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Boundary extension (BE) is a pervasive phenomenon whereby people remember seeing

more of a scene than was present in the physical input, because they extrapolate beyond

the borders of the original stimulus. This automatic embedding of a scene into a wider

context supports our experience of a continuous and coherent world, and is therefore

highly adaptive. BE, whilst occurring rapidly, is nevertheless thought to comprise two

stages. The first involves the active extrapolation of the scene beyond its physical

boundaries, and is constructive in nature. The second phase occurs at retrieval, where the

initial extrapolation beyond the original scene borders is revealed by a subsequent memory

error. The brain regions associated with the initial, and crucial, extrapolation of a scene

beyond the view have never been investigated. Here, using functional MRI (fMRI) and a

classic BE paradigm, we found that this extrapolation of scenes occurred rapidly around

the time a scene was first viewed, and was associated with engagement of the hippo-

campus (HC) and parahippocampal cortex (PHC). Using connectivity analyses we deter-

mined that the HC in particular seemed to drive the BE effect, exerting topedown influence

on PHC and indeed as far back down the processing stream as early visual cortex (VC).

These cortical regions subsequently displayed activity profiles that tracked the trial-by-trial

subjective perception of the scenes, rather than physical reality, thereby reflecting the

behavioural expression of the BE error. Together our results show that the HC is involved in

the active extrapolation of scenes beyond their physical borders. This information is then

automatically and rapidly channelled through the scene processing hierarchy as far back

as early VC. This suggests that the anticipation and construction of scenes is a pervasive

and important aspect of our online perception, with the HC playing a central role.

ª 2012 Elsevier Ltd. Open access under CC BY license.
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In the natural world, what we see is always embedded within

a wider context. As such, we never perceive what is in front of

our eyes in complete isolation, but instead an object is
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of the external world, extrapolating beyond the information

that is directly available through the senses (Gregory, 1968,

1980; Friston, 2010). This is exemplified by a phenomenon

known as ‘boundary extension’ (BE), whereby people reliably

remember seeing more of a scene than was present in the

physical input, because they extrapolate beyond the borders

of the original stimulus (Intraub and Richardson, 1989).

BE occurs across a variety of testing conditions including

recognition, free recall, both visually and haptically (Intraub,

2004, 2012). It is apparent in all populations sampled

including adults (Intraub and Richardson, 1989; Seamon et al.,

2002), children (Seamon et al., 2002; Candel et al., 2004), and

even babies (Quinn and Intraub, 2007). Importantly, BE only

occurs in response to scenes, and not isolated objects (Intraub

et al., 1998; Gottesman and Intraub, 2002). It is thought to

comprise a two-stage process (Fig. 1); the first stage involves

the active extrapolation of the scene beyond its physical

boundaries, and is constructive in nature. This occurs because

when we initially encounter a scene, we are not limited to the

direct sensory input entering the retina, but also have access to

an automatically constructed and implicitly maintained rep-

resentation of the scene. This constructed representation ex-

tends beyond the borders of the physical scene, and provides a

global framework into which it can be rapidly embedded

(Intraub, 2012). This process supports our experience of a

continuous and coherent world, despite it being amassed from

discontinuous sensory input, and is therefore highly adaptive.

The extended scene becomes incorporated into our internal

representation of that scene, and this persists when the scene

is no longer present. The second phase of BE occurs at retrieval,

where the extrapolation beyond the original scene borders that

occurred in the first phase is revealed by a subsequentmemory

error. Specifically, if presented with exactly the same scene a

second time, people frequently judge the scene on this occa-

sion to have less background, making it appear to be closer-up

than the first scene. The fact that the studied viewneed only be

absent for as little as 42msec for BE to be apparent (Intraub and

Dickinson, 2008) underscores the online and spontaneous na-

ture of this effect. The first stage of BE, involving the active

extrapolation of the scene beyond the boundaries, we here-

after refer to as the BE effect to differentiate it from the sub-

sequent memory error, which we call the BE error.

The BE effect captures something automatic and funda-

mental about our interaction with the world yet its neural

substrates have not been well-characterised. The only neuro-

psychological study of BE was conducted recently by Mullally

et al. (2012), who examined BE in patients with selective

bilateral hippocampal damage and concomitant amnesia.

Notably, these patients were also impaired at constructing

fictitious and future scenes and events in the imagination (see

also Hassabis et al., 2007; Rosenbaum et al., 2009; Andelman

et al., 2010; Race et al., 2011). The extrapolation of scenes

beyond the view depends on intact scene construction ability

(Hassabis and Maguire, 2007, 2009), suggesting that BE should

be reduced in such patients. This is indeed what Mullally et al.

(2012) found, with BE significantly attenuated compared to

matched control participants across a variety of BE paradigms

leading to the conclusion that the hippocampus (HC) supports

the internal construction of scenes and also extended scenes

when they are not physically in view.
Only one functional magnetic resonance imaging (fMRI)

study has examined the neural correlates of BE, using a

region-of-interest (ROI) approach focused on two scene-

relevant brain areas, the posterior parahippocampal cortex

(PHC) and retrosplenial cortex (RSC) (Park et al., 2007). The aim

of their study was not to investigate activity relating to the

initial extension of a scene during the first presentation (the

BE effect), but instead was to examine neural adaptation (i.e.,

attenuation in the neural response with repeated presenta-

tion of a stimulus e see Grill-Spector et al., 2006) on presen-

tation of the second scene. They found that both PHC and RSC

demonstrated adaptation effects consistent with the subjec-

tive perception of scenes rather than the physical reality. The

results of this study suggest that these scene-relevant regions

are sensitive to the output of BE at the BE error stage. The

findings from Park et al. (2007), however, do not allow any

conclusions to be drawn about the brain areas involved in the

initial stage of automatic extrapolation beyond the view of

scenes, the BE effect itself.

