
Research Article
The Potential Protective Effect of Curcumin on Amyloid-𝛽-42
Induced Cytotoxicity in HT-22 Cells

Lu Zhang,1 Yu Fang ,2 Xuan Cheng,1 Yajun Lian,1 Zhaoshu Zeng,3 Chuanjie Wu,1

Hongcan Zhu,1 and Hongliang Xu1

1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
2Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
3Department of Legal Medicine, The College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China

Correspondence should be addressed to Yu Fang; yufangyfyf@163.com

Received 13 July 2017; Revised 9 November 2017; Accepted 26 November 2017; Published 15 January 2018

Academic Editor: Mai S. Li

Copyright © 2018 Lu Zhang et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. We aimed to investigate the effect and mechanism of curcumin (CUR) in Alzheimer’s disease (AD).Methods. Mouse
hippocampal neuronal cell lineHT-22was treatedwithA𝛽1–42 and/orCUR, and then cell viabilitywas evaluated by cell counting kit
8, Beclin-l level was detected using western blotting, and the formation of autophagosomes was observed by transmission electron
microscopy (TEM). Furthermore, transcriptome sequencing and analysis were performed in cells with A𝛽1–42 alone or A𝛽1–42
+ CUR. Results. A𝛽1–42 treatment significantly inhibited cell viability compared with untreated cells (𝑃 < 0.01). After treatment
for 48 h, CUR remarkably promoted cell viability compared with cell treated with A𝛽1–42 alone (𝑃 < 0.01). Compared with cells
treated with A𝛽1–42 alone, the expression of Beclin-1 was slightly reduced in cells with combined treatment of A𝛽1–42 with CUR
(𝑃 < 0.05). Consistently, TEM results showed that CUR inhibited the formation of autophagosomes in cells treated with A𝛽1–42.
Furthermore, the protein-protein interaction network showed five key genes, includingMYC, Cdh1, Acaca, Egr1, and CCnd1, likely
involved in CUR effects. Conclusions. CUR might have a potential neuroprotective effect by promoting cell viability in AD, which
might be associated with cell autophagy. Furthermore, MYC, Cdh1, and Acaca might be involved in the progression of AD.

1. Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disease, is most common type in senile dementia [1]. The
morbidity of AD is increasing with the aging population,
which endangers physical, psychological, and living quality
of old people due to high fatality rate and disability rate
[2]. Although a significant progress has been obtained in
the pathogenesis of AD, the effective treatments to block the
development of AD are unsatisfactory. Therefore, it is urgent
to explore the pathogenesis ofAD in depth and search for new
therapeutic targets and drugs for AD.

Curcumin (CUR) is major polyphenol extracted from
the rhizome of curry spice turmeric and is widespread
traditionalmedicine in South and Southeast Asia [3]. Increas-
ing evidences have demonstrated that CUR has the ben-
eficial properties such as antitumor, antioxidant and anti-
inflammatory [4–6]. Epidemiological studies have reported

that the lowest prevalence rate of AD is found in India, which
may be associated with common eating curry spice in India
population [7, 8]. Previous study also has revealed that curry
consumption is related to better cognitive functions in old
people [9]. Several studies have further shown that CUR
can significantly improve cognitive functions by reducing
oxidative damage and inflammation and then inhibiting
amyloid-𝛽-protein (A𝛽, especially A𝛽-42) aggregation in the
experimental AD models [10–12].

It has been well-known that A𝛽 is a main marker protein
in the development of AD [13] and intracellular A𝛽-42
aggregation is proved to play a key role in the early stage of
AD [14]. Abnormal autophagy can lead to early neuropathic
damage in AD [15], which involves the secretion of A𝛽 [16].
In the early stage of AD, autophagy can eliminate abnormal
protein A𝛽 and has a neuroprotective effect in AD, while
continued A𝛽 aggregation induces dysfunction of lysoso-
mal degradation, which leads to the leakage of lysosomal
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proteins from autophagic vacuoles and the acidification of
cytosol, eventually resulting in neuronal death in the late
stage of AD [17]. Wang et al. [18] have reported that CUR
induces autophagy by downregulating phosphoinositide 3-
kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR)
signaling pathway and inhibiting the production of A𝛽 in
APP/PS1 double transgenic mice. However, further studies
are still necessary to investigate the underlying mechanisms
of CUR in AD.

