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Abstract
Despite the importance of the proper quality of blood products for safe transfusion, conventional methods for preparation 
and their preservation, they lack significant stability. Non-metal nanoparticles with particular features may overcome these 
challenges. This review study for the first time provided a comprehensive vision of the interaction of non-metal nanoparticles 
with each blood product (red blood cells, platelets and plasma proteins). The findings of this review on the most effective 
nanoparticle for improving the stability of RBCs indicate that graphene quantum dots and nanodiamonds show compat-
ibility with RBCs. For increasing the stability of platelet products, silica nanoparticles exhibited a suppressive impact on 
platelet aggregation. Pristine graphene also shows compatibility with platelets. For better stability of plasma products, gra-
phene oxide was indicated to preserve free human serum albumin from thermal shocks at low ionic strength. For increased 
stability of Factor VIII, mesoporous silica nanoparticles with large pores exhibit the superb quality of recovered proteins. 
Furthermore, 3.2 nm quantum dots exhibited anticoagulant effects. As the best promising nanoparticles for immunoglobulin 
stability, graphene quantum dots showed compatibility with γ-globulins. Overall, this review recommends further research 
on the mentioned nanoparticles as the most potential candidates for enhancing the stability and storage of blood components.
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Keywords Blood products · Non-metal nanoparticles · Nanodiamonds · Stability · Mesoporous silica nanoparticles

Introduction

Nowadays, the transfusion of blood and its components play 
a life-saving role in different clinical indications such as 
bleeding, anemia, surgery, trauma, and etc. (Greening et al. 
2010; Sen Gupta 2017). Blood products are derived from 
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whole blood which is rapidly combined with anticoagulants 
that lead to chemical modifications. Blood derivatives are 
produced through various purification steps, resulting in 
damages related to preparation which also combines with 
storage lesions. To ensure proper storage of blood com-
ponents and safe transfusion, various strategies have been 
conducted, including using anticoagulants, centrifugation, 
filtration, and keeping blood products in additive solutions. 
Blood products are also treated through the use of pathogen 
inactivation systems or by utilizing novel storage strategies 
that enhance their quality (Abonnenc et al. 2018). However, 
conventional approaches have adverse effects on these prod-
ucts in different aspects. For instance, their biofunction and 
stability are altered in methods for improving the shelf life 
using stabilizers and additives (Belousov 2014; Sen Gupta 
2017). Blood cells and plasma proteins are also damaged 
or lost in the process of eradicating contaminations (Klein 
2005). Furthermore, current plasma protein purification pro-
cesses are not efficient and cost-effective (Evtushenko et al. 
2005; Mehrizi and Hosseini 2021).

Nanotechnology as an advancing science has provided 
new opportunities for studying not only the mechanisms of 
cell damage but also the development of efficient and safe 
methods for storing cells outside the body which offers a 
potential solution to the challenges of blood products stor-
age and separation (Belousov et al. 2019; Dashti Rahmat 
Abadi et al. 2014; Mehrizi 2021a; Shahabi et al. 2014; Zadeh 
Mehrizi 2021a, b, c; Zadeh Mehrizi and Amini Kafiabad 
2021a, b; Zadeh Mehrizi et al. 2021; Zadeh Mehrizi and 
Eshghi 2021; Zadeh Mehrizi and Mousavi Hosseini 2021). 
Carbon nanoparticles have received much attention due to 
their particular optical, thermal, mechanical, electrical, and 
chemical features. They are very promising materials in gene 
and drug delivery systems, cancer treatment, bio-sensing, 
and stem cell therapy. Additionally, for enhanced efficacy, 
they can easily be functionalized with chemical groups 
and antibacterial and anti-inflammatory compounds (Fedel 
2020).

Despite the potential application of nanotechnology in 
blood banking and the importance of the stability of blood 
products, few studies have been focused on the effect of non-
metal nanoparticles on each blood component. Therefore, 
the current paper for the first time reviews the recent studies 
from 2011 to 2021, to evaluate the interaction of different 
types of non-metal nanoparticles such as silica, graphene, 
fullerenes, carbon nanotubes with RBCs, platelets, and 
plasma proteins including albumin, coagulation factor VIII 
and immunoglobulin. This study discusses the challenges of 
each blood product preparation or storage. It also provides 
an overview of conformational changes, oxidative stress con-
ditions, toxicity concentrations, and the purification process 
of blood products in case of using non-metal nanomaterials.

