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Abstract: Along with the cells that are exposed to radiation, non-irradiated cells can unveil radiation
effects as a result of intercellular communication, which are collectively defined as radiation induced
bystander effects (RIBE). Exosome-mediated signalling is one of the core mechanisms responsible
for multidirectional communication of tumor cells and their associated microenvironment, which
may result in enhancement of malignant tumor phenotypes. Recent studies show that exosomes
and exosome-mediated signalling also play a dynamic role in RIBE in cancer cell lines, many of
which focused on altered exosome cargo or their effects on DNA damage. However, there is a
lack of knowledge regarding how these changes in exosome cargo are reflected in other functional
characteristics of cancer cells from the aspects of invasiveness and metastasis. Therefore, in the
current study, we aimed to investigate exosome-mediated bystander effects of 2 Gy X-ray therapeutic
dose of ionizing radiation on the invasive potential of MCF-7 breast cancer cells in vitro via assessing
Matrigel invasion potential, epithelial mesenchymal transition (EMT) characteristics and the extent
of glycosylation, as well as underlying plausible molecular mechanisms. The findings show that
exosomes derived from irradiated MCEF-7 cells enhance invasiveness of bystander MCF-7 cells,
possibly through altered miRNA and protein content carried in exosomes.
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1. Introduction

Exosomes are membrane-bound, nanosized vesicles of endosomal origin that can be
released from almost all types of cells [1,2]. Exosomes participate in cell-cell communi-
cation by carrying cytosolic cargo of donor cells including proteins, nucleic acids, lipids,
metabolites which can be delivered to the recipient/target cells [3-6]. They have been
shown to play a dynamic role in many aspects of carcinogenesis and cancer progression
including enhancing invasiveness, angiogenesis and chemoresistance of other tumour cells
via transport of oncogenic elements [7-9]. It is established that exosomes derived from
healthy cells and cancer cells are distinct in terms of the rate of exosomal release [10,11].
It has also been well documented that the content of exosomes derived from tumours,
mainly miRNA, protein and lipid profile, differ between normal and cancer cells. Exosomes
derived from malignant mesothelioma cell lines established from clinical tumors facilitate
the migration of fibroblast/endothelial cells due to unique oncogenic signature present in
those exosomes, as profiled by biophysical and proteomic characterisation [12]. In another
clinical study investigating patients with metastatic melanoma, exosomal miRNAs were
found to be differentially expressed in different patient cohorts [13]. Moreover, exosomes
derived from urine samples from patients with prostate cancer have been shown to cargo
a distinctive lipid profile compared those from healthy individuals [14]. Breast cancer
exosomes derived from MCEF-7 cells have been shown to cargo specific lipid molecules [15].

Recent studies have also shown that exosomes can modify the tumour microenviron-
ment to enhance tumour cell invasion, metastasis and EMT [16]. EMT is the process by
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which epithelial cells are transformed into cells with mesenchymal phenotypes through
modulation of pathways which include the SNAIL family of zinc-finger transcription
factors, SNAIL/SLUG, ZEB family, TWIST1/TWIST2 family transcription factors as well
as noncoding RNA inducers, mainly miRNAs [17]. This complex interactome can com-
municate through multiple signals received from the proximal microenvironment and
reprogramme gene expression [18]. EMT is a crucial step in cancer cell migration and inva-
sion [19,20]. TGF-f acts as a multifunctional and EMT promoting cytokine in many cancer
cells [21-23]. It has been well established that TGF-{3 can instigate cancer progression
by inducing EMT either directly through activation of EMT transcription factors [24] or
through other pathways such as p38 MAPK [25] and PI3K/AKT/mTOR [26]. The complex
pathway of intracellular signalling through TGF-f3 involves the glycosylation of cell surface
TGF-B-binding proteins [27,28] which has critical importance for the cellular responses
induced by TGF-f3, including the EMT.

Intriguingly, another hallmark of cancer that is associated with invasion and metastasis
in many human malignancies is aberrant glycosylation, which can be detected by lectin
histochemistry [29]. In one of the two main types of glycosylation, O-linked glycosylation,
an N-acetylgalactosamine (GallNAc) residue is added to the hydroxyl group of Serine or
Threonine residue on the polypeptide [30]. Several studies have linked an increased display
of GalNAc to poor prognosis and metastatic competence that can be detected by the lectin
Helix pomatia agglutinin (HPA) binding in a wide variety of cancers including those of
breast [31-34], thyroid [35], oesophagus [36], stomach [37], colorectum [38], lung [39] and
prostate [40].

Radjiation therapy is one of the most common approaches to kill cancer cells and
shrink tumours in the course of cancer treatment [41]. Concordantly, studies regarding the
non-targeted effects (NTEs) of ionising radiation have been intensified over the recent years.
Ionising radiation (IR) induces complex, global cellular responses in both irradiated and
non-irradiated ‘bystander’ cells which receive molecular signals produced by irradiated
cells [42]. Bystander effects are a type of NTE observed in non-irradiated cells that were
either in contact with, or received soluble signals from, irradiated cells [43]. Exosome
signalling is one of the mechanisms through which bystander effects can be transmitted.
IR can cause increased exosome release that act as a messenger of bystander effects in both
normal [44] and cancer cells [45]. Evidence for the importance of exosomes and exosomal
content, particularly miRNAs, for transmitting bystander effects have been increased over
the recent years. For example, it has been shown that miR-7-5p can induce autophagy in
non-targeted BEP2D human bronchial epithelial cells [46]. Studies carried out with the
human normal embryonic lung fibroblast cell line MRC-5 demonstrated that miR-21 can
act as a bystander signalling molecule by shuttling through irradiated and non-irradiated
cells via exosomal transport [47,48]. In relation to cancer, it has been shown that radiation
can increase the number of exosomes released by glioblastoma cells and exosomes derived
from irradiated cells exacerbate the migration of recipient cells, possibly through increasing
cell migration signalling molecules, as shown by molecular profiling [49]. It has also been
demonstrated that exosomes in conditioned media of MCF-7 cells can induce bystander
effects in non-irradiated MCF-7 cells in terms of DNA damage [45]. Moreover, exosomes
derived from the head and neck squamous cancer cell line BHY following ionizing radiation
promotes growth and survival of non-irradiated cells [50].