In the present study, mouse hippocampal neuronal cell
line HT-22 was treated with A𝛽1–42 and/or CUR, and then
the cell viability, the expression of autophagy-related protein
Beclin-l, and the formation of autophagosomes were detected
in HT-22 cells. Furthermore, transcriptome sequencing was
performed in cells with A𝛽1–42 alone and cells with A𝛽1–42
+ CUR, respectively, and then the function enrichment and
protein-protein interaction (PPT) analysis in differentially
expressed genes (DEGs) were conducted, aiming to investi-
gate the underlying mechanisms of CUR in AD.

2. Materials and Methods

2.1. Cell Culture. HT-22 cells were purchased from JENNIO
Bio Technology Co., Ltd. (Guangzhou, China). Cells were
cultured inDulbecco’sModified EagleMedia (DMEM,Gibco
Co., Ltd., Carlsbad, CA, USA) containing 10% fetal bovine
serum (Gibco Co., Ltd.) and 1% penicillin/streptomycin
(Gibco Co., Ltd.) in 37∘C incubator with 5% CO

2
.

2.2. Detection of Cell Viability. HT-22 cells (1.0 × 104
cells/well) were seeded into 96-well plates. The second day,
the cells were treated with 5 𝜇MA𝛽1–42 [oligomer, dissolved
in dimethyl sulfoxide (DMSO) and incubated at 37∘C for
72 h to induce aggregation, Sigma, Louis, MO, USA] [19],
5 𝜇M A𝛽1–42 + 5 𝜇M CUR (dissolved in DMSO, Sigma),
5 𝜇M A𝛽1–42 + 10 𝜇M CUR, and 5 𝜇M A𝛽1–42 + 15𝜇M
CUR [20], respectively. HT-22 cells without any treatment
served as control group. After incubation for 24 h and 48 h,
respectively, cells in each well were incubated with 10 𝜇L cell
counting kit 8 (CCK8,DojindoCo., Ltd, Tokyo, Japan) for 2 h.
Ultimately, absorbance was read at 450 nm using Synergy H4
microplate reader (BioTek, Winooski, VT, USA).

2.3. Western Blotting. The cells were treated with 5𝜇M
A𝛽1–42 or 5𝜇MA𝛽1–42 + 10 𝜇MCUR for 48 h.The cells were
collected and treated with RIPA buffer (Beyotime Institute
of Biotechnology, Shanghai, China) on ice for 30min. After
centrifugation at 12,000 rpm for 15min, supernatant was
acquired and protein concentration was measured using the
BCA Protein Quantitative Assay (Pierce, Rockford, IL, USA).
Protein (30 𝜇g/lane) sample was separated and blotted to
polyvinylidene fluoride membranes (Millipore, Belfor, MA,
USA), whichwere blocked in 5%nonfatmilk for 1 h.Then, the
membranes were incubated with rabbit anti-mouse 𝛽-actin
polyclonal antibody (1 : 1000, Proteintech, Chicago, IL, USA)
or rabbit anti-mouse Beclin-l polyclonal antibody (1 : 500,
Abcam, Cambridge, MA, USA) overnight at 4∘C, followed
by incubation with goat anti-rabbit IgG (H+L)-HRP (1 : 5000,

Jackson, West Grove, PA, USA) for 2 h at room temperature.
Proteins were expressed using enhanced chemiluminescence
(ECL) kit (Millipore) and analyzed by Image J software. The
results were quantified from three independent experiments.

2.4. Transmission Electron Microscopy (TEM). The cells were
treated with 5 𝜇M A𝛽1–42 or 5 𝜇M A𝛽1–42 + 10 𝜇M CUR
for 48 h. Then, the formation of autophagosomes in cells was
observed using TEM. Briefly, cells were collected and then
fixed in 2.5% glutaraldehyde for 2 h at 25∘C. After washing
with phosphate buffered saline for 3 times, the cells were
postfixed in 2%osmium tetroxide for 2 h and then dehydrated
in graded alcohols. Subsequently, samples were sectioned and
embedded in LX112 plastic. Finally, sectionswere stainedwith
uranyl acetate and lead citrate, and electronmicrographswere
obtained by JEM-1230 TEM (JEOL, Japan).