Red blood cells (RBCs)

Among the blood components, RBCs are the most com-
monly transfused one for hemorrhage treatment and oxy-
gen delivery improvement in patients with anemia (Hess 
2010a; Klein et al. 2007). RBC concentrates are typically 
stored in 2–6 °C for up to 42 days but in certain conditions, 
they can also be preserved using cryopreservation methods 
(Greening et al. 2010). RBC storage lesion is primarily 
caused by metabolic reactions and oxidative injury in the 
storage bags caused by the acidic environment and pres-
ence of oxygen, heme, and iron together (Hess 2010b). 
During storage, ATP and 2,3-diphosphoglycerate decrease, 
and RBC deformation and hemolysis increase. Thus, the 
units are collected either as whole blood into bags contain-
ing anticoagulant citrate and nutrient phosphate and dex-
trose to maintain ATP, and 2,3-DPG levels or by apheresis 
into acid citrate dextrose. Furthermore, due to the lactic 
acid accumulation in the blood, the pH of RBCs decreases 
which results in increased phosphatase 3 activity, which 
induces 2,3-DPG degradation and reduced oxygen deliv-
ery to tissues (Hess 2010a; Zubair 2010). The interaction 
of nanomaterials with RBCs can induce toxicity through 
membrane alteration, inflammation and ROS production 
and is associated with their various properties (Pan et al. 
2018; Reviakine et al. 2017).

Silica nanoparticles

As an extremely significant class of nanomaterials, silicon-
based nanoparticles possess numerous unique properties, 
including superior physical, electronic, chemical, and opti-
cal properties, high surface-to-volume ratios, improved 
surface reactivity, and easy surface modification. In addi-
tion to these properties, due to their ease of fabrication, 
cost effectiveness, hydrophilicity, favorable biocompat-
ibility, and controlled size, they are promising candidates 
for a broad range of biomedical applications such as gene 
carriers, drug delivery, biosensors and bio-imaging (He 
et al. 2010a, b; He and Su 2014; Jeelani et al. 2020; Muru-
gadoss et al. 2017).

The adverse effect of nanoparticles on RBCs is initially 
associated with damage to the plasma membrane. There 
is a key role for the lipid composition of the membrane 
outer leaflet in nanoparticle-induced membrane damage in 
both vesicles and erythrocytes. The influence of membrane 
asymmetry loss and alterations of the lipid composition 
of the outer leaflets of RBCs on nanoparticle membrane 
interactions was investigated. In comparison with healthy 
cells, eryptotic cells had significantly less damage caused 
by unmodified silica nanoparticles. Neither amino- nor 
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carboxyl-modified particles caused significant hemolysis. 
Unmodified silica nanoparticles also showed a significant 
reduction in membrane binding when membrane asym-
metry was lost. These nanoparticles also caused notice-
able cell deformation. Additionally, unmodified particles 
disrupted vesicles mimicking the erythrocyte outer leaflet 
lipid composition. The level of damage and nanoparticle 
binding to the membrane was diminished in vesicles mim-
icking the composition of scrambled membranes. Lipid 
adsorption was discovered as a mechanism for vesicle 
damage (Bigdelou et al. 2020).

In terms of the evaluation of size impact of nanoparticle 
on hemocompatibility, silica nanoparticles (d = ∼ 200 nm) 
induced faster hemolysis than nanowires (d = ∼ 200 nm, 
l = 1 m or 10 m). The RBC deformability showed no sig-
nificant difference while the “aggregation index” for RBC 
aggregation was reduced in short silica nanowires in com-
parison with other silica nanomaterials. Silica nanoparticles 
caused larger rheological changes than nanowires (Kim et al. 
2016a, b).

The concentration of the nanomaterials also determines 
the toxicity to RBCs as it was indicated that the 12.5 g/mL 
or lower concentration of silica nanomaterials did not lead 
to toxicity for RBCs (Kim et al. 2016a, b). Amorphous silica 
nanoparticles (SiNPs) lead to dose-dependent hemolysis of 
mouse erythrocytes in vitro and are taken up by the erythro-
cytes. SiNPs induced oxidative activity and apoptosis, and 
increased cytosolic  Ca2+, which may explain the hemolytic 
activity induced by these nanoparticles. SiNPs possibly 
cause in vivo anemia and circulatory disorders (Nemmar 
et al. 2014).

The activity of silica nanoparticles can be enhanced 
through ion doping them with trace elements found in the 
human body like Ca, Mg, and Cu (Hoppe et al. 2011). Mg 
and Cu added to silica-based nanoparticles improved hemo-
compatibility by protecting erythrocytes from oxidative 
stress in comparison with pure silica nanoparticles (Tsame-
sidis et al. 2020).

Nanoparticles are immediately coated with a layer of 
proteins in contact with biological fluids like blood plasma 
which is called protein corona (Lundqvist et al. 2017). Com-
pared with nanoparticles with a preformed corona on their 
surfaces, bare silica nanoparticles exhibit higher adhesion 
to the cell membrane and a higher internalization efficiency 
(Lesniak et al. 2012). It has been demonstrated that as a 
result of plasma corona formation, the hemolytic activity of 
silica nanoparticles of various sizes will be hindered (Shi 
et al. 2012).