Although mounting evidence suggests that exosomes are actively involved in modu-
lating cancer cell phenotypes, there is a lack of knowledge regarding cancer cell-derived
exosomes in the context of bystander effects of IR. Therefore, in this study we aimed to
investigate the bystander effects transduced by exosomes in MCF-7 breast cancer epithelial
cells following 2 Gy therapeutic dose of X-ray irradiation regarding their invasive potential
by focusing on functional invasive characteristics, HPA binding, EMT marker analysis and
gene expression analysis.
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2. Results
2.1. Investigation of Invasive Potential of MCF-7 Cells Following Conditioned Media Transfer

In order to test the bystander effects of ionizing radiation from the aspect of invasive-
ness and metastasis, irradiated cells conditioned media (ICCM) from 2Gy X-ray irradiated
and control cells conditioned media (CCCM) from sham-irradiated MCF-7 cells was intro-
duced onto unirradiated MCEF-7 cells. We assessed the invasive potential via evaluation
of the number of invaded cells through Matrigel, EMT markers immunopositivity and
glycosylation of MCF-7 cells. Following 24 h incubation, cells were analysed for the number
of invaded cells, HPA binding, and EMT markers immunopositivity. As shown in Figure 1,
the number of cells that had invaded through the transmembrane system was significantly
higher for MCF-7 cells incubated with ICCM compared to those incubated with CCCM,
in parallel with a significant increase in the percentage of vimentin-positive cells and a
significant decrease in the percentage of E-cadherin-positive cells. Concurrent with these
findings, the percentage of HPA-positive cells was significantly higher for MCF-7 cells
incubated with ICCM compared to MCF-7 cells incubated with CCCM.
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Figure 1. Invasive potential of MCF-7 cells shown by Matrigel invasion assay, glycosylation and EMT characteristics
following 24 h CCCM or ICCM transfer. (A) The data presented as a mean of a total number of invaded cells, and the
percentage of HPA labelling and EMT markers (vimentin and E-cadherin) positive cells. The error bars represent the SEM of
invaded cells and the percentage of HPA and EMT markers of 3 independent experiments (*** p < 0.0001); (B) Representative
images for HPA labelling and EMT markers (vimentin and E-cadherin) assays in CCCM or ICCM incubated MCF-7 cells.
Scale bar: 100 um.

2.2. Investigation of Invasive Potential of MCF-7 Cells Following Exosome Transfer
2.2.1. Characterisation of Exosomes by qNano

Exosomes were extracted from CCCM or ICCM using ultracentrifugation. Exosome
size and concentration of samples were analysed via qNano analysis. Results showed that
exosome concentration was significantly higher in ICCM (5.30 x 10'Y/mL) compared to
CCMM (4.47 x 10'°/mL). Similarly, average exosome size was increased in ICCM showing
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that ionising radiation altered both concentration and size distribution of exosomes released
into the medium by post-IR MCF-7 cells as shown in Figure 2A.
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Figure 2. Characterisation of exosomes derived from CCCM and ICCM via concentration, size and
presence of exosomal markers. (A) Concentration and average size of exosomes obtained from
CCCM and ICCM exosome suspensions. The data were presented as a mean £+ SEM of 3 independent
experiments (* p < 0.05, ** p < 0.001. (B) Western blot analysis of exosomes for TSG101 (44 kDa)
and CD63 (26 kDa) exosomal markers. TSG101 blot; Lane 1: CCCM exosome protein, Lane 2: ICCM
exosome protein. CD63 blot; Lane 1: CCCM exosome protein, Lane 2: ICCM exosome protein.

2.2.2. Characterisation of Exosomes by Western Blot

In order to further confirm the presence of exosomes, CCCM and ICCM exosome
samples were investigated via Western blot for two common exosome markers, TSG101 and
CD63. Figure 2B confirms the presence of both markers in the exosome samples derived
from CCCM or ICCM exosomes.

2.2.3. Invasive Potential of MCF-7 Cells

In order to test if the previously observed bystander effects regarding invasive po-
tential in MCF-7 cells are driven by exosomes; CCCM and ICCM-derived exosomes were
transferred onto MCF-7 cells. A significant increase in the number of MCF-7 cells that in-
vaded through Matrigel transmembrane system after 24 h of incubation with ICCM-derived
exosomes compared to the MCF-7 cells incubated with CCCM-derived exosomes (Figure 3).
HPA labelling showed a significant increase in the percentage of HPA positive MCF-7 cells
after treatment with ICCM-derived exosomes compared to MCF-7 cells incubated with
CCCM-derived exosomes, as also shown in Figure 3. MCF-7 cells incubated with ICCM-
derived exosomes also showed a significantly increased vimentin positivity and reduced
E-cadherin positivity showing an increased capacity to shift to a more EMT-like phenotype.

To further confirm that the exosomes are the responsible factors for the observed
changes in MCEF-7 cells, we analysed the number of invaded cells, HPA labelling, vimentin
and E-cadherin immunopositivity in MCE-7 cells following 24 h incubation with exosome
depleted CCCM and ICCM. The results showed contrary observations to ICCM exosome
incubated cells; as exosome depleted ICCM caused no significant increase in the number of
invaded cells, HPA labelling or a change in vimentin and E-cadherin immunopositivity of
MCE-7 cells, compared to the cells incubated with exosome depleted CCCM (Figure 4).
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Figure 3. Invasive potential of MCF-7 cells shown by Matrigel invasion assay, glycosylation and
EMT characteristics following 24 h ICCM or CCCM-derived exosome incubation. (A) The data
were presented as a mean of a total number of invaded cells, and the percentage of HPA and EMT

markers (vimentin and E-cadherin) positive cells. The error bars represent the SEM of invasive
cells and the percentage of HPA and EMT markers of 3 independent experiments. (*** p < 0.0001).
(B) Representative images for HPA labelling and EMT markers (vimentin and E-cadherin) assays in
CCCM or ICCM-derived exosomes incubated MCF-7 cells. Scale bar: 100 pum.
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Figure 4. Invasive potential of MCF-7 cells shown by Matrigel invasion assay, glycosylation and EMT
characteristics following 24 h incubation with exosome depleted ICCM or CCCM, as well as untreated
control cells. The data were presented as a mean of a total number of invaded cells, and the percentage
of HPA and EMT markers (vimentin and E-cadherin) positive cells. The error bars represent the SEM
of invasive cells and the percentage of HPA and EMT markers of 3 independent experiments.