2.5. Transcriptome Sequencing. The cells were treated with
5 𝜇M A𝛽1–42 or 5𝜇M A𝛽1–42 + 10 𝜇M CUR for 48 h. Then,
the cells were collected and the total RNAwas extracted using
Trizol (Invitrogen, Gaithersburg, MD, USA). The mRNA-
seq library was constructed and then sequenced on the
Illumina GenomeAnalyzer IIx sequencing platform.The raw
reads were obtained by the Illumina instrument software and
cleaned by removing reads with unknown bases “𝑁” > 5%,
adapter sequences, reads with more than 20% 𝑄 < 20 bases,
and reads with<30 bases.The clean reads weremapped to the
mice reference genome based on NCBI by TopHat software.
The gene expression values using fragments per kilobase of
exonmodel permillion reads were obtained by StringTie tool
(V1.2.2) based on mice gene annotation.

2.6. Identification and Analysis of DEGs. DEGs between
cells with A𝛽1–42 samples and cells with A𝛽1–42 + CUR
sampleswere obtained using the LinearModel forMicroarray
package in R [21]. The cutoff criteria for DEGs were set up
as follows: |log

2
fold change| value > 2 and the 𝑃 value <

0.05. For functional analysis for DEGs, gene ontology terms
(GO; http://www.geneontology.org) in biological process
(BP) were performed based on the Database for Annotation,
Visualization and Integrated Discovery [22]. In addition, PPI
network for DEGs was constructed using the Search Tool for
the Retrieval of Interacting Genes online database [23] and
visualized using the Cytoscape [24] software.

2.7. Statistical Analysis. Statistical analysis was performed by
SPSS 19.0 statistical analysis software (SPSS Inc., Chicago, IL,
USA). Data were expressed as the mean ± SEM and analyzed
by 𝑡-test. A value of 𝑃 < 0.05 was considered significant and
𝑃 < 0.01 was considered highly significant.

3. Results

3.1. Effect of CUR on Cell Viability in A𝛽1–42 Treated HT-
22 Cells. CCK8 assay results showed that compared with
untreated cells, cell viability was significantly inhibited in
cells treated with A𝛽1–42 alone (𝑃 < 0.01), while cell
viability was remarkably increased after treatmentwith 10𝜇M
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Figure 1: Curcumin (CUR) promoted cell viability in A𝛽1–42 induced cells. Cell viability in untreated cells (blank), A𝛽1–42 induced cells,
and CUR + A𝛽1–42 treated cells at 24 h (a) and 48 h (b) using CCK-8 assay. The experiment was repeated for three times. ∗∗𝑃 < 0.01 versus
Blank group; ##𝑃 < 0.01 versus A𝛽1–42 group.

(P < 0.01) or 15 𝜇M (𝑃 < 0.01) but not 5 𝜇M CUR for 24 h
(Figure 1(a)). Similarly, after treatment for 48 h, CUR (10,
15 𝜇M) significantly promoted cell viability in comparison
with cell treated with A𝛽1–42 alone (𝑃 < 0.01, Figure 1(b)).
Based on CCK8 assay, the combined treatment with 5 𝜇M
A𝛽1–42 + 10 𝜇M CUR for 48 h was used in subsequent
experiment.

3.2. Effect of CUR on Cell Autophagy in A𝛽1–42 Treated
HT-22 Cells. Western blotting results found that autophagy-
related protein Beclin-1 was slightly downregulated in cells
with combined treatment ofA𝛽1–42 andCURcomparedwith
cells treated with A𝛽1–42 alone (𝑃 < 0.05, Figure 2(a)).
In addition, TEM results showed that autophagosome could
be observed in cells treated with A𝛽1–42 alone, while no
autophagosome appeared in cells with combined treatment
of A𝛽1–42 and CUR (Figure 2(b)), which was consistent with
the results of downregulated Beclin-1.