The current study therefore had three aims. First, using

fMRI in healthy participants we focussed specifically on the BE

effect, the initial stage of scene extrapolation, in order to

ascertain how this is instantiated in the brain, and in so doing

to throw further light on this highly adaptive process. Second,

we sought to establish if the HCwas engaged during BE, in line

with the findings of Mullally et al. (2012). Specifically, we

wondered if the HC would be involved in the initial stage of

scene extrapolation. If so, this automatic and implicit role in

constructing and representing unseen aspects of scenes

would provide further insights into the nature of hippocampal

processing. Third, as well as the HC, and given the findings of

Park et al. (2007), wewere also interested to know if areas such

as PHCwould be engaged. In particular wewanted to gain new

insights into the flow of scene-related information by

assessing the effective connectivity between implicated brain

regions during the initial scene extrapolation stage of BE.

In order to do this, we used a modified version of a classic

BE paradigm, known as the rapid serial visual presentation

(RSVP) task (Fig. 2), where on each trial a picture of a scenewas

presented briefly, followed by a visual mask (Intraub et al.,

1996; Intraub and Dickinson, 2008; Mullally et al., 2012). After

a short interval (and unbeknownst to the participants) exactly

the same scene was presented for a second time, and the

participant was required to decide whether the second scene

appeared to be exactly the same as the first (the correct

answer), closer or further away. On a high proportion of trials

in this task (e.g., w60% in Mullally et al., 2012), healthy par-

ticipants rate the second picture as closer-up than the first

picture, thus exhibiting BE (Intraub et al., 1996).

To investigate neural activity related specifically to the BE

effect, we capitalised on the fact that in the RSVP task BE does

not happen on every trial. This allowed us to compare trials

where BE occurred to those where it did not. By focussing

exclusively on the first occasion that each scene was viewed,

we could compare the activity elicited during the first scene

presentation in trials which subsequently led to a BE error and

those first presentations of scenes which did not lead to a BE

error. Regions involved in the automatic construction of

extendedscenes should showincreasedactivity on trialswhere

the BE effect occurred compared to those where it did not.

http://dx.doi.org/10.1016/j.cortex.2012.11.010
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Fig. 1 e The phenomenon of BE. When we see a picture of a scene (top panel), we automatically extrapolate beyond the

physical edges of that scene (second panel). This active extension of the scene is the ‘BE effect’. When the scene is no longer

present, the extended content and context beyond the boundaries become incorporated into our internal representation of

the scene (third panel). Thus, in Phase 2, when exactly the same picture is presented at test (fourth panel), we compare the

now extended internal representation to the test picture, leading to a perception that the test picture is ‘closer’ than the

original study picture, even though they are identical. This memory error is the ‘BE error’.
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2. Methods

2.1. Participants

Thirty healthy right-handed adults [15 females; mean age

22.0 years; standard deviation (SD) 2.88; range 19e28 years]
participated in the experiment. All had normal or corrected-

to-normal vision and gave informed written consent to

participation in accordance with the local research ethics

committee. Participants were naı̈ve to the concept of

BE, and it was not mentioned at any time during the

experiment.

http://dx.doi.org/10.1016/j.cortex.2012.11.010
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Fig. 2 e An example of a trial during the fMRI experiment.
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2.2. Task and procedure

During a pre-scan training period participants were instructed

in the task requirements and performed practice trials using

material that was not included in the main scanning experi-

ment. Theywere informed that theywould be viewing a scene

that would be presented twice, and that when the scene was

presented the second time it might appear to be exactly the

same, closer-up or further away than when first viewed. The

aim of the task was simply to decide on each trial whether the

second scene appeared to be closer, further away, or the same.

During subsequent fMRI scanning participants completed 60

trials of the task, presented in a randomised order, with a

different scene used on each trial. In a post-scan debriefing

session, each participant confirmed they had complied with

the task instructions and had made the intended responses.

At the start of each trial a central fixation cross appeared,

indicating that the trial was starting (Fig. 2). After 1 sec a scene

was briefly presented in the centre of the screen for 250 msec.

This was then concealed with a dynamically changing visual

noise mask which lasted for 200 msec (Intraub and Dickinson,

2008). This was followed by a static visual noise mask pre-

sented for a variable period of 2, 3 or 4 sec. The length of this

“jitter” was pseudo-randomised across trials. The purpose of

this jittered period was to create separable neural signals for

both the first and second scene presentations (Dale, 1999),

although the key comparison of interest here was in fact be-

tween different types of first scene presentations. Jittering is a

common approach in event-related fMRI studies, used to de-

correlate the blood oxygenation level-dependent (BOLD)

signal associated with two events that are presented close to

one another in time, such as the two scenes presented in this

study. At the end of the jitter period a central fixation cross

appeared for 1 sec, followed by the scene presented once again

and in the same location. After 1 sec the scene was joined by a

set of options which appeared underneath the picture.

Participants were first provided with a set of five possible

responses indicating that the second picture appeared to be

“much closer-up” than the first picture, that it was “a little

closer-up”, that it was “the same” (the correct answer), that it
was “a little further away”, or that it was “much further away”.

Theywere allowed up to 5 sec to select one option using a five-

button scanner-compatible button-box using their right hand.