Researchers indicated that in addition to pore size and 
morphology, mesoporous silica nanoparticles (MSNs) activ-
ity in RBCs will be affected by the formation of the protein 
corona which significantly reduces hemolysis activity. Ma 
et al. proved the hemocompatibility of MSNs for blood-
compatible nanomaterials' production (Ma et al. 2014). 
MSN-SiOH, a spherical mesoporous silica nanoparticle 
with silanol groups on the outside surface, induced spheri-
cal protein corona formation during hemolysis. In phosphate 
buffer saline solution, this has been proven cytotoxicity to 
RBCs when dispersed as a colloid. The hemolytic effect 
caused by MSN-SiOH in a dose-dependent manner can be 
reduced by human blood proteins, such as albumin, plasma, 
hemoglobin, and RBC lysate. As a result, the toxicity and 
bioreactivity of silica nanoparticles must be interpreted as 
a function of the protein corona formation (Martinez et al. 
2015).

Several factors affect the hemolytic effect of MSNs, 
including their shape, size, surface charge, surface modifica-
tion, and surface roughness. Bare MSNs induce the hemoly-
sis of RBCs (Mukhopadhyay et al. 2019), as shown in Fig. 1.

Recent research has shown that surface modification can 
effectively reduce the hemolytic activity of bare MSNs (He 
et al. 2010a, b; Yildirim et al. 2013). For instance, the cRGD 
functionalized Zein has an anti-hemolysis effect and prevents 
the damage of Au on  SiO2 surface to RBCs through altering 
the protein conformation during the interaction with Au on 
 SiO2 surface (Huang et al. 2021). A synthesized asymmetric 

Fig. 1  The interaction of bare 
mesoporous silica nanoparti-
cles with red blood cells. Bare 
MSNs lead to the hemolysis of 
RBCs
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MSNs with an adjustable head–tail structure exhibited sig-
nificantly lower hemolytic activity than other conventional 
symmetric nanoparticles. The superb hemocompatibility of 
these asymmetrical head–tail MSNs was because of the low 
level of reactive oxygen species, flat contact with the RBC 
membrane, and reduced distortion of RBC (Abbaraju et al. 
2017). It seems that the modified silica nanoparticle in com-
parison with unmodified type indicates more hemocompat-
ibility caused by its morphology and reduced ROS.

Graphene

Graphene is a two-dimensional material that is composed of 
hexagonally arranged sp2-hybridized carbon atoms with a 
large surface area on either side of the planar axis. Graphene 
has remarkable features of electrical and thermal conductiv-
ity, and light absorption. Due to graphene's particular sur-
face area, structural and mechanical properties, graphene 
and its derivatives including mono- and few-layer graphene, 
graphene oxide (GO), reduced graphene oxide (rGO), gra-
phene nanosheets (GNS), etc. have been widely used for bio-
medical purposes, such as antibacterial agents, drug deliv-
ery, biosensors, and tissue engineering. However, several 
factors influence the toxicity of the graphene family such as 
size, functionalization, surface area, charge, and corona for-
mation. Furthermore, each type of graphene has remarkably 
different physical and chemical properties, which leads to 
different toxicological effects. To make graphene materials 
safe for use in biomedical applications, safety evaluations are 
imperative (Ealia and Saravanakumar 2017; Ou et al. 2016; 
Seabra et al. 2014).

It was demonstrated that there was no significant toxic-
ity difference between pristine and functionalized graphene 
(p–G and f–G) in human primary blood components and 
both types of graphene exhibited high compatibility with 
RBCs and did not disrupt the RBC plasma membrane 
(Sasidharan et al. 2012). In contrast, in another study, GN, 
GO, and rGO caused different levels of structural damage to 
the membrane of chicken embryo RBC and dose-dependent 
hemolysis according to methods of production and surface 
modification. Hydrophobic and reduced graphene nanopar-
ticles (GN and rGO) demonstrated more toxic effects than 
the hydrophilic, oxidized form. Moreover, GN generated by 
physical exfoliation had higher hemolytic activity than rGO 
produced chemically (Jaworski et al. 2017).

In another investigation of the influence of different forms 
and concentrations of graphene quantum dots (GQDs) on 
human RBCs, the findings were indications to insignificant 
hemolysis and rheological changes of the RBCs at concen-
trations under 500 mg/mL. The carboxylated GQDs led 
to more substantial hemolytic activity and caused abrupt 
alterations in RBC deformability and aggregation than 

the non-functionalized or hydrophilic GQDs at concentra-
tions > 750 mg/mL (Kim et al. 2016a, b).