2.2.4. Vimentin and E-Cadherin Expression Levels

Next, we aimed to investigate if changes that we observed with EMT marker assay
following exosome incubation can be confirmed at the mRNA level. For this, we carried
out qPCR analyses from the total RNA lysates of MCF-7 cells, following 24 h CCCM
or ICCM-derived exosome incubation. Data demonstrated that mRNA transcript levels
were significantly increased for vimentin and significantly reduced for E-cadherin in ICCM-
derived exosome incubated cells compared to CCCM-derived exosomes incubated MCE-7
cells (Figure 5A). We also aimed to further confirm our findings via flow cytometry and
Western blot analysis as shown in Figure 5B,C.
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Figure 5. Comparison of vimentin and E-cadherin expression of MCF-7 cells incubated either with
CCCM or ICCM-derived exosomes at the mRNA and protein levels. (A) qPCR analysis showing
vimentin and E-cadherin expression in MCF-7 cells (** p < 0.001, *** p < 0.0001). The error bars
represent SEM of the mRNA expression. The experiment was carried out in triplicate. (B) Flow
cytometry analysis of MCF-7 cells. Data represent three independent experiments. (C) Representative
Western blot analysis showing E-cadherin (97 kDa) and vimentin (54 kDa) expressions in MCF- cells.
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2.2.5. gPCR Analysis of EMT Coupled Transcription Factors

To further elaborate our study in the context of EMT like phenotype that was observed;
the expression of EMT coupled transcription factors SNAIL, SLUG, ZEB and TWIST were
investigated at the mRNA level. qPCR analysis showed all transcription factors with the
exception of ZEB were significantly increased following incubation of MCF-7 cells with
ICCM-derived exosomes compared to their expressions in MCF-7 cells incubated with
CCCM-derived exosomes, as shown in Figure 6.
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Figure 6. qPCR analysis showing expression of EMT coupled transcription factors SLUG, SNAIL, ZEB
and TWIST in MCF-7 cells incubated either with CCCM or ICCM-derived exosomes. The error bars
represent SEM of the mRNA expression (** p < 0.001). The experiment was carried out in triplicate.

2.2.6. TGF-p Expression Levels

Observation of a consistent increase in EMT markers and EMT promoting transcrip-
tion factors in MCEF-7 cells incubated with ICCM-derived exosomes, led us to check if
this increase, may be, at least partially, derived by the master regulator of EMT, transcrip-
tion factor TGF-$3. qPCR analysis and the Western blot analysis showed that the TGE-f3
expression was increased at the mRNA (Figure 7A) and protein levels (Figure 7B) in the
MCE-7 cells incubated with ICCM-derived exosomes compared to those incubated with
CCCM-derived exosomes.
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Figure 7. Comparison of TGF-3 expressions at the mRNA and protein levels in the MCF-7 cells
incubated either with CCCM or ICCM exosomes. (A) qPCR analysis showing TGF- expression in
MCEF-7 cells. The error bars represent SEM of the mRNA expression. Experiment was carried out in
triplicate. (B) Representative Western blot analysis image shows latent (44 kDa) and active (12.5 kDa)
TGF-f3 expressions in MCF-7 cells. Bar diagram shows the TGF-f3 protein expressions measured
as band density. The error bars represent the SEM of protein expressions of three independent
experiments (* p < 0.05, ** p < 0.001).

2.2.7. GalNAc-T6 Expression

To further support our findings that is related to HPA labelling, we chose to investigate
the expression of GalNAc-T6 enzyme, which is the enzyme responsible for addition of
first GalNAc residue to the polypeptide during glycosylation and, therefore, an increase in
its expression might explain increased HPA labelling. Moreover, GaINAc-T6 enzyme is
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also linked to EMT process. The results depicted in Figure 8 shows that GaINAc-T6 expres-
sion was increased significantly in MCF-7 cells incubated with ICCM-derived exosomes
compared to those incubated with CCCM-derived exosomes.
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Figure 8. qPCR analysis showing expression of GaINAc-T6 in MCEF-7 cells incubated either with
CCCM or ICCM-derived exosomes. The experiment was carried out in triplicate. The error bars
represent SEM of the mRNA expression (** p < 0.001).

2.3. Investigation of Exosome Cargo

In order to find the possible mechanism for the exosome bystander effects observed in
the number invaded cells through Matrigel, EMT markers immunopositivity and glyco-
sylation of MCF-7 cells, we aimed to investigate the changes in some potentially related
miRNA cargo of exosomes from both CCCM and ICCM.

2.3.1. Expression of Let-7a, miR-30a, miR-200b, miR-9a in Exosomes

qPCR analysis was carried out for Let-7a, miR-30a, miR-200b, miR-9a. Data in Figure 9
demonstrated that there was a significant upregulation of miR-30a and miR-9a accompanied
by a significant downregulation of miR-200b in ICCM-derived exosomes compared to
CCCM-derived exosomes. No significant difference was observed for Let-7a.
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Figure 9. qPCR analysis showing expression of Let-7a, miR-30a, miR-200b, miR-9a in CCCM or ICCM-
derived exosomes. Experiment was carried out in triplicate. The error bars represent SEM of the
miRNA expression (* p < 0.05, *** p < 0.0001).
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2.3.2. Expression of TGF-3 Protein in Exosomes

Finally, we investigated if TGF-f3 is differentially expressed in exosomes as another
possible mechanism of increasing TGF-f and its downstream effectors causing exosome
bystander effects in MCE-7 cells incubated with ICCM-derived exosomes. Western blot
analysis showed increased TGF-f3 protein expression (Figure 10) in ICCM-derived exo-
somes compared to CCCM-derived exosomes.
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Figure 10. TGF- protein expressions in the CCCM and ICCM-derived exosomes shown by Western
blot analysis. Western blot image shows expected protein size for latent (44 kDa) and active (12.5 kDa)
TGF-f. Bar diagram shows TGF-3 protein expressions measured as band density. The error bars
represent the SEM of protein expressions of three independent experiments (* p < 0.05).