Once they had made their response (or if they had failed to

respond within 5 sec), a second set of options appeared,

requiring the participant to make a confidence judgement

regarding their decision. The choices indicated that the

participant was “not sure” of their response, that they were

“fairly sure”, or that they were “very sure”; participants were

allowed up to 4 sec to select one option. They were also given

the option to press a button to indicate that they did not

remember seeing the first picture at all. This was included

given the rapid presentation of the first scene and to allow for

the fact that a participant may occasionally miss a scene due

tomomentary inattention or protracted blinking. Any trials on

which a participant provided this response were discarded

from the subsequent analysis, as were trials on which

participant failed to provide a response to either of the ratings

[mean number of excluded trials 1.53 (SD 2.5)]. Participants

then had 2 sec to rest before the start of the next trial.

2.3. Behavioural analysis

Following the scoring procedure of Intraub and Richardson

(1989), each response was scored from �2 to 2 where �2

meant “much closer-up”, �1 meant “a little closer-up”,

0 meant “the same”, 1 meant “a little further away”, and

2meant “much further away”. Themean score across all trials

was calculated for each participant, providing an overall BE

score. This score indicates the degree of bias towards one

response over another. If participants show no bias in

response, the score will be 0. However, if they display a BE

effect, the score will be negative, due to the greater number of

closer responses. In order to determine whether the group of

participants as a whole displayed a significant BE effect, we

compared the BE scores to 0 using a t-test. We also performed

a second analysis where we investigated the proportion of

each response type (Closer, Same, Further), ignoring the de-

gree of subjective distance (i.e., whether it was “much” or “a

little” further/closer). For this analysis we calculated the

http://dx.doi.org/10.1016/j.cortex.2012.11.010
http://dx.doi.org/10.1016/j.cortex.2012.11.010
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percentage of response trials falling into each of the three

categories for each participant, and compared them using a

one-way analysis of variance (ANOVA).
2.4. MRI scanning

MRI data were collected using a 3 T Magnetom Allegra head-

only MRI scanner (Siemens Healthcare, Erlangen, Germany)

operated with the standard transmit-receive head coil. Func-

tional MRI data were acquired in one session with a BOLD-

sensitive T2*-weighted single-shot echo-planar imaging

sequence which was optimised to minimise signal dropout in

the medial temporal lobe (MTL) (Weiskopf et al., 2006). The

sequence used a descending slice acquisition order with a

slice thickness of 2 mm, an interslice gap of 1 mm, and an in-

plane resolution of 3 � 3 mm. Forty eight slices were collected

covering the entire brain, resulting in a repetition time of

2.88 sec. The echo time was 30 msec and the flip angle 90�. All
data were acquired at a �45� angle to the anterioreposterior

axis. In addition, field maps were collected for subsequent

distortion correction (Weiskopf et al., 2006). These were ac-

quired with a double-echo gradient echo field map sequence

(TE ¼ 10 and 12.46 msec, TR ¼ 1020 msec, matrix size 64 � 64,

with 64 slices, voxel size ¼ 3 mm3) covering the whole head.

After these functional scans, a 3D MDEFT T1-weighted struc-

tural scan was acquired for each participant with 1 mm

isotropic resolution (Deichmann et al., 2004).
2.5. Image pre-processing

Neuroimaging data were analysed using SPM8. The first six

functional volumes were discarded to allow for T1 equilibra-

tion (Frackowiak et al., 2004). The remaining functional vol-

umes were spatially realigned to the first image of the series,

and distortion corrections were applied based on the field

maps using the Unwarp routines in SPM (Andersson et al.,

2001; Hutton et al., 2002). Each participant’s structural scan

was then co-registered to a mean image of their realigned,

distortion-corrected functional scans. The structural images

were segmented into grey matter (GM), white matter (WM),

and cerebral spinal fluid using the New Segment tool within

SPM8. The DARTEL normalization process was then applied to

the GM and WM segmented images, which iteratively warped

the images into a common space using nonlinear registration

(Ashburner, 2007). Using the output of this nonlinear warping

process, all functional and structural images were normalised

to MNI space using DARTEL’s ‘Normalise to MNI’ tool. The

functional images were smoothed using a Gaussian kernel

with full-width at half maximum of 8 mm.

Structural MRI scans were analysed using voxel-based

morphometry (VBM; Ashburner and Friston, 2000, 2005)

implemented in SPM8, employing a smoothing kernel of 8mm

full-width at half maximum. For a priori ROIs (HC, PHC and

RSC e see Section 2.7), we applied a statistical threshold of

p < .001 uncorrected for multiple comparisons. For the rest of

the brain, we employed a family-wise error (FWE)-corrected

threshold of p < .05. We searched for structural correlates of

individual differences in BE, and found no significant effects in

the MTLs, or elsewhere in the brain.
2.6. Neuroimaging analyses

Statistical analysis of the fMRI data was applied to the pre-

processed data using a general linear model. The primary

analysis involved a comparison of activity elicited by the first

scene presentation on trials where BE occurred and those first

presentation trials where it did not. To do this, we used each

participant’s behavioural data in order to divide the trials into

thosewhere BE occurred (all trials where the second scenewas

judged to be closer than the first e the BE condition), and those

where it did not occur (the Null condition). The Null condition

consisted of trialswhere the second scenewas judged to be the

same or further away than the first, as in both cases BE did not

occur. By pooling across both types of Null trial in this way, we

increased thepower of the analysis.Weused a stick function to

model the onset of each first scene presentation, dividing the

trials into two conditions based on the subsequent behavioural

choice data, thus creating a BE regressor and a Null regressor.