The unmodified GO nanosheets cause severe damage to 
RBCs and displayed diverse hemolytic properties under sev-
eral incubation conditions (Wang et al. 2016). The hemol-
ysis and toxicity of GO appear to be associated with the 
hydrophilic edges and hydrophobic bases of its chemical 
structure, which lead to strong interactions between GO and 
the cell plasma membrane (Kim et al. 2010). GO interacts 
with neutral and negatively charged lipid membranes and 
the binding is diminished beyond a certain concentration of 
negatively charged lipids and favored in high-salt buffers. It 
was also demonstrated that neutral membrane vesicles tend 
to break down and extend over the GO after this binding. 
In contrast, vesicles with negatively charged membranes 
tend to remain bound without disrupting the GO. GO also 
interacted with RBCs, and led to hemolysis. It seems that 
hemolysis is suppressed when GO is previously coated with 
lipid membranes, especially with pure phosphatidylcholine 
vesicles (Monasterio et al. 2017).

Functionalized graphene is more compatible with human 
RBCs by decreasing hemolysis. For enhanced hemocompati-
bility and particularly the hemolysis level of GO nanosheets, 
the conjugation of bovine serum albumin (BSA) with GO 
was suggested. The GO-g-BSA surface reduced the adhesion 
of RBC in a flowed condition, maintained the morphology 
of RBC, and decreased hemolysis effectively. Inert BSA 
resisted GO from interacting with RBC lipid bilayers, and 
the negative charge on BSA repelled negative charged RBCs 
from approaching (Cai et al. 2015). It was also proposed 
that functionalization of graphene nanoplatelets with dextran 
(GNP-Dex) shows no adverse effects on the hematological 
components and hemolysis of blood cells (Chowdhury et al. 
2013). In consensus, the toxicity of functionalized graphene 
oxide with D-mannose to human RBCs and the amount of 
the proteins in the hard corona was diminished significantly 
(de Sousa et al. 2018). It was also proposed that the reduc-
tion process of graphene oxide by primary amines is an 
effective approach for achieving in vivo biocompatibility 
for biomedicine applications. Researchers also synthesized 
a novel nanomaterial based on GO and mesoporous amino 
silica nanoparticles  (H2N-MSNs) that significantly demon-
strated diminished erythrocyte lysis and interaction with 
proteins in human plasma (Fonseca et al. 2018).

Nanodiamonds

Nanodiamonds (NDs) are a newly discovered class of car-
bon-based nanoparticles whose core is basically composed 
of carbon sp3 structures with sp2 and defect carbons on 
the surface. These nanoparticles possess attractive chemi-
cal, physical and optical properties. They have gained wide 
popularity due to their low toxicity, adjustable size ranges, 
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high hardness, photostability, and large surface area which 
can be functionalized easily. These properties lead to various 
applications of nanodiamonds in photodevices, biosensors, 
bio-imaging, energy storage, and drug delivery. Moreo-
ver, the characteristics of nanodiamonds can be enhanced 
through doping and surface modifications for the purpose 
of biomedical usages (Fedel 2020; Ho et al. 2015; Pereve-
dentseva et al. 2013; Qin et al. 2021; Wąsowicz et al. 2017; 
Xing and Dai 2009). An in vitro study indicated the hemo-
compatibility of unmodified and oxygen and hydrogen-ter-
minated surface-modified NDs with no hemolysis observed 
(Wąsowicz et al. 2017).

Nanodiamonds influence RBCs' deformability and 
aggregation in a concentration-dependent way. The size 
of nanodiamonds also affects their interaction with RBCs. 
In an in vitro study, 100-nm cNDs were found to be local-
ized around RBCs, whereas 5-nm cNDs penetrated into the 
RBCs. Nanodiamonds did not cause hemolysis and did not 
alter cell viability or oxygenation/deoxygenation (Lin et al. 
2012). In another study it was demonstrated that in contact 
with 100 nm carboxylated nanodiamonds, some RBCs form 
echinocytes which can be related to the intercellular con-
tacts induced by the surface charge of the NDs and plasma 
membrane alteration. Avsievich et al. indicated that nano-
diamonds lead to high aggregation strength of RBCs and 
therefore the formation of large cell aggregates (Avsievich 
et al. 2019). NDs (dimensions of 35–500 nm) produced 
using high-pressure, high-temperature (HPHT) methods and 
purified through air oxidation and strongly oxidizing acids, 
were not cytotoxic, nor did they have significant hemolytic 
and thrombogenic effects. Based on this study, SP3-carbon-
based nanoparticles could be used to deliver drugs for the 
treatment of blood-related diseases and for other biomedi-
cine applications (Li et al. 2013). More research has to be 
conducted for the application of these nanoparticles for 
blood stability purposes.