2.3.3. Exosome Cargo Inhibition Experiments

In order to further confirm RNA and protein components from the exosomes are
the major derivers of the changes observed in the invasive potential of MCF-7 cells; a
series of experiments were designed where RNA or protein or both components of exo-
some cargo were inhibited. The results showed that the number of invaded MCF-7 cells
were significantly reduced following incubations with RNase-treated CCCM-derived and
ICCM-derived exosomes compared to the incubations with untreated CCCM-derived
and ICCM-derived exosomes. Similarly, the percentage of HPA-positive and vimentin-
positive cells were decreased while E-cadherin-positive cells were increased following
incubation with RNase-treated CCCM-derived and ICCM-derived exosomes compared to
their corresponding controls as demonstrated in Figure 11.

In parallel with these findings, a significant reduction was observed in MCF-7 cell
invasiveness when they were incubated with heat-treated exosomes derived from CCCM
and ICCM compared to those incubated with untreated CCCM-derived and ICCM-derived
exosomes. Moreover, MCF-7 cells incubated with heat-treated exosomes also showed a
significant decrease in percentage of HPA and vimentin-positive cells accompanied by an
increase in E-cadherin-positive cells as shown in Figure 12.
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cells and the percentage of HPA and EMT markers of 3 independent experiments. (*** p < 0.0001).
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Figure 12. Invasive potential of MCF-7 cells shown by Matrigel invasion assay, glycosylation and
EMT characteristics following 24 h post CCCM-derived exosome, heat-treated CCCM-derived
exosome, ICCM-derived exosome and ICCM-derived heat-treated exosome incubations. The data
were presented as a mean of a total number of invaded cells, and the percentage of HPA and EMT
markers (vimentin and E-cadherin) positive cells. The error bars represent the SEM of invasive cells
and the percentage of HPA and EMT markers of 3 independent experiments. (*** p < 0.0001).
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Finally, inhibition of both RNA and protein cargo gave similar results to RNA or
protein inhibition alone as the number of invaded MCE-7 cells were reduced following
incubation with RNase and heat-treated exosomes compared to their corresponding con-
trols. The percentage of HPA-positive and vimentin-positive cells were decreased, while
E-cadherin-positive cells were increased following incubation with RNase and heat-treated
CCCM-derived and ICCM-derived exosomes compared to those incubated with untreated
CCCM-derived or ICCM-derived exosomes, as also shown in Figure 13.

s nvaded cells HPA - -V ime ntin E-cadherin -

=

Exx =

ek E

300 - Ekk gk - 100 &

- E = - o

== =

8 200 - - FEF - 90 2

b = = . :

1; — I_'_'_'_____,_-—"'_'_.-l—"'_'-'_'—-‘-‘-"""h.._‘_\_‘_‘_ . - 80 .;

- . - 70 @

5 BO00 A . — 'E
[

-E 500 1 = z 0

- 30 2

- 400 - £

: el

-~ 300 - e

s - 30 E

Eﬂ 200 - 20 g

E =

< 100 - - 10 =

0 - T T T T T ~ O %

=

=

on™ 'N.‘Eﬁe gil a"i.‘E:d' ol a"i.Ed'
Ee'l,'l,‘i HEB‘LE'&E ,U;;(.'N" hﬁa" e -,I.C‘L‘i‘\’" &he‘ﬂ‘- we E
m Rﬂﬂ-se Rﬁaﬁe E
'E.':-C ai III‘:":fw,.-e.‘l'ﬂ'-‘-".-r

Invasive potential of MCF-7 cells incubated with both RNase and heat
treated CCCM or ICCM-derived exosomes and their controls

Figure 13. Invasive potential of MCF-7 cells shown by Matrigel invasion assay, glycosylation and
EMT characteristics following 24 h post heated RNase, CCCM-derived exosome, RNase and heat
treated CCCM-derived exosome, ICCM-derived exosome and ICCM-derived RNase and heat-treated
exosome incubations. The data were presented as a mean of a total number of invaded cells, and
the percentage of HPA and EMT markers (vimentin and E-cadherin) positive cells. The error bars
represent the SEM of invasive cells and the percentage of HPA and EMT markers of 3 independent
experiments. (*** p < 0.0001).

3. Discussion

Breast cancer is the most frequently diagnosed cancer and the major cause of death
among women worldwide [51]. Significant number of patients develop distant metastasis
after initial therapeutic applications [52] including radiation therapy. Radiotherapy resis-
tance and consequently tumor relapse and metastasis occur frequently in clinical settings,
albeit the presence of advanced radiation therapy approaches [53].

Accumulating evidence shows that exosome-mediated signalling is one of the core
mechanisms responsible for multidirectional communication of tumor cells and their
associated microenvironment, which may result in enhancement of malignant tumor
phenotypes and establishment of the pre-metastatic niche, collectively causing clinically
detectable metastasis [54]. In parallel, recent studies have shown that exosomes and
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exosome-mediated signalling play a dynamic role in RIBE in cancer cell lines, many of
which have focussed on the changes in miRNA and proteomic profiles of the exosomes
or their effects on DNA damage [45,48,49,55-57]. There remains a lack of knowledge
about how these alterations are reflected in other functional characteristics of cells from
the aspects of invasiveness and metastasis. Hence, in the current study, we focused on
exosome-mediated bystander effects (exosome bystander effects) of 2 Gy X-ray therapeutic
level of ionizing radiation, in the context of in vitro invasive behaviour of MCF-7 breast
cancer cells, while also investigating underlying plausible molecular mechanisms.