3.3. Function Enrichment Analysis of DEGs. Totally, 882
DEGs between cells withA𝛽1–42 alone and cells withA𝛽1–42
+ CUR were obtained, including 324 upregulated DEGs
and 558 downregulated DEGs. GOBP enrichment analysis
showed that upregulated DEGs were significantly related
to negative regulation of molecular function, epidermis
development, metal ion transport, and keratinocyte differ-
entiation, and downregulated DGEs were mainly correlative

to intracellular organelle lumen, membrane-enclosed lumen,
organelle lumen, nuclear lumen, and nucleolus. The top 10
GOBP terms with upregulated and downregulated DGEs are
shown in Table 1.

3.4. PPI Analysis of DEGs. Totally, 552 DEGs including
162 upregulated DEGs and 360 downregulated DEGs were
involved in 1337 interaction pairs (Figure 3). There were 7450
edges in PPI network forDEGs (Figure 3).MYC,Cdh1,Acaca,
Egr1, and CCnd1 were located in the top 5 nodes with high
degrees in PPI network.

4. Discussion

The present study found that CUR significantly promoted
cell viability, reduced the expression of Beclin-1, and lowered
the formation of autophagosomes in A𝛽1–42 treated HT-22
cells. In addition, transcriptome sequencing results showed
324 upregulated DEGs and 558 downregulated DEGs, and
PPI network showed that the pathogenesis of AD might be
associated with MYC, Cdh1, and Acaca listed in the top 3
nodes with high degrees.

Previous study had shown a potential therapeutic role of
CUR in the pathophysiology of AD [25]. Some in vivo studies
demonstrated that oral administration of CUR could improve
AD by removing A𝛽 deposition and improving behavioral
impairment [10, 26]. It had been shown that CUR had an
antiproliferation role in cancer cells [27]. However, this study
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Figure 2: Curcumin (CUR) inhibited cell autophagy in A𝛽1–42 induced cells after treatment for 48 h. (a) The protein expression of Beclin-1
in A𝛽1–42 induced cells and CUR + A𝛽1–42 treated cells using western blotting; (b) cell autophagosome in A𝛽1–42 induced cells and CUR
+ A𝛽1–42 treated cells using transmission electron microscopy. Bar = 0.5 𝜇m; ∗𝑃 < 0.05 versus A𝛽1–42 group.

found that CUR could promote cell proliferation. Similarly,
Ma et al. [28] demonstrated that CUR could stimulate
proliferation of rat neural stem cells. They found that low
dose of CUR (0.1, 0.5, and 2.5 𝜇M) increased the proliferation
of neural stem cells, whereas high doles of CUR (12.5 and
62.5 𝜇M) caused a decrease in the proliferation of neural stem
cells [28], which was also consistent with our study. These
results indicated the different role of CUR in cancer cells and
neuronal cells. Autophagy had been reported to have contrary
effect on A𝛽 aggregation in the different stage of AD [17]. In
addition to antioxidant and anti-inflammatory effect, CUR
could induce autophagy in various cancers, including human
lung adenocarcinoma [29], colon cancer [30], glioblastomas
[31], and oral cancer [32]. Furthermore, CUR was reported
to induce autophagy and inhibit A𝛽 secretion in AD model

mice [18]. Conversely, our study showed that CUR inhib-
ited cell autophagy. This may explain that CUR removed
intracellular A𝛽 depositions and then inhibited A𝛽-induced
toxicity, thereby exhibiting neuroprotective role by inhibiting
cell autophagy [33]. However, our results showed only 10%
inhibition of Beclin-1 expression caused by CUR treatment,
so CUR-induced cell viability might be partly associated
with cell autophagy in AD, while further study should be
performed to confirm this ratiocination.

In order to further investigate the mechanism of CUR,
transcriptome sequencing and bioinformation analysis were
performed. The results found some important genes, such
as MYC, Cdh1, and Acaca in PPI network. MYC oncogenes,
containing C-myc, N-myc, and L-myc, had been proved
to be overexpressed in tumor cells and closely associated
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Table 1: The enriched pathways of DEGs between cells with A𝛽1–42 alone and cells with A𝛽1–42 + CUR.

DEGs Terms Name Counts Gene P value

Upregulated DEGs

GO:0044092 Negative regulation of molecular function 7 ATP7A,
MYC. . . 0.005451488

GO:0008544 Epidermis development 6 ATP7A,
GRPC5D. . . 0.018159092

GO:0030001 Metal ion transport 12 ATP7A,
MCOLN1. . . 0.019076392

GO:0030216 Keratinocyte differentiation 4 GPRC5D,
EVPL. . . 0.020403199

GO:0052548 Regulation of endopeptidase activity 4 CDH1,
MYC. . . 0.022720082

GO:0043281 Regulation of caspase activity 4 CDH1,
MYC. . . 0.022720082

GO:0007398 Ectoderm development 6 ATP7A,
GPRC5D. . . 0.023056172

GO:0006812 Cation transport 13 ATP7A,
MCOLN1. . . 0.023211511

GO:0009913 Epidermal cell differentiation 4 GPRC5D,
EVPL. . . 0.023930017

GO:0052547 Regulation of peptidase activity 4 CDH1,
MYC. . . 0.023930017

Downregulated DEGs

GO:0070013 Intracellular organelle lumen 40 SURF6,
UTP18. . . 4.57𝐸 − 04

GO:0031974 Membrane-enclosed lumen 41 HNRNPA2B1,
SIRT4. . . 4.70𝐸 − 04

GO:0043233 Organelle lumen 40 SURF6,
UTP18. . . 4.81𝐸 − 04

GO:0031981 Nuclear lumen 31 SURF6,
UTP18. . . 0.002647478

GO:0005730 Nucleolus 15 TSEN54,
TBL3. . . 0.003596227

GO:0005643 Nuclear pore 6 CSE1L,
KPNA6. . . 0.006174947

GO:0005739 Mitochondrion 39 PGS1,
PDP2. . . 0.012109477

GO:0046930 Pore complex 6 SIRT4,
ACACA. . . 0.014833322

GO:0005929 Cilium 8 TTC30B,
TTC30A1. . . 0.018005139

GO:0005912 Adherens junction 7 FMN1,
ARHGAP31. . . 0.01885244

with tumorigenesis by regulating cell proliferation, apoptosis,
and differentiation [34]. In normal hematopoietic cells and
hepatocytes, upregulated MYC expression could induce cell
cycle progression [35, 36]. MYC was also overexpressed in
AD and traumatic brain, which led to cognitive deficits and
neurodegeneration [37, 38]. Cdh1 gene was cell cycle-related
gene and could activate anaphase-promoting complex (APC)
[39]. Cdh1-APChad been demonstrated to control theG0 and
G1 phases of the cell cycle and regulate axonal growth during
the neuronal differentiation of the mammalian brain [40].
Cdh1 could promote neuronal survival and lead to apoptotic
cell death by inhibiting cyclin B1 accumulation in primary
cortical neurons, indicating that upregulated Cdh1 prevented

neuron damage induced by the neurotoxicity of A𝛽 [41]. Sim-
ilarly, the present study revealed that, in A𝛽1–42 treated HT-
22 cells, CUR increased the expression ofMYC and promoted
cell growth. Acetyl-CoA carboxylase 𝛼 (ACC-𝛼) protein,
encoded by Acaca gene, was a key enzyme in fatty acid
synthesis pathway and expressed in various cells especially
in lipogenic tissues [42]. ACC-𝛼 had been reported to be a
potential target in metabolic syndromes and cancers because
of the roles in fatty acid metabolism [43]. Some studies
had shown overexpressed ACC-𝛼 in some cancers, including
breast cancer and prostate cancer, indicating the protective
role for cancer cell survival [44–46]. Effective interventions
against ACC-𝛼 had been reported to inhibit tumor growth by
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Figure 3: Protein-protein interaction network constructed for differentially expressed genes (DEGs). The red nodes stand for upregulated
DEGs and the green nodes stand for downregulated DEGs.

regulating cell fate, transformation, and differentiation [47].
However, some studies should be performed to investigate the
effect of ACC-𝛼 on neurodegenerative disease. In addition,
our study only suggested preliminary results and further
experiments for the validation of DEGs expression were still
needed.

5. Conclusions

The current study revealed that CUR might have a potential
protective effect by promoting cell viability in AD, which
might be associated with cell autophagy. Furthermore,MYC,
Cdh1, and Acaca might be involved in the early stage of AD,
which should be further confirmed.
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