Fullerene

Fullerenes are a class of carbon allotropes composed of sp-
bonded carbon atoms which are arranged in the form of hol-
low spheres, ellipses, or tubes. The different types of fuller-
enes include alkali doped fullerenes, endohedral fullerenes, 
endohedral metallofullerenes, exohedral fullerenes, and het-
erofullerenes. The most common fullerene is  C60, which is 
symmetrical, spherical, and formed by joining carbon atoms 
together by sp2-hybridization and is popular for its mechani-
cal strength, electrochemical characteristics, thermal and 
photoconductivity. The fullerene exhibits a variety of photo, 
physical, and electrochemical properties, including ioniza-
tion potential, semiconducting band gap, binding energy, 
and enthalpy. In the biomedical field, these nanoparticles 
are used for anti-retroviral and antibacterial drugs, tumor 

therapy, free radical scavenging, MRI contrast agents, and 
drug carriers (Bakry et al. 2007; Bhatia 2016; Castro et al. 
2017; Dellinger et al. 2013; Ealia and Saravanakumar 2017; 
Gogotsi 2015).

The hydrophobic structure of bare fullerenes results in 
cytotoxicity and must be altered to improve its solubility in 
polar solvents and to acquire specific functions (Castro et al. 
2017). Functionalization of the surface of carbon nanomate-
rials is effective in their interplays with biological systems 
and proper surface coating reduces the side toxicity.  C60 
fullerenes that were functionalized with higher molecular 
weight polyethylene glycols demonstrated more biocompat-
ibility and all the evaluated nanomaterials were found to 
diminish the cellular metabolic activity while two only inter-
fered with the plasma membrane integrity, and none caused 
hemolysis and were safe for RBCs (Canapè et al. 2015).

Carbon nanotube

Carbon nanotubes (CNTs) are cylindrically shaped rolled-
up graphene sheets that depend on the layer counts classi-
fied into single-walled carbon nanotubes (SWCNTs), with 
single graphene sheets, and multi-walled carbon nanotubes 
(MWCNTs), with two or more graphene layers. These mate-
rials have significant strength, flexibility, particular struc-
ture and size, and distinct chemical, thermal and electrical 
conductivity. By functionalizing these materials, their bio-
compatibility, solubility, penetration into cell cytoplasm and 
nuclei, and efficacy as genetic material and peptide carriers 
are improved (Bhatia 2016; Ealia and Saravanakumar 2017; 
Fedel 2020; Zhang et al. 2010). In addition, TPU-g-PEG/
CNT (thermoplastic polyurethane-g-polyethylene glycol/
carbon nanotube) nanofibers exhibited antibacterial func-
tion and superior hemocompatibility, including a reduction 
in blood cell adhesion and lower hemolysis rates (Shi et al. 
2016).

Single‑walled carbon nanotubes

Increased concentration of SWNTs or incubation time 
resulted in diminished RBC aggregation. Higher hemolytic 
activity of the bundled SWNTs compared to individual 
SWNTs was observed. In addition, bundled SWNTs signifi-
cantly changed the shape and fusion of RBCs. Altogether, 
bundled SWNTs were more toxic than individual ones and 
these data may be used for evaluation of the risk of nanoma-
terial toxicity in the blood (Heo et al. 2017).

Multi‑walled carbon nanotubes

A higher N atomic percentage led  N+-bombarded MWC-
NTs led to enhanced hemocompatibility. MWCNTs con-
taining nitrogen improved cell proliferation and growth and 
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hemolysis was not observed on the surfaces (Zhao et al. 
2014).

Quantum dots

Carbon quantum dots (CQDs) are biocompatible fluo-
rescent nanomaterials based on carbon. CQDs which are 
smaller than 10 nm, have an organic coating on top of an 
inorganic semiconductor core to enhance optical proper-
ties. A cap covers quantum dots, which makes them more 
soluble in aqueous buffers. These materials are popular for 
high stability, low toxicity, rapid and low-cost production, 
and surface functionalization. These carbon nanostructures 
are used for various biological aims such as immunoassays, 
biosensors, gene, protein, and drug delivery, photosensitiz-
ers, bio-imaging, and antibacterial agents (Abd Rani et al. 
2020; Bhatia 2016; Devi et al. 2019; El-Shabasy et al. 2021; 
Molaei 2019).

Cryopreservation of RBCs by freezing and adding high 
concentrations of cryoprotectants, (e.g., glycerol and treha-
lose) can be utilized to enhance the shelf life limitation of 
conventional RBCs storage in refrigerators and decreasing 
aging storage lesions. Nonetheless, intracellular ice crystals 
formation during the freezing process and osmotic changes 
can result in RBC membrane damages (Carneiro Dias 2019). 
Conventional cryoprotectants based on solvents do not pre-
vent ice recrystallization (Deller et al. 2015). Antifreeze 
proteins have the ability to prevent ice growth and freezing 
damages but they are expensive and often unstable. In this 
order, researchers synthesized oxidized quasi-carbon nitride 
quantum dots (OQCNs) with thermal-hysteresis activity, 
ice-crystal shaping, and anti-recrystallization effects. It was 
demonstrated in the cryopreservation of sheep RBCs that the 
use of OQCNs increased the amount of cell recovery by over 
two times compared to using a commercial cryoprotectant 
(hydroxyethyl starch) without added organic solvents. This 
study suggested the utility of graphitic carbon nitride deriva-
tives for more effective cryopreservation (Bai et al. 2017).