Results of the conditioned media transfer experiments provided us the first clues about
the enhanced invasiveness of MCF-7 cells as MCF-7 cells incubated with ICCM showed
higher number of invaded cells through Matrigel membrane system, HPA-positivity as
well as EMT-like changes in terms of immunopositivity compared to MCF-7 cells incubated
with CCCM as shown in Figure 1.

Characterisation of ICCM and CCCM-derived exosomes demonstrated that both
exosome concentration and exosome diameter were increased compared to exosomes
isolated from unirradiated MCF-7 cells (CCCM exosomes) (Figure 2A), which agree with
previous findings in the literature [49]. Incubation of MCF-7 cells with ICCM or CCCM-
derived exosomes demonstrated that the number of invaded cells, HPA-positive cells,
vimentin-positive cells were increased, while the number of E-cadherin-positive cells
were decreased, as an indicator of a shift to a more EMT-like and invasive phenotype in
ICCM-derived exosomes incubated MCEF-7 cells (Figure 3). Findings above were further
solidified by the observation that exosome depleted ICCM or CCCM medium incubated
MCE-7 cells did not show a significant difference in terms of the number of invaded
cells, HPA-positivity or EMT marker immunopositivity, as shown in Figure 4. These
findings collectively suggest that that the bystander effects observed regarding the invasive
behaviour of MCF-7 cells incubated with ICCM-derived exosomes, can be solely attributed
to the presence of exosomes and the content of the exosome cargo.

EMT is often considered to be the primary driving force of the metastatic cascade and,
thus, EMT related changes have been explored in this study. The loss of key intercellular
adhesion protein E-cadherin is regarded as a hallmark of EMT which in turn contributes to
metastasis by enhancing the ability of cells to migrate and invade [58]. On the contrary,
vimentin, an intermediate filament protein characteristically upregulated in cells under-
going EMT, plays a key role in the motility and migration of breast cancer cells as it is
also highly expressed at the wound edge in mammary epithelial cells and breast cancer
cells [59,60]. Studies have also demonstrated that knockdown of vimentin resulted in
downregulation of genes involved in breast cancer invasion and the basal-like phenotype,
including Axl, ITGB4, and PLAU, with a subsequent upregulation in the genes abundant
in normal mammary epithelium, including RAB25 and EHF [61].

Results of qPCR analysis (Figure 5A) showed increased vimentin and reduced E-cadherin
expressions in ICCM-derived exosome-incubated cells compared to CCCM-derived exosome-
incubated controls, while the same expression trend was also observed by Flow cytometry
(Figure 5B) and Western blot analysis (Figure 5C). These findings not only consolidate our
findings regarding EMT-like changes in immunopositivity of MCE-7 cells incubated with
ICCM-derived exosomes, but also indicates that the expressions of these proteins were
deregulated at the transcription level.

The loss of EMT epithelial gene expression and activation of a mesenchymal molecular
profile can involve the core set of EMT-coupled transcription factors, SNAIL, SLUG, TWIST,
ZEB1 [62]. SNAIL and SLUG have long been characterized as strong repressors of E-
cadherin expression. It has been shown that in MDA-MB-231 breast cancer cells, silencing
of SNAIL increases E-cadherin expression and, consequently, decreases expression of
mesenchymal markers, and inhibits their invasiveness [63]. Similarly, studies in MCF-7 and
Hs578T breast cancer cells have shown that TWIST binds to the E-cadherin promoter and it
down regulates E-cadherin promoter activity as shown by chromatin immunoprecipitation
assays and promoter reporter assays respectively [64]. Furthermore, Twist expression
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was found to be inversely correlated with E-cadherin expression in clinical breast cancer
samples. Moreover, ZEB1 represses EB1 transcription of E-cadherin by binding to two
E-box sequences in its promoter region [65,66].

As demonstrated in Figure 6, qPCR analysis of EMT coupled transcription factors
SLUG, SNAIL and TWIST in ICCM-derived exosome-incubated cells showed increased
upregulation of these transcription factors (TFs), whilst no change was observed in ZEB1
expression compared to CCCM-derived exosome-incubated cells. Upregulated SLUG,
SNAIL, and TWIST may at least partially explain the EMT-like phenotype that we have
observed with ICCM-derived exosome-incubated MCF-7 cells, i.e., through the repression
of E-cadherin expression. ZEB1 has previously been shown to function in the lineage differ-
entiation from multipotent mesenchymal stem cells as well as being linked to the regulation
of cellular metabolism [67,68], which distinguishes it from other EMT coupled TFs and this
difference could be a possible explanation for unchanged ZEB1 levels reported here.

Moreover, the expression of EMT promoting cytokine TGF- was found to be upregu-
lated at mRNA (Figure 7A) and protein (Figure 7B) levels in MCF-7 cells incubated with
ICCM-derived exosomes compared to the control cells. TGF-{3 has a pivotal role in EMT
regulation and metastasis [22-24] and the consistent increase that we have observed in
EMT-like immunopositivity, EMT-promoting markers and TFs may be partially attributed
to this upregulation.

GalNAc-T6 enzyme catalyses the initial reaction in O-linked oligosaccharide biosyn-
thesis with the transfer of N-acetyl-D-galactosamine residue to a serine or threonine on
the protein receptor [69], which can be accounted for increased HPA positivity in cells.
Aberrant expression of the enzyme has been linked with oncogenic transformation as well
as metastasis [70-72]. In parallel with the increased percentage of HPA-positive MCF-7
cells upon incubation with ICCM-derived exosomes (Figure 3), we found that GalNAc-
T6 enzyme expression was increased in ICCM-derived exosome-incubated MCF-7 cells
compared to control cells incubated with CCCM-derived exosomes as shown in Figure 8.
GalNAc-T6 enzyme is not only important for its functions in glycosylation but also as a
promoter of EMT. Recent data indicate that overexpression of the enzyme caused distortion
of acinar morphogenesis resulting in cellular changes similar to those of EMT in normal
mammary epithelial MCF10A cells. In addition, GalNAc-T6 stabilised O-glycosylated
fibronectin (FN), which further enhanced the acinar distortion [73]. Moreover, it has been
shown that oncofetal FN (onfFN), which requires O-glycan addition at a specific Thr,
GalNACc-T3, and/or GalNAc-T6, was up-regulated in TGFp-induced EMT, whereas inhi-
bition of GalNAc-T3 and GalNAc-T6 suppressed the EMT process [74]. Moreover, in a
follow-up study, only O-glycosylated onfFN was shown to induce EMT-related events [75].
Therefore, increased GalNAc-T6 activity may be also contributing to enhanced EMT-like
phenotype in ICCM-derived exosome incubated cells.