These stick functions were convolved with the canonical hae-

modynamic response function and its temporal derivative to

create the two regressors of interest. We also used a stick

function to model the second scene presentations, dividing

them into BE and Null conditions, which were included as re-

gressors of no interest. The decision and confidence rating

periods were modelled as boxcar functions with variable

length, depending on the participant-specific response times,

andwere included as regressors of no interest. Subject-specific

movement parameters were also included as regressors of no

interest. Participant-specific parameter estimates (b values)

were calculated at each voxel across the brain. The parameter

estimateswere then entered into a second level randomeffects

analysis,where one-sample t-testswere applied to every voxel.

Initial statistical thresholding was applied using a threshold of

p < .001, uncorrected for multiple comparisons. Activations

were considered to be statistically significant only if they sur-

vived FWE correction at either the peak or cluster level. For a

priori anatomical ROIs, FWE correctionwas applied using small

volume correction (Frackowiak et al., 2004) within pre-defined

anatomical masks (see Section 2.7).

Although not our primary interest, given the results of Park

et al. (2007), we also looked for adaptation effects. Here we

contrasted trials where the two scenes were perceived to be

the same with those that were perceived to be different

(including both closer and further away), despite the stimuli

being physically identical during any one trial. The trials were

divided into these two conditions for modelling both the first

and second scene presentations. In all other respects, the

experimental designwas identical to that described above.We

first used a whole-brain analysis to localise regions which

displayed an overall adaptation effect between the first and

second scene presentations, regardless of condition. We then

conducted more in-depth adaptation analyses using ROIs, as

described below. The statistical thresholds were identical to

those described above.

2.7. ROIs

Given the (limited) previous literature on the functional

neuroanatomy of BE, our a priori hypothesis was that the HC

would be involved in the BE effect, and that the PHC and RSC

http://dx.doi.org/10.1016/j.cortex.2012.11.010
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might also be implicated. Each of these ROIs was manually

defined on the normalised group average T1-weighted struc-

tural MR image using the Duvernoy anatomical atlases for

guidance (Duvernoy, 1999, 2005). These anatomical ROIs were

used in MarsBar (http://marsbar.sourceforge.net) analyses,

whereafinite impulse response (FIR)model (Dale, 1999;Ollinger

et al., 2001) was fitted to the data in order to probe the time-

course of responses in ROIs. Four time-windows of 2 sec each

were modelled, time-locked to the onset of the first scene pre-

sentation. These ROIs were also used for small volume correc-

tion within SPM. Based on the whole-brain adaptation analysis

described above, we determined that early visual cortex (VC)

was a target for further ROI-based analyses. We therefore

establishedaVCROIusing a contrast thatwasorthogonal to the

adaptation analysis (i.e., all scenes presented on the first trial

only compared to the implicit baseline). This ROI was used for

further adaptation analyses, and for the HCeVC dynamic

causal modelling (DCM) analysis described below.

2.8. DCM

The anatomical ROIswere also used forDCM, a Bayesianmodel

comparison method which involves creating various plausible

models of the task-dependent effective connectivity between

pre-specified brain regions (Friston et al., 2003; Stephan et al.,

2010). Once fitted, the evidence associated with each model

can be compared in order to determinewhich is themost likely

(or ‘winning’) model. We were interested in investigating the

modulation of effective connectivity elicited by the presenta-

tion of the first scene on trials where BE occurred, and in order

to do this we created a simplified design matrix for the DCM

analysis, consisting of two regressors. The first modelled the

onset of all first scene presentations, and the second modelled

the first scene presentations on trials where BE occurred. Two

separate DCM analyses were conducted, in each case investi-

gating the connectivity between two ROIs (HC and PHC in one

set of models, HC and VC in the second). DCM10 was used for

these analyses, and in both cases the twoROIswere considered

to have reciprocal average connections (the Amatrix), with the

visual input (the C matrix) stimulating the PHC in the first

analysis and VC in the second. For both analyses there were

three different models based on altering the modulatory con-

nections (the B matrix), allowing the modulation to affect the

“backward” connection (fromHC back to either PHC or VC), the

“forward” connection, or both directions (“bidirectional”).

Separate analyses were conducted in both hemispheres, and

used a random effects Bayesian model comparison method to

determine which was the winning model (Stephan et al., 2009,

2010). This results in an exceedance probability estimate for

each model, which describes how likely that model is

compared with any other model. The model with the highest

exceedance probability is considered to be the winning model.
Fig. 3 e Behavioural responses. The percentage of trials

perceived as “Closer”, “the Same”, and “Further Away”

was calculated for each individual. The group mean

percentage for each response type is displayed here. The

proportion of “Closer” responses was significantly greater

than each of the other responses, demonstrating a BE effect.
3. Results

3.1. Behavioural evidence for BE

The RSVP task resulted in BE with a mean average BE score of

�.40 (SD .26). A negative score indicates a bias towards
responding “Closer”, consistent with a BE effect. A t-test

comparing scores against 0 demonstrated that this behav-

ioural effect was highly significant (t ¼ �8.58, p < 10�9). In a

second analysis, we calculated the percentage of each cate-

gorical response type (Closer, Same, Further) for each partic-

ipant (displayed in Fig. 3). A one-way repeated-measures

ANOVA demonstrated that there was significant variation in

response across these three conditions (F ¼ 34.65, p < 10�32).

Post-hoc t-tests revealed that the percentage of Closer re-

sponses was significantly greater than both the Further

(t ¼ 10.17, p < 10�14) and Same responses (t ¼ 3.61, p ¼ .0006),

consistent with BE. Together, both analysis methods reveal a

robust behavioural BE effect.