Colloidal apatite nanoparticles

Apatite is a group of inorganic compounds found primar-
ily in vertebrate tissues. Apatite nanoparticles have been 
developed for nanomedicine applications. Colloid stabilized 
apatite nanoparticles demonstrated excellent biocompatibil-
ity, low cytotoxicity, low inflammatory potential, and high 
hemocompatibility. Moreover, NPs interact with phospho-
lipid membranes strongly, allowing for protein and drug 
delivery (t et al. 2017; Okada and Matsumoto 2015).

The delivery of cryoprotectants into RBC can be eased by 
using apatite nanoparticles which induce local alteration of 
the RBC membrane. The interaction of these nanoparticles 
with RBC is affected by the size and charge of the apatite 

particles. In this case, researchers developed a glycerol-free 
cryopreservation method, using colloidal apatite NPs as 
bioactive promoters of trehalose-mediated RBC cryopreser-
vation. In this study, 2-aminoethylphosphate was used for 
enhanced stability and hexametaphosphate anions for the 
dispersibility and purification stability of colloidal apatite 
NPs. Apatite NP significantly increased RBC cryosurvival, 
reaching 91%, which is comparable to protocols using glyc-
erol. Moreover, the concentration of NPs and the incubation 
conditions affected the bioactivity of NP strongly. Apatite 
NPs do not cross the bilayer, but rather modulate its physi-
cal properties that trehalose and a fluorescent model mol-
ecule permeated through the membrane as a result of these 
changes. This study suggested a novel alternative method 
to using toxic glycerol for cells cryopreservation (Stefanic 
et al. 2017).

Hydroxyapatite particles

Hydroxyapatite  (Ca10(PO4)6(OH)2, HAP) exhibits superior 
biocompatibility, biodegradability, nontoxicity, bioactivity, 
non-inflammatory and non-immunogenicity activity. There-
fore, they can be used for bio-imaging and the delivery of 
genes, anticancer drugs, radioisotopes, antibiotics, and pro-
teins (Han et al. 2012; Loo et al. 2010). It seems that the 
size and charge of HAP particles influence the aggregation 
of the RBCs. HAP nanoparticles despite HAP microparti-
cles induced some aggregation of the RBCs in the unstruc-
tured agglutinates. The adhesion of HAP nanoparticles to 
the surface membrane of the RBCs was in the case of their 
higher adsorption capacity compared to HAP microparti-
cles, causing their surface membranes to become sunken 
without damaging the lipid bilayer. The aggregation of the 
RBCs induced by the HAP nanoparticles was suppressed 
due to highly negatively charged HAP nanoparticles after 
heparin modification. RBC aggregation may be caused by 
the electrostatic interaction between the positively charged 
binding sites on the surface of the HAP nanoparticle and the 
negatively charged groups on the surface of the RBC (Han 
et al. 2012).

The results and main effects of non-metal NPs on RBCs 
and hemocompatibility studies are summarized in Table 1.

Platelets

Platelets play a significant role in blood coagulation and are 
given to treat hemorrhage or to prevent bleeding in throm-
bocytopenic patients (Sharma et al. 2011). Platelets can be 
stored at 20–24 °C in flat bags for up to 5 days with gentle 
agitation to prevent aggregation and hypoxia. Some pro-
cedures for platelet collection may induce partial or com-
plete activation of them. Additionally, during the process of 
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storage at room temperature, platelets continue to metabolize 
and undergo a range of physiochemical changes that have a 
detrimental effect on their structure and function and also 
decrease their shelf life (Greening et al. 2010; Hess 2010a). 
The bacterial contamination is another challenge of plate-
let storage (Mathai 2009). The best platelet storage can be 
achieved by gentle methods of platelet collection, storage in 
buffered Ringer's acetate that feeds the platelet mitochon-
dria, and storage in polyvinyl chloride bags to maximize 
oxygen diffusion and stabilize the platelet membranes (Hess 
2010a; Mehrizi 2021b; Mehrizi and Eshghi 2021; Wąsowicz 
et al. 2017; Zadeh Mehrizi and Amini Kafiabad 2021a, b).

Silica

SiNPs hindered ADP-induced platelet-rich plasma aggre-
gation but simultaneously partly activated platelets. Small 
SiNPs (10 nm) could activate the living cells, while larger 
ones (up to 40 nm) absorbed fibrinogen and hampered 
the aggregation of platelets. These findings highlights the 
importance of the concentration and size of SiNPs in their 
application in nanotechnology (Gryshchuk and Galagan 
2016).