Due to the observation of consistent change in the number of invading cells through
Matrigel, EMT marker immunopositivity and glycosylation in ICCM-derived exosome-
incubated cells, we decided to elaborate on our findings by investigating exosome cargo.
It is evident in literature that crosstalk between miRNAs and EMT-TFs is also critical for
EMT regulation [76]. Moreover, recent studies have shown that miRNAs play crucial roles
in radiation response and intercellular gene-based communication between irradiated
and bystander cells [48,77-79]. Exosomes released from cancer cells are also shown to
promote tumorigenesis through performing cell-independent microRNA biogenesis [80].
Therefore, we were motivated to investigate some miRNAs in exosomes that could be
potentially deregulated and be responsible for the functional and expressional changes we
have observed. As also depicted in Figure 9, the qPCR analysis showed an upregulation of
miR-30a and miR-9a accompanied by a significant downregulation of miR-200b in ICCM-
derived exosomes compared to CCCM-derived exosomes while there was no significant
difference for Let-7. miR-9 has been reported to promote EMT and metastasis in breast
cancer cells, through suppression of E-cadherin [81]. On the other hand, miR-200 has
been repeatedly shown to have a crucial role in EMT, as the expression of miR-200 family
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members were found to be highly associated with the epithelial phenotype of cancer
cells [82-84].

Despite its secretion as soluble homodimers by carcinomas; TGF-f is also secreted in
association with exosomes which can trigger both canonical and non-canonical signalling
pathways [85,86]. Moreover, it has been shown that TGF-f is relevant to medium mediated
RIBE [87]. Our primary observation regarding TGF- protein in exosomes is that its
expression is increased in ICCM-derived exosomes compared to CCCM-derived exosomes,
suggesting that TGF-{3 is directly transferred and causing downstream effects in recipient
bystander cells. Interestingly, we observed that the active form of TGF-f3 was higher than
the latent form of the protein in exosomes (Figure 10), while the latter was found to be the
dominant form in the cellular lysate (Figure 7B). These results further suggest that TGF-f3
required for inducing EMT-like changes may be mainly being sourced from exosomes
uptaken in ICCM-derived exosome-incubated MCE-7 cells.

Importantly, RNA (Figure 11) and protein inhibition (Figure 12) experiments suggest
that both proteins, particularly active TGF-f3, and specific miRNA cargo in ICCM-derived
exosomes may have significant roles in increased metastatic behaviour observed in by-
stander cells and both are required to induce those changes (Figure 13).

Overall, in this study, the data shows that exosomes secreted from irradiated cells
render bystander cells more invasive, there is more O-linked GalNAc glycosylation and an
EMT-like phenotype, which may also be provoking one other, and collectively enhance the
invasiveness metastatic activity of exosome bystander cells. Moreover, this modulation
could be triggered by an increase in active TGF-f3 along with regulatory miRNA-9, at least
to some extent.

In conclusion, as outlined in Figure 14, here we demonstrate for the first time that
ionising radiation can modulate exosome cargo to induce an invasive phenotype in the con-
text of RIBE, providing evidence that exosomes can promote radiation resistance through
enhanced invasive phenotype. We believe that these findings may have implications to
develop new strategies in cancer radiotherapy and overcome radioresistance.

Nucleus

Irradiated cell

Bystander cell

Figure 14. Exosome mediated bystander effects. Ionising radiation can modulate exosome cargo and
promote invasion, EMT and glycosylation enhancing invasive phenotype in the bystander cells via
uptake of exosomes released from directly irradiated cells.
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4. Materials and Methods
4.1. Cell Culture

Breast epithelial cancer cell line MCF-7 cells were kindly provided by Joestein Dahle
(Institute for Cancer Research, Oslo, Norway). They were cultured in T75 or T175 flasks, or
on coverslips in 12-well plates, in Dubelcco’s Modified Eagle’s Medium /Nutrient Mixture
F-12 Ham media (D6421, Sigma, St. Louis, MO, USA) supplemented with 13% inactivated
fetal bovine serum (FBS) (F7524, Sigma, St. Louis, MO, USA); 2 mM L-glutamine (25030149,
Gibco, Invitrogen, Paisley, UK) and 1% (v/v) penicillin/streptomycin solution (P0781,
Sigma, St. Louis, MO, USA) in a humidified 5% CO; incubator at 37 °C.

4.2. Irradiation

MCE-7 cells at 70% confluency were irradiated with therapeutic dose of 2 Gy X-ray
using MXR321 X-ray machine at 250 kV constant potential, 14 mA, and a dose rate of
0.53 Gy/minute for 3.56 min. All irradiation experiments were conducted at the Gray
institution, University of Oxford, Oxford, UK.

4.3. Conditioned Media Transfer

MCEF-7 cells subcultured in T75 tissue culture flasks for four generations were either
irradiated at 70% at 2 Gy X-rays or sham-irradiated. At 4 h post-irradiation, ICCM and
CCCM were transferred to a flask of unirradiated cells at 70% cell confluence. Following
24 h of incubation at 37 °C, 5% CO, cells were seeded onto coverslips in 12-well plates for
glycosylation and EMT markers assays.