Importantly, despite the strong overall BE effect and as is

usual in this task, BE was not apparent on all trials for any of

the participants; the mean proportion of trials on which a

participant produced a BE error was 48% (SD 14%). This pro-

vided an even division of the data for the main neuroimaging

contrast between first presentations of scenes where BE

occurred and those where it did not.

Because a jittered inter-stimulus interval was used in this

study, we tested whether this variation in time affected the

behavioural responses. We calculated a BE score separately

for each inter-stimulus interval (ISI) (2, 3 and 4 sec) for each

participant. We then tested for any differences between these

levels of jitter using a one-way repeated-measures ANOVA.

No significant effect was found, indicating that the different

levels of jitter did not impact significantly on the BE effect

(F ¼ .60, p ¼ .55).

We also investigated whether there were systematic dif-

ferences in BE across the scene stimuli. We calculated the

cross-participant SD for each scene (mean SD ¼ .91, SD of the

SD ¼ .10, range of the SD ¼ .67e1.11) and found substantial

variation across participants for each item, suggesting there

was no consistent item-level effects on BE. To determine

whether there were any specific scenes which had a particu-

larly strong (or weak) BE effect compared to the others, in a

second analysis we looked at the set of mean BE scores for

http://marsbar.sourceforge.net
http://dx.doi.org/10.1016/j.cortex.2012.11.010
http://dx.doi.org/10.1016/j.cortex.2012.11.010


c o r t e x 4 9 ( 2 0 1 3 ) 2 0 6 7e2 0 7 9 2073
each of the 60 scene stimuli. If any individual scenes were

exerting a consistently strong or weak BE effect, then the

mean BE scores should be particularly high (or low) compared

to thewhole distribution. In other words, they should showup

as an outlier (three SDs or more from the mean). This was not

the case for any of the scenes, and the maximum SDwas only

2.19 from the mean. This suggests that no individual scenes

exerted a systematically strong or weak BE effect.

3.2. Brain areas involved in the initial extrapolation of
scenes

We conducted a whole-brain fMRI analysis contrasting activ-

ity on first presentation trials where BE subsequently occurred

to those first presentation trials where it did not (scenes

judged to be the same or further away). We focussed on ac-

tivity evoked by the first scene presentation because this is the

point at which the BE effect is proposed to take place. This

analysis (Fig. 4) revealed significant activation in the right

posterior HC (peak coordinate 24, �39, 3; Z ¼ 3.42; cluster size

20), right PHC (21, �27, �18; Z ¼ 3.71; cluster size 46), and a

significant activation extending across both left posterior HC

and left PHC (�26, �31, �14; Z ¼ 3.45; cluster size 35). No other

significant activations were apparent elsewhere in the brain,

including the RSC (a region previously implicated in BE e Park

et al., 2007), indicating that this effect was localised to the

MTLs.

3.3. Time-course of responses

In order to assert that the MTL activity observed here reflected

the active extrapolation of scenes, it was important to estab-

lish that the responses were indeed evoked by the first scene

presentation. We therefore examined the time-course of ac-

tivity within each of the activated regions (ROIs were

anatomically defined e see Section 2.7) using a FIR analysis in

MarsBar. This allowed us to examine the fMRI signal within

specific time-windows of 2 sec each that were time-locked to

the onset of the first scene presentation on each trial. This

analysis revealed a significant increase in activity on trials

where BE occurred as early as 2e4 sec following the first scene

onset (collapsed across hemisphere: HC t ¼ 2.11, p ¼ .02; PHC

t ¼ 1.94, p ¼ .03), indicating that this is an early response that

likely occurred soon after stimulus onset (Fig. 5A and B). Given

that the shortest delay between the onset of the first and

second scene presentations was 3.45 sec (occurring on one

third of the trials due to the jittered delay), we can conclude

with some certainty that this effect during the 2e4 sec time-

window can only be attributed to a process occurring in

response to the first scene. Furthermore, given that the BOLD

signal lags behind cognitive processes with a peak response at

around 6 sec after stimulus presentation, this early response

at 2e4 sec suggests a rapid response to the first stimulus. Due

to the limited temporal resolution of fMRI, it is not possible to

determine whether the signal can be attributed to a process

occurring online, during perception of the scene, or shortly

after the stimulus offset. Nevertheless, we can conclude that

the BE-related activity occurred in response to the first scene,

prior to the onset of the second scene, which was the critical

question of interest here.
3.4. HCePHC connectivity

These results clearly implicate both the HC and PHC in BE. Our

hypothesis was that the HC plays a central role in the BE ef-

fect, because patients with damage localised to the HC show

reductions in BE (Mullally et al., 2012). It was therefore

important to tease apart the functional contributions of these

two regions by investigating the neural dynamics occurring

during the BE effect. If our hypothesis was correct, then we

would expect the HC to be driving the activity of the PHC. The

flow of information between these two regions was assessed

using DCM (see Section 2.8), a Bayesian model comparison

method in which different models of the neural dynamics are

compared in order to find the most likely model of informa-

tion flow in the brain (Friston et al., 2003).

For this analysis, we used a simple approach which

involved investigating the connectivity between the two ROIs,

the HC and PHC. We conducted this analysis separately in

both hemispheres, and used a random effects Bayesianmodel

comparison method to determine which was the winning

model (Stephan et al., 2009, 2010). The winningmodel was the

backward modulation model, in which the HC drove activity

within the PHC, and this was the case for both hemispheres

independently (exceedance probability for the backward

model was 60% in the right, and 51% in the left hemisphere;

Fig. 5C). This result suggests that the HC is the driving force

behind the BE effect, which then influences activity within

the PHC.