Graphene

For the purpose of investigating the effect of f-G on plate-
lets, both f-G and p-G exhibited compatibility with platelets, 
and plasma coagulation pathways and did not disrupt the 
platelets function (Sasidharan et al. 2012). Furthermore, 
GNP-Dex formulations did not lead to activation of platelets 
(Chowdhury et al. 2013). Another study on the anticoagulant 
impact of albumin-functionalized graphene oxide (albumin-
GO) was conducted and showed that GO has a high load-
ing capacity for albumin and fibrinogen while not disrupt-
ing the secondary structure and conformational stability 
of albumin. Furthermore, albumin-functionalized GO was 
shown to have enhanced anticoagulant activity and could 
potentially be used as an anticoagulant coating material for 
devices in contact with blood under dynamic flow condi-
tions (Loh and Lim 2015). Researchers have also developed 
a double-layer-coated vascular stent with anti-proliferation 
and antithrombosis properties with GO loaded with doc-
etaxel (DTX) internal layer coating. The coating suppresses 
the adhesion and activation of platelets and also the prolif-
eration and migration of smooth muscle cells, demonstrating 
good biocompatibility and anti-proliferation ability without 
the shedding problem (Ge et al. 2019). Du et al. suggested 
using polyethylenimine (PEI) molecules as linkers, to immo-
bilize l-cysteine onto graphene nanosheets, developing a 
hemocompatible nitric oxide-generating l-cysteine-grafted 
graphene film that suppressed the activation, adhesion, and 
aggregation of platelets (Du et al. 2016).Ta
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Fullerene

Anticoagulants are used to inhibit the activation of platelets 
and coagulation (Prakash and Thakur 2011). The applica-
tion of hydrated fullerenes for thrombolytic enzymes and 
the development of novel anticoagulants was suggested. The 
data from an in vitro study demonstrated the increased cleav-
age of the blood plasma clot in the presence of hydrated 
 C60 fullerene  (C60HyFn). Biological activity of very small 
 C60HyFn doses was mediated by specific and ordered aque-
ous structures that the  C60 molecule organizes around it and 
not the biological properties of the  C60 fullerene molecule 
itself. In addition, it was also shown that the activation of 
fibrinolysis may happen because of the stabilization/protec-
tion of active conformation of protease molecules in the 
presence of specific aqueous structures ordered by  C60HyFn 
(Andrievsky et al. 2010).

Nanotubes

The hemocompatibility and cytotoxicity of halloysite nano-
tubes (HNTs) was studied in vitro for biomedical usage. The 
results showed the non-hemolysis effect of HNTs. In addi-
tion, HNTs shortened the plasma recalcification time in a 
dose-dependent manner and exhibited procoagulant activity 
with citrated plasma. Micrographs taken with SEM demon-
strated that HNTs could activate platelets in vitro. Overall, 
HNTs indicated good cell compatibility over a low concen-
tration range (Liu et al. 2015).

Single‑walled carbon nanotubes

SWCNTs activated platelets and exhibited prothrombotic 
effects in microcirculation in vivo. SWCNTs remarkably 
enhanced the expression of platelet P-selectin, the number 
of platelet-granulocyte complexes, and platelet aggregabil-
ity in vitro, and diminished the occlusion time in mesenteric 
arteries and cremasteric arterioles (Bihari et al. 2010).

Multi‑walled carbon nanotubes

MWCNTs infiltrate the plasma membrane of platelets and 
interact with the dense tubular system leading to depletion 
of their intracellular stores of  Ca2+. This process is followed 
by the clustering of the stromal interaction molecule 1 colo-
calized with Orai1, which demonstrates the activation of 
store-operated  Ca2+ entry. Researchers indicated the molecu-
lar mechanism of CNT-induced platelet activation which is 
essential to assess the biocompatibility of carbon nanoma-
terials with blood (De Paoli Lacerda et al. 2011). MWCNTs 
bombarded with  N+ that had a higher nitrogen content, dem-
onstrated better cytocompatibility and less platelet adhesion 
(Zhao et al. 2014).

The properties of the protein that forms the corona have 
also a significant impact on the outcome of the interaction of 
carboxylated-MWCNTs (CNTCOOH) with platelet. Platelet 
aggregation and the release of platelet membrane micropar-
ticles (PMPs) were activated by bare carboxylated-MWC-
NTs (CNTCOOH). The platelet aggregating activity of 
CNTCOOH was reduced by HSA corona, while fibrinogen 
attenuated the effect of CNTCOOH on platelet by agglom-
eration of CNTCOOH. In contrast, the IgG and the histone 
H1 corona enhanced the release of PMP, respectively, by 
inducing platelet fragmentation, and aggregation of platelet 
(De Paoli et al. 2014).