4.4. Exosome Isolation, Purification and Characterisation

MCEF-7 cells were subcultured in T175 (seeding density is 3.0 x 10° cells in 25 mL
media) tissue culture flasks for four generations were either irradiated at 70% at 2 Gy
X-rays or sham-irradiated. At 4 h post irradiation, CCCM and ICCM were collected in
50 mL sterile conical polypropylene centrifuge tubes and subjected to centrifugation at
2000x g for 15 min. The supernatants were transferred to fresh tubes and subjected to
centrifugation at 14,000 x g for 30 min. Finally, exosomes were pelleted by centrifugation at
120,000 x g for 90 min in 40 mL cellulose propionate tubes (344058, Beckman Coulter, Brea,
CA, USA) and pellets were resuspended in 500 pL of PBS. Exosome size and concentration
were determined via qNano machine and software by using NP100 nm nanopore by the
method previously described in detail in [44,45].

4.5. Exosome Incubations

For exosome incubations, 50 pL (~2.5 x 10%) or 500 uL (~2.5 x 10'%) of exosomes
isolated from 2 Gy X-ray-irradiated or sham-irradiated cells were transferred onto MCF-7
cells cultured on coverslips in 12-well plates or T75 tissue culture flasks, respectively.
Cells were analysed for invasion through Matrigel, glycosylation and EMT markers, flow
cytometry, qJPCR and Western blot analysis following incubation with exosomes for 24 h at
37 °C, 5% COs,.

4.6. Inhibition of Exosome Cargo (RNase-A and Heat Treatments)

Exosome cargo was released by collecting exosome pellets into distilled water. Subse-
quently, inhibition of exosome cargo was achieved as described previously [45,88] by either
incubation of ~2.5 x 10% or ~2.5 x 10'? exosomes at 37 °C for 30 min in the presence of
30 ug/mL RNase-A (10109142001, Sigma, St. Louis, MO, USA) or incubation of exosomes
at 100 °C in a water bath for 10 min, or by carrying out both steps sequentially.

4.7. Invasion Assays

A Matrigel invasion assay is one of the key functional assays for evaluation of EMT
and invasive capacity of cancer cells [89]. Briefly, cells were seeded onto membranes
coated with Matrigel (0.5 mg/mL). Following 24 h incubation at 37 °C, cell media was
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replaced by ~2.5 x 10° of ICCM-derived exosomes, CCMM-derived exosomes or inhibited
exosome cargo in serum free media, or ICCM and CCMM, respectively. After 24 h, media
and the Matrigel were discarded. Inserts were washed twice with PBS and fixed with 3:1
methanol-acetic acid solution. Finally, membranes were stained with haematoxylin and
eosin and mounted on microscope slides. Three slides were prepared for each sample,
and 10 images were taken per slide. Total number of invaded cells were scored using
Axioplan Light Microscope (Zeiss, Germany) with colour camera (ProgRes, Germany),
under 200 x magnification.

4.8. Immuno- and Lectin Cytochemistry

MCF-7 cells grown on coverslips in 12-well plates and cell media were replaced by
(~2.5 x 10°) of ICCM-derived exosomes, CCMM-derived exosomes or inhibited exosome
cargo in serum free media, or ICCM and CCMM. Following 24 h of incubation, cells were
fixed 4% formaldehyde in PIPES buffer (P1851, Sigma, St. Louis, MO, USA) at 4 °C for
15 min. Following a wash step with PIPES buffer, cells were permeabilised with 0.1%
v/v Triton X100 (T9284, Sigma, St. Louis, MO, USA). After three washes with PIPES
buffer, endogenous peroxidase was blocked with 3% v/v methanol/hydrogen peroxide
for 20 min at room temperature (RT). The cells were washed three times with 1X Tris
buffered saline (TBS) (T5030, Sigma, St. Louis, MO, USA) and blocked with 3% w/v bovine
serum albumin (BSA) in TBS for 30 min. For EMT markers, vimentin and E-cadherin,
cells were incubated with either 2 pg/mL of rabbit polyclonal anti-vimentin antibody
(ab137321, Abcam, Cambridge, UK) or 0.5 ng/mL of rabbit monoclonal anti-E-cadherin
antibody (ab76319, Abcam, Cambridge, UK) at 4 °C overnight. Cells were washed three
times with PBS and then incubated with 4 pug/mL donkey anti-rabbit IgG H&L horseradish
peroxidase (HRP) (ab6802, Abcam, Cambridge, UK) for 1 h. For detection of GalNAc
glycosylation, cells were incubated with 10 ug/mL biotinylated HPA [90] (L6512, Sigma,
St. Louis, MO, USA) in 1% BSA /TBS for 3 min and then with 5 pg/mL avidin peroxidase
(A3151, Sigma, St. Louis, MO, USA) in 1% BSA/TBS for 30 min. In all cases this was
followed by incubation with DAB peroxidase substrate (SK-4100, Vector Laboratories,
Burlingame, CA, USA) and cells were counterstained with haematoxylin, dehydrated and
mounted. They were visualised using Axioplan Light Microscope (Zeiss, Germany) with
colour camera (ProgRes, Germany), under 400 x magnification. Three slides were prepared
for each sample, and 10 images were taken per slide. Immuno-positive cells were counted
using Image | software and data was presented as the percentage of labelled cells to a total
number of cells.

4.9. Flow Cytometry

For the flow cytometry [91], MCF-7 cells were grown and incubated with either
~2.5 x 101 ICCM or CCCM-derived exosomes in T75 flasks for 24 h and then collected
into 50 mL centrifuge tubes, washed three times with PBS and fixed with 80% methanol
for 5 min and further washed three times with PBS. The cells were then permeabilised
with 1% Triton X-100 in PBS for 10 min. Following three washing steps with PBS, cells
were incubated with 2 pug/mL rabbit polyclonal anti-vimentin antibody (ab137321, Abcam,
Cambridge, UK) and rabbit monoclonal anti-E-cadherin (ab76319, Abcam, Cambridge, UK)
primary antibodies for 1 h at RT. Then cells were washed three times with TBS-T buffer and
then incubated with 2 g /mL AlexaFluor® 488-conjugated polyclonal goat anti-rabbit IgG
(ab150077, Abcam, Cambridge, UK) for 30 min at RT in the dark. Cell suspensions were
analysed using flow cytometer (Cytoflex 5, Beckman Coulter, Brea, CA, USA). An FITC-A
filter was applied, and data were presented as a histogram of positive cells to vimentin and
E-cadherin via use of CytExpert 2.1 software.