3.5. fMRI adaptation

Having conducted the primary analyses of interest, we were

able to ask a further question with this dataset, namely, were

there any changes in fMRI activity consistent with the sub-

jective perception of scenes, similar to the approach adopted

by Park et al. (2007)? fMRI adaptation is a method based on the

observation that fMRI activity is attenuated with repeated

presentation of a stimulus (Grill-Spector et al., 2006). To

investigate this, we first searched for regions showing an

overall adaptation effect in response to scenes, regardless of

the behavioural response. Interestingly, the only brain region

to show an overall adaptation effect was early VC (peak co-

ordinate �6, �85, �3; Z ¼ 7.62; cluster size 5128, using peak

threshold of FWE p < .05; see Fig. 6A and B). Using MarsBar to

probe the average activity in the pre-defined ROIs confirmed

that none of the MTL regions displayed an overall adaptation

effect in response to the scenes. In order to further investigate

the adaptation effect within early VC, an ROI was established

using a contrast that was orthogonal to the adaptation anal-

ysis (i.e., all scenes presented on the first trial only compared

to the implicit baseline).

Having defined this ROI, we next wanted to look for evi-

dence of differential adaptation effects in line with subjective

perception of the scenes. MarsBar was used to extract the

mean adaptation response on trials where participants

perceived the second scene to be exactly the same as the first

(no change in subjective perception) and those where the

second scene was perceived to be different from the first

(either closer or further away). If the early VC displayed re-

sponses that reflected the subjective perception of the scenes,

http://dx.doi.org/10.1016/j.cortex.2012.11.010
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Fig. 4 e Neural correlates of the BE effect. Trials on which BE occurred were compared to those where it did not, focussing

specifically on activity evoked by the first scene presentation. Several areas within the MTL showed increased engagement

during the extrapolation of scenes beyond the view. Results are displayed on the group average structural MRI scan in the

sagittal plane on the left, and the coronal plane on the right, with the crosshairs centred on the peak of the activation in each

case. The top panel displays the activation in right posterior HC, the middle panel the right PHC activation, and the bottom

panel activation in the left MTL spanning both HC and PHC. For display clarity, activity is thresholded at p [ .005

uncorrected, and with a MTL mask.
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Fig. 5 e FIR analysis was used to investigate the time-

course of responses in the HC (A) and PHC. (B). In each case

the increase in activity for trials where BE occurred

compared to those where it did not are plotted, with

standard error bars. The different FIR time-windows are

displayed on the x axis, and percent change in fMRI BOLD

response on the y axis. For both regions a significant

increase in activation as early as 2e4 sec following the

presentation of the first scene was apparent (which was

before the presentation of the second scene). Furthermore,

given that the BOLD response lags behind stimulus

presentation with a peak of 6 sec, this reflected a rapid

response to the first scene. (C) The results of the DCM

model comparison analysis. This plot displays the

exceedance probability on the y axis, which describes

how likely each model is compared to any other model.
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we would expect this region to display less adaptation on

trials where the scenes are perceived to be different compared

to those which are perceived to be exactly the same. A direct

comparison of the two adaptation responses revealed pre-

cisely this result (t ¼ 2.05, p ¼ .03), demonstrating that adap-

tation responses in early VC tracked subjective perception

even when there was no physical change in the stimuli

(Fig. 6C).

Although no MTL region displayed evidence of an overall

scene adaptation effect, we nevertheless investigated

whether the PHC and RSC might display a differential adapta-

tion effect. Both regions displayed differential adaptation in

line with the subjective perception of the scenes, showing less

adaptation for scenes perceived to be different (collapsed

across hemisphere: PHC t ¼ 1.81, p ¼ .04; RSC t ¼ 1.7, p ¼ .05).

Thus, although these regions did not show a global adaptation

effect in response to repeated scenes, they nevertheless

showed the expected pattern of differential adaptation. These

results, therefore, are broadly consistent with the results of

Park et al. (2007), and suggest that both the PHC and RSC

display activity that tracks the subjective perception of

scenes. By contrast, the HC did not display a significant effect

of adaptation (t ¼ 1.43, p ¼ .08).

3.6. HCeVC connectivity

Our results suggest that the MTL, and particularly the HC, was

involved in the rapid, automatic extrapolation of scenes

beyond the edges of the given view. For VC to show a differ-

ential adaptation response means that the subjective scene

representations, including the extended aspects of scenes,

must be made available to this region before the onset of the

second scene via some topedown influence. In order to

investigate this, and given the hippocampal results noted

above, we applied a DCM analysis to the neural dynamics of

the HC and early VC during the presentation of the first scene.

