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Introduction

Since its outbreak in early 2020, the novel coronavirus

Severe Acute Respiratory Syndrome (SARS)-COV-2,

formerly known as Covid-19, has affected more than 5

million people worldwide with a mortality rate of

about 6.6%, making it roughly 6 times more lethal than

influenza virus [1].

Several reports have shown an eclectic attitude of

SARS-COV-2, capable to affect lungs prevalently [2],

but also skin [3], central nervous system [4], gastroin-

testinal tract [5], as well as the eye [6].

The main concern on SARS-COV-2 complications

comes from lung involvement which seems to be the

main reason for its high fatality rate despite prompt

intervention [7], in elderly patients particularly [8].

However, many case series described young adults

with a rapid and severe progression of the disease due

to a massive, dramatic immune-response. Frontline

physicians speculated that SARS-COV-2 might trig-

ger either cytokine release syndrome (CRS) or its most

severe manifestation called hemophagocytic lympho-

histiocytosis (sHLH) [9]. sHLH is a life threatening

hyperinflammatory syndrome, also known as Macro-

phage activation syndrome (MAS) [10], which leads

to hypercytokinaemia and consequent rapid multior-

gan deterioration.

Despite such a dramatic immune response, there was

reluctance in using corticosteroids to prevent viral

shedding [11], albeit systemic steroids were successfully

used for other severe complications of viral diseases such

as Herpes disease [12] and Ebola Virus disease (EVD)

[13] and for central nervous system (CNS) involvement

in the same SARS-COV-2 disease [14].

Recently, it was reported that dexamethasone was

shown to cut deaths by one-third among patients

critically ill with SARS-COV-2 [15].

Such a breaking news represent a confirmation of

what anticipated by the similar viral models we

reported in a previous editorial [16].

Since on label treatments are not available so far

and on the basis of the concern in using systemic

steroids till now, physicians started using monoclonal

antibodies in order to control CRS. However, albeit

the rationale behind their use appears logical and

consistent, recently clinical evidences opened hori-

zons for novel hypotheses.

The very first experimental protocol used an anti-

Interleukin (IL)-6 receptor monoclonal antibody
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named Tocilizumab (ActemraTM, Roche Pharma

(Schweiz) Ltd, B2084B21), on label for rheumatic

diseases [17]. Since Tocilizumab was approved by

Food and Drug Administration for the treatment of

CRS secondary to chimeric antigen receptor (CAR)

T-cell therapy [18], there is a rationale of using it to

control the similar SARS-COV-2 related immune-

response.

As previously reported, Zhang et al. [19] reported

Tocilizumab as a rescue treatment for severe cases of

SARS-COV-2 interstitial pneumonia. The promising

results were followed by a number of case series which

hypothesized that immune-checkpoints inhibition

might play a crucial role in the control of the disease.

By recalling the experimental coronavirus retinopa-

thy (ECOR), we hypothesized a bi-phasic nature of the

disease where a direct viral insult is at the basis of the

infection and later turns into a severe immune-reaction

leading to a potentially massive tissue damage as

observed in the ECOR model [20].

However, it remains partially unexplained why in

humans SARS-COV-2 does not present always the

same level of virulence.

It appears logical to speculate that specific genetics

and environmental factors or specific viral triggers

[21] create the conditions for a cytokine release [10].

That is the so-called ‘‘threshold model’’ (Fig. 1a)

which makes SARS-COV-2 infection similar to the

typical pathophysiology of MAS. This dramatic,

multi-factorial immune reaction creates the conditions

for potentially fatal complications even in young

patients [22].

Despite several case series reported a certain

efficacy in controlling SARS-COV-2 CRS in the

following months [23, 24], Tocilizumab does not

always provide an optimal response, and recent

publications raised some concerns [25].

The lack of a universal response to Tocilizumab

may find an explanation on a different way of acting by

the immune system towards SARS-COV-2.

This may resemble some cases described in oph-

thalmology that did not show an optimal response to

hypothetically critical immune-check points as

described by Teoh et al. for chronic infantile neuro-

logical cutaneous articular (CINCA) syndrome asso-

ciated uveitis [26]. The authors speculated on the

paradigm of tailored treatment as a consequence of a

better understanding of the polygenic nature of the

inflammatory diseases, where the autoinflammation

played a predominant role than autoimmunity. CINCA

syndrome associated uveitis was successfully treated

by an anti-IL-1b named Anakinra (KineretTM, Swed-

ish Orphan Biovitrum, Stockholm, Sweden) and the

authors remarked the importance of the decision

making based on the disease’s nature.

Similarly, Dimopoulos et al. [27] used Anakinra for

the treatment of MAS in patients with severe SARS-

COV-2 interstitial pneumonia [28]. The Authors based

their speculations on the overproduction of IL-1b by

tissue macrophages that may trigger secondary MAS,

leading to hyper-coagulation and severe multiple

organ impairment.

This evidence of a good response to anti-IL-1b
offers different discussion ideas on the pathogenesis of

the dramatic immune-response and on the reason

behind fatal events occurring in young, otherwise

healthy patients.

