed on an Illumina MiSeq, at GENEWIZ, Inc., USA.

Bioinformatic data processing. The quality of 2 × 300-bp, paired-end sequence data was initially visu-
alised using FastQC (v0.11.6), and then filtered and trimmed using Trimmomatic (v0.36), to ensure a mini-
mum average quality of 25. The remaining high-quality reads were imported into the R environment (v3.6.2) 
for processing with the DADA2 package (v1.8.0). DADA2 was used to build an error model used to collapse 
raw sequences into amplicon sequence variants (ASV), which were then filtered to remove chimeric reads and 
human-aligning sequences. ASVs were classified to the genus level using the classify.seqs function within the 
Mothur suite of tools, with species-level resolution provided by SPINGO directed at the most recent SILVA 
database (v138).

The bioinformatic contamination control tools Decontam (v1.0.0)16 and SourceTracker (v1.0)15 were used, 
according to published  guidelines9,14, to retrospectively assess and remove contamination, based on sequencing 
data from negative controls.

Data analysis and visualisation. All statistical analyses were performed in the R environment. Microbial 
composition was evaluated with “vegan” (v 2.5-7) by performing principal component analysis (PCA) on Aitch-
ison distances, which were calculated with ‘ALDEx2’ (v 2_1.16.0). Differences between sample location were 
assessed using permutational multivariate analysis of variance (PERMANOVA). ‘ALDEx2’ was used to calculate 
pairwise differential abundances. To distinguish between tissue sampling sites, n leave-one-out gradient-boosted 
tree models were generated, using “xgboost” (v1.2.0.1). To predict the class of the nth sample. Optimal model 
hyperparameters were determined with bootstrapping of 100 iterations and five-fold cross-validations. The per-
formance of the classification was measured by the area under the ROC curve (AUC), utilising the “pROC” 
package (v1.16.2). This curve is constructed by plotting the sensitivity, or true positive rate, against the false posi-
tive rate, which is calculated as 1-specificity. Feature importance was determined by the ‘gain’ that an included 
bacterial species added to a model and the frequency with which each species was used for a model.

Data availability
The datasets generated from the current study are available from the corresponding author on reasonable request.
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