If the HC was actively involved in updating the visual repre-

sentations including the extended scenes in line with sub-

jective perception, then we would expect to find evidence for

modulation of VC activity by the HC on those trials where BE

occurred. Thismodel was compared to two alternativemodels

(modulation of HC activity by VC, and bidirectional modula-

tion). Backward modulation of VC by the HC was the winning

model (exceedance probability of 97%), with robust results

across both hemispheres (Fig. 7). These findings therefore

confirm that activity in early VC was modulated by the HC

when the BE effect occurred, and that this happened during or

shortly after the initial stage of scene extrapolation.
4. Discussion

BE is an intriguing scene-specific phenomenon whereby peo-

ple reliably remember seeing more of a scene than was
This is shown for the three possible models. The ‘back’

model was the winner in both hemispheres, suggesting

that the HC is the driving force behind the BE effect, and

influences PHC.
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Fig. 6 eWhole-brain analysis investigating fMRI adaptation effects between the first and second presentation of scenes. The

only activation was in early VC (A), displayed here at a FWE-corrected threshold of p < .05 on the group average structural

MRI scan. The crosshair is centred on the peak of the activation. (B) The average response within this region to the first and

second scene presentations, with standard error bars. This plot demonstrates that VC showed a robust adaptation effect to

repeated scene presentations. The y axis displays the parameter estimates from the general linear model. (C) The

magnitude of the adaptation effect (i.e., the amount of attenuation between first and second scene presentation) for the two

conditions of interest, with standard error bars. The y axis displays the contrast between the parameter estimates for the

first and second scenes. When participants perceived a change between the first and second scene presentation (e.g., when

it appeared to be closer) there was a significant reduction in the magnitude of adaptation compared to trials where

participants perceived no change between the two scenes. This was despite the fact that the two scenes in a trial were

always physically identical.
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present in the physical input, because they extrapolate

beyond the borders of the original stimulus (Intraub and

Richardson, 1989). By embedding the scene that is

currently being viewed into a wider context, this supports the

experience of a continuous and coherent world, and is

therefore highly adaptive. Here we found that this extrapola-

tion of scenes occurred rapidly around the time a scene

was first viewed, and was associated with engagement of the

HC and PHC. Notably, we found that the HC in particular

seemed to drive the BE effect, exerting topedown influence

on PHC and indeed as far back down the processing stream

as VC. Subsequently, these cortical regions displayed activity

profiles that tracked trial-by-trial subjective perception of

the scenes, rather than physical reality, thereby reflecting

the BE error.
4.1. Functional neuroanatomy of BE

BE is well-characterised cognitively (Intraub, 2012; Hubbard

et al., 2010), but surprisingly little is known about its neural

substrates. The only two previous neuroscientific studies of BE

implicated different brain areas, the PHC and RSC in Park et al.

(2007), and theHC inMullally et al. (2012). Our results reconcile

and extend these studies. By focussing specifically, and for the

first time, on the initial stage of BE (the BE effect) the point of

the extrapolation of scenes, we found that the HC was central

to this process, in line with the results of Mullally et al. (2012)

where focal bilateral hippocampal damage resulted in atten-

uated BE. The hippocampal response we observed was man-

ifested rapidly during or just after the initial exposure to a

scene and, importantly, before the second presentation of

http://dx.doi.org/10.1016/j.cortex.2012.11.010
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Fig. 7 e Modelling HCeVC connectivity. (A) The

hypothesised flow of information, with activity in early VC

being actively modulated by the HC during the BE effect.

The HC is displayed in red and VC in green on an axial slice

from the group average structural MRI scan. (B) The results

of the DCM model comparison analysis. This plot displays

the exceedance probability on the y axis, which describes

how likely each model is compared to any other model. As

hypothesised, the ‘back’ model was the clear winner. This

suggests that the HC actively influences the updating of

scene representations in early VC following BE.
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the scene. This confirms that hippocampal involvement was

in the initial phase of extrapolating what was beyond the view

rather than any subsequent memory-related effect. A DCM

analysis showed that the HC influenced activity in PHC.When

considered alongside the results of the adaptation analyses,

where PHC, RSC and VC responded to the subjective percep-

tion of scenes, this indicates that these brain areas play

a more active role in the second, BE error, phase of BE. This

accords with the PHC and RSC findings of Park et al. (2007),

where they specifically focussed on the BE error, and not

the initial BE effect. Overall, therefore, our results serve to

underscore the two-stage nature of BE whilst also character-

ising the underlying neuroanatomy associated with each

phase.
4.2. The role of the HC

We next consider in more detail the role of the HC in the BE

effect, and how this might provide insights into the nature of

hippocampal processing. The HC is known to be involved in

spatial navigation, recalling past experiences, and imagining

fictitious and future scenes and events (Buckner and Carroll,

2007; Hassabis and Maguire, 2007; Addis and Schacter, 2011;

Spreng et al., 2009). Hassabis et al. (2007) found that patients

with selective hippocampal damage and amnesiawere unable

to construct and visualise fictitious and future scenes and

events in their imagination (see also Klein et al., 2002;

Hassabis et al., 2007; Rosenbaum et al., 2009; Andelman et al.,

2010; Race et al., 2011). This led to the proposal that the HC

supports scene construction, defined as the process of

mentally generating and maintaining a complex and spatially

coherent scene or event (Hassabis and Maguire, 2007, 2009). It

was further argued that key functions such as episodic

memory and spatial navigation may critically depend on

scene construction (Hassabis and Maguire, 2007). In line with

previous reports, the patients in Mullally et al.’s (2012) study

with selective bilateral hippocampal damage and amnesia

were also unable to explicitly construct and visualise scenes in

the imagination. BE, which depends on the ability to construct

coherent representations of scenes beyond the view, was also

attenuated in these patients. This demonstrated the auto-

matic and implicit role of the HC in scene construction. Our

fMRI data corroborate and extend the results of Mullally et al.

(2012) by now pinpointing that the precise contribution of the

HC to BE is the initial, rapid extrapolation of scenes. That the

intact PHC and RSC of Mullally et al.’s (2012) patients were

unable to compensate for their damaged hippocampi and

could not rescue BE, resonateswith our finding of the HC being

the driving force behind scene construction and BE, and sub-

sequently influencing other areas such as PHC.