Carbon dot

Carbon dots (CDOTs) with diameters less than 10 nm, have 
appealing photo-physical properties, an easy synthetic pro-
cess, and facile surface modification. They possess superb 
biocompatibility and low toxicity due to their biological fea-
tures such as photoluminescence, organic carbon sources, 
and high stability in water media. These nanoparticles can be 
used for bio-imaging, drug and gene delivery, bio-sensing, 
and photothermal and photodynamic therapy applications 
(Fedel 2020; Gayen et al. 2019; Ghosal and Ghosh 2019; 
Zuo et al. 2015).

Lee et al. synthesized a new type of CDOTNP from fresh 
garlic cloves and investigated its potential role as a new anti-
platelet agent. This NP exhibited a suppressive impact on 
collagen-stimulated human platelet aggregation by inhibiting 
PKC activation and Akt, JNK1/2, and p38 MAPK phospho-
rylation but it did not cause cytotoxic effects. The in vivo 
study on mice models indicated that this CDOT could dimin-
ish mortality in mice with ADP-induced acute pulmonary 
thromboembolism. Overall, this CDOT is effective against 
platelet activation in vitro via reduction of the phospholipase 
C/PKC cascade, which results in the inactivation of MAPK. 
This CDOT can be used for therapeutic purposes for arterial 
thromboembolic disorders (Lee et al. 2020).

Table 2 summarizes the hemocompatibility studies of 
non-metal NPs on platelets.

Plasma proteins

A variety of life-saving proteins are made from human 
plasma including albumin, coagulation factors (e.g., factor 
VIII and IX, prothrombin, fibrinogen, etc.), immunoglobu-
lins, protease inhibitors, and anticoagulants. These products 
are administrated to patients who lack blood components or 
with active bleeding (Burnouf 2018). Plasma is often pre-
served frozen, at − 18 ℃ for one year or at − 65 ℃ for seven 
years. After thawing, it can be kept at 1–6 ℃ for 5 days (Hess 
2010a). However, storage of plasma for more than 7 days at 
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– 20 ℃, will lead to the alteration of metabolites concentra-
tion and protein aggregation through damaging reactions and 
enzymatic activities (Pinto et al. 2014).

Serum albumin

Albumin, the most frequent protein in plasma, plays a criti-
cal role in the maintenance of blood osmotic pressure and 
pH, and the translocation and disposition of various pro-
teins, metabolites, and fatty acids. The function of albumin 
is determined by the affinity of different ligands to it (He and 
Carter 1992). Despite the wide application of nanomateri-
als, their interaction study with specific proteins or biologi-
cal systems is crucial for their effective and safe utilization 
(Žūkienė and Snitka 2015). It was indicated that there is a 
strong interaction of carbon nanoparticles with BSA and 
HSA. As a result of this interaction, partial unfolding and 
significant changes in protein conformation was observed 
which may alter the stability and transport properties of BSA 
and HSA in various biological processes and indicates the 
possible risk of carbon nanoparticles for bio-application 
(Mandal et al. 2013).

Over the past few years, mesoporous silica nanoparticles 
with pore sizes between 2 and 50 nm, have gained a lot of 
attention. Their outstanding features of easy independent 
functionalization of the surface, cost-effective synthesize, 
large surface area, stable aqueous dispersion, and favorable 
biocompatibility and biodegradability make them a poten-
tial nanoparticle for biomedical purposes. Particle size, 
pore size, and morphology of MSNs can be modulated as 
required (Jafari et al. 2019; Narayan et al. 2018). The pore 
size and morphology of the MSNs influence the conforma-
tion of absorbed HSA. Adsorption capacity will be affected 
by the conformational changes of the adsorbed proteins. 
Nevertheless, the initial adsorption rate is determined only 
by the properties of MSNs and proteins (Ma et al. 2014).

Graphene

Researchers found a significant binding interaction between 
BSA and GO through weak bonds, which resulted in altera-
tions in the conformation of BSA (Kuchlyan et al. 2015; 
Nan et al. 2019). Multi-non-covalent bonds between BSA 
and GO surface leads to the change of the conformation 
and some activities of BSA which results in the diminished 
thermal stability of BSA on the GO surface. Additionally, 
the Esterase-like activity and the Non-enzymatic glycosyla-
tion of BSA increase on the GO surface while the ability of 
BSA in drug binding decreases on the GO surface (Zhang 
et al. 2018). Figure 2 summarizes the results of the binding 
of graphene oxide to BSA.

In another study, the results of calorimetry indicated 
that there is a strong interaction between GO and free HSA 

that preserves free HSA from thermal shocks at low ionic 
strength. The reduced ζ-potential of