4.10. Reverse Transcription and Quantitative Polymerase Chain Reaction

Total RNA from 2 x 10° MCF-7 cells or exosomal RNA, from media that was collected
from 20-24 x 10° cells, were isolated using RNeasy® Mini kit (74104, Qiagen, Hilden,
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Germany) according to manufacturer’s instructions. OD260/280 nm absorbance ratios were
between 1.7 to 2.1 for all RNA isolations. Isolated RNA was treated with DNase-1 (AMPD-1,
Sigma, St. Louis, MO, USA) and converted to cDNA by use of iScript™ cDNA synthesis
kit (1708891, Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions.
Gene amplification was achieved by iTag universal SYBER Green Supermix (172-5122,
Bio-Rad, Hercules, CA, USA). Briefly, 10 uL iTaq universal SYBER green Supermix was
mixed with 1 pL of cDNA (500 ng/pL), 2 uL of forward and reverse primers (Table 1) and
7 uL of nuclease-free water. Three replicates were analysed for each sample. The reaction
started at 95 °C for 2 min and followed by 39 cycles of 95 °C for 10 s and 60 °C for 30 s in
Thermal Cycler (Bio-Rad, Hercules, CA, USA). Cq data were displayed/analysed using the
qPCR software.

Table 1. Forward and reverse primer sequences used for gPCR detection.

Target Gene Primer Sequence (5'-3')
Vimentin F: ATGGCTCGTCACCTTCG
R: AGTTTCGTTGATAACCTGTCC
E-cadherin F: ACGCATTGCCACATACA
R: CGTTAGCCTCGTTCTCA
— F: TAAAGGGTCTAGGATGCGCG
p R: GACTTTTCCCCAGACCTCGG
SLUG F: AGCAGTTGCACTGTGATGCC Prr‘;?;resdfo;}i\f
R: ACACAGCAGCCAGATTCCTC &
SNALL F: AATCGGAAGCCTAACTACAGCG
R: GTCCCAGATGAGCATTGGCA
JEBI F: TCCCTGCCAAGAACAATGATCA
R: AGGTGATGGGGATGGTGTACTA
TWIST F: ACAGCCGCAGAGACCTAAAC
R: GGCCTGTCTCGCTTTCTCTT
GaINAC-T6 F: AGAGACAGGGCAGAGGGTAG Primers for glycosylation
R: CCTTTGTCATGGCATCCCCT related gene
— F: GGGGCTAATACTGCCTGGTAA
she R: TTCACAATGCGTTATCGGATGT
LnsmiR-200b F: GTTAGAATTAGGGTTTTTGGGGAGG
R: ACCTATCAAACTTCTCAATATAAAC Primers for exosomal
HsmiR-308 F: GGGATTCTGAAGGTGGGTGG miRNA
R: AAGAGAGGCAGCTTTCACCC
. F: CCAAGCTTATAAGTGAGCGCATTC
has-miR-9f

R: CGGAATTCGTGTTGGAGAACAGCA

GalNAc-T6: N-acetylgalactosaminyltransferase-6 (also known as ppGalNAc-T6); TGFB-1: transforming growth
factor 31; F: forward; R: reverse.

4.11. Western Blot

Western blotting was used as semi-quantitative technique in order to compare the
protein expression levels in the cells [92] and exosomes [44]. Proteins were isolated from
2 Gy X-ray-irradiated and sham-irradiated MCF-7 cells, MCE-7 cells treated with exosomes
from irradiated MCF-7 cells or unirradiated MCF-7 cells, or directly from exosomes isolated
from irradiated and non-irradiated MCF-7 cells using RIPA Lysis Buffer (20-188, Milli-
pore) in the presence of Protease Inhibitor Cocktail (P8340, Sigma, St. Louis, MO, USA).
Total protein was measured using the Bradford assay by use of Coomassie blue solution
and Pierce™ Bovine Serum Albumin Standard Pre-Diluted Set (23208, Thermo Scientific,
Waltham, MA, USA).

20 pg of whole cell lysates or exosomal proteins were mixed with RunBlue LDS
sample buffer (NXB31010, Expedeon; Abcam, Cambridge, UK) in the presence of DTT and
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separated in Mini-PROTEAN® TGX Stain-Free™ Protein Gels (456-8126, Bio-Rad, Hercules,
CA, USA) and transferred onto Amersham™ HybondTM PVDF membrane (10600090, GE
Healthcare, Little Chalfont, UK). The membranes were blocked in 5% BSA in TBS-T buffer
and then incubated with anti-CD63 (ab134045, Abcam, Cambridge, UK), anti-TSG101
(ab125011, Abcam, Cambridge, UK), anti-TGF{3-1 (ab179695, Abcam, Cambridge, UK)),
rabbit polyclonal anti-vimentin (ab137321, Abcam, Cambridge, UK), rabbit monoclonal
anti-E-cadherin antibody (ab76319, Abcam, Cambridge, UK) at 1:500 dilution, overnight.
Membranes were washed three times with TBS-T buffer and then incubated with goat
polyclonal antibody to rabbit IgG Hé&L (Alexa Fluor® 488) (ab150077, Abcam, Cambridge,
UK) for 1 h at 1:1000 dilution. Bands were visualised using Chemi™Doc MP Imaging
system (Bio-Rad, Hercules, CA, USA) and analysed by Image Lab 4.1 software.

4.12. Statistical Analysis

Exosome size and diameter and viability data significance was tested by Student’s
t-test using raw data. For HPA binding and EMT marker assays percentage of labelled cells
to total cells were tested by Fisher’s exact test. Invasion assay data was also subjected to
Fisher’s exact test, using the median of the raw data. JPCR and Western blot results were
represented as mean + SEM. Each experiment was carried out in triplicates. Data were
considered statistically significant if p-value was lower than 0.05 (* p < 0.05, ** p < 0.01,
***p <0.001).
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