A key question that naturally arises is what exactly the HC

does in the service of scene construction and BE? Constructing

a scene in the mind’s eye or imagining what might be beyond

the view as in BE, involves a number of operations including

being able to predict what is likely to be in a scene or beyond

the view, accessing prior episodic and semantic knowledge

relevant to that context, associating items together and with

the scene context, and placing all this information in a

coherent spatial framework. A possible clue about the specific

role of the HC comes from the recent study of Mullally et al.

(2012). Patients with hippocampal damage and amnesia

were shown a scene andwere able to describe it in great detail.

When asked to imagine taking a step back from the current

position and describe what might then come into view, the

patients’ performance was comparable to the control partici-

pants. They were able to anticipate with accuracy what would

be beyond the view, list contextually relevant items in the

extended scene, and could associate them with one another

and with the context. However, in stark contrast to controls,

the patients omitted spatial references almost entirely from

their descriptions of what was likely to be beyond the view, a

difference that was not apparent for the other scene elements.

Moreover, they rated the extended scene as lacking spatial

coherence. This is also true of attempts to imagine fictitious or

http://dx.doi.org/10.1016/j.cortex.2012.11.010
http://dx.doi.org/10.1016/j.cortex.2012.11.010


c o r t e x 4 9 ( 2 0 1 3 ) 2 0 6 7e2 0 7 92078
future scenes in general, where amnesic patients’ construc-

tions were spatially fragmented (Hassabis et al., 2007; Mullally

et al., 2012). Thus, one proposal is that the HC implements the

spatial framework of scenes when they are not physically in

view (Hassabis and Maguire, 2007, 2009). The posterior loca-

tion of the hippocampal activations observed here in relation

to the BE effect fit with a possible spatial role, as this region

has been implicated in spatial navigation and memory in a

range of contexts (e.g., Moser and Moser, 1998; Maguire et al.,

2000; see also Poppenk and Moscovitch, 2011). Clearly more

work is required to explore the link between scenes, space and

the HC further, along with other accounts of its role in scene

processing (Graham et al., 2010; Bird et al., 2012). Overall,

however, what the scene construction and BEwork highlights,

and this is particularly evident in our current fMRI findings, is

that the internal, automatic construction of scenes may be a

central operation of the HC.

4.3. Adaptation and inter-regional connectivity

Using fMRIwewere able to establish the brain areas supporting

the highly adaptive BE effect, and in so doing to provide further

evidence for the role of the HC in constructing unseen scenes.

Another key advantage of fMRI that we exploited here is the

ability to appreciate the distributed set of brain areas engaged

by a task and, crucially, how these areas interact. As noted

above, we found that two high-level scene-related areas, the

PHC and RSC, both showed activity profiles that mapped onto

subjective perception. This result suggests that these regions

do not simply contain veridical representations of the physi-

cally presented scenes, but are actively updated to include in-

formation about extrapolated scenes beyond the boundaries of

the physical scenes. Intriguingly, we found that early VC also

displayed differential fMRI adaptation effects that reflected the

subjective perception of the scenes. Specifically, VC showed

greater adaptation when no change was perceived between

two scene presentations, compared to those trials where the

second scene appeared to be closer (consistent with the BE

error). Importantly, the two scenes on each trial were always

identical, so this effect cannot be attributed to any physical

changes in the stimuli, and can only be due to a change in

subjective perception driven by a top down process. This latter

result is consistent with a variety of studies which have shown

that activity as early as V1 can reflect changes in subjective

perception (Tong, 2003; Kamitani and Tong, 2005; Murray et al.,

2006; Sperandio et al., 2012), andwe nowdemonstrate that this

can also be the case with the processing of complex scenes.

It should be noted that Park et al. (2007) also looked for

similar adaptation results within retinotopic cortex and failed

to find any evidence for such an effect. The disparate findings

are likely due to differences in the study designs. Specifically,

Park et al. (2007) used an implicit task where inferences were

made on the basis of different conditions which, on average,

produced different degrees of the BE effect. By contrast, we

recorded explicit trial-by-trial behavioural choice data, which

allowed us to directly compare trials which individuals

perceived as the same to those where BE occurred. This latter

approach is likely to have provided substantially greater

power to detect activity relating to subjective perception of

scenes within early VC.
The relationship between the HC and this cortical network

of regions was elucidated further by the DCM connectivity

analyses. Put simply, DCM indicates the direction of flow of

information, and which brain areas are exerting an influence

on others.We found that activity within PHC and early VCwas

influenced by the HC. Thismodulation suggests that the scene

representation within PHC and VC is actively updated by a

topedown connection from the HC to represent the extended

scene. This updated (subjective) representation then leads to

the subsequent differential adaptation effect. That the studied

scene need only be absent for as little as 42 msec for BE to be

apparent (Intraub and Dickinson, 2008), underscores the

rapidity of this modulatory process.

Put together, our BE findings offer a new insight into the

neural basis of scene processing. They suggest a model

whereby the HC is actively involved in the automatic con-

struction of unseen scenes which are then channelled back-

wards through the processing hierarchy via PHC and as far as

early VC in order to provide predictions about the likely

appearance of the world beyond the current view. This sub-

sequently leads to a differential adaptation effect within early

VC which is driven by a subjective difference in appearance

due to the extended boundaries. The fact that the information

about the extended scene is automatically and rapidly

conveyed as far back as early VC suggests that anticipation

and construction of scenes is a pervasive and important

aspect of our online perception, with the HC playing a central

role.
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