Going deeper into MAS pathophysiology, the

disease is driven by genetically disrupted pathways,

leading to cytokine storm syndrome. The triggers of

MAS might be the following: impaired viral control,

aberrant inflammasome activity, variable immune

defects, as well as dysregulated metabolism [10].

The single presence or the combination of each of

them might induce MAS and, consequently, threaten

the life of patients.

The possible role played by inflammasome can

resemble the evidence of its activity in ocular Behcet

disease (BD), where the interplay between TLR2/4

and their ligands PGN/LPS leads to BD pathogenesis

[29].

More specifically, the aberrant inflammasome

activity might play a pivotal role both for the SARS-

COV-2 related MAS and the possible occurrence in

younger patient, representing the fire starter of the

whole post viral immunesystem triggering.

Nucleotide-binding domain (NOD)-like receptor

protein 3 inflammasome (NLRP3) is a key player for

the control of viral activity. NLRP3 can recognize a

series of pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns

(DAMPs) produced by viral replication, triggering

antiviral immune response and facilitating viral erad-

ication. During the rest state, level of NLRP3 is

sufficiently low to avoid an abnormal inflammasome

assembly and, consequently, activation. However,

viral insult may trigger inflammasome activation by

both viral constituents, such as RNA and PAMPs, and
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by DAMPs, such as the envelope protein of SARS-

COV-2 [30]. The result NLRP3 inflammasome acti-

vation leads to IL-1b production [31] and induces

recruitment of neutrophils in order to eliminate

invading viruses [32]. In addition, IL-1b drives the

immune-system towards the induction of adaptive

immune response [30] which might be the fire starter

of the second phase observed in SARS-COV-2.

At this point it is not clear why some patient

affected by SARS-COV-2 have an aberrant hyper

reaction to the viral insult and others don’t. A

hypothesis may be a possible pathogenic variant in

Fig. 1 a Classic ‘‘threshold model’’ where the viral load

decrease and the role of immune-system becomes prevalent in

the second phase of the disease. b Modified ‘‘threshold model’’

where the IL-1b is supposed to intervene early on and trigger the
massive activation of the immune-system leading to MAC
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the NLRP3 inflammasome genes which may enhance

the risk of MAS [33]. If that speculation were true, the

massive immune-response might have IL-1b as a key

player triggering MAS induced by the SARS-COV-2

insult. Such hypothesis might be supported by the

positive response to anti-IL-1b receptor therapy used

in severe cases of SARS-COV-2 associatedMAS [34].

As a direct consequence, SARS-COV-2 associated

MAS seems to be closer to a secondary autoinflam-

matory disease than an autoimmune response.

This does not appear just a semantic difference, but

it may lead to a different therapeutic approach to the

disease as observed in some specific inflammatory eye

diseases.

The use of anti-IL-6 receptor is not contrasting with

this hypothesis. In CAR-T induced CRS, human

monocytes were prevalently stimulated by both IL-1

and IL-6 and, accordingly, Tocilizumab was clinically

tried and approved for its prevention. However, further

studies compared Tocilizumab and Anakinra for the

treatment of CRS in mouse animal model, showing

lack of protection of delayed lethal neurotoxicity [35]

for Tocilizumab, while Anakinra successfully con-

trolled both CRS and neurotoxicity. In addition, it is

undisputed that inflammasomes plays a primary role

for IL-1b activation and, consequently, it may be

recognized as a key factor for the induction of both

CRS and MAS.

This scientific background may suggest that SARS-

COV-2 associated MAS can be primarily inducted by

an aberrant auto-inflammatory response, albeit a

monogenic nature of the disease has not been proven

yet and, most probably, it is more appropriate to

consider it polygenic instead [10]. Moreover, the

primary role of pyroptosis induced autoinflammation

has been acknowledged, leading to the release of

DAMPs, including ATP, nucleic acids and ASC

oligomers [21].

In addition, the increasing number of pediatric

cases of Kawasaki disease (KD) like SARS-COV-2

associated disease opens another chapter which might

support such hypothesis further [36], considering that

NLRP3 inflammasome has been recognized as a key

player in KD pathophysiology [37].

The possible central role played by auto-inflam-

mation in SARS-COV-2 associated MAS might

change the therapeutic stepladder, or at least give

more relevance to a tailored supportive immunother-

apy for severe cases: an accurate study of serum

cytokine profile in SARS-COV-2 patients may repre-

sent the ideal approach in order to provide a prompt

and appropriate rescue treatment. Moreover, this may

change the ‘‘threshold model’’ by putting IL-1b as the

primary responsible for immune system triggering,

and it may modify the view of the disease from a bi-

phasic to a tri-phasic one (Fig. 1b).

The relevance of inflammasome activation and its

role in SARS-COV-2 immune-reaction might be

worth further investigations and may represent a

perspective for the optimization of its treatment, in

order to prevent life-threatening cases.

Once again, the eye might be an inspirational

model: it might contribute in indicating the path in

understanding SARS-COV-2 pathophysiology, as

well as its treatment, and there will be more insights

to come shortly for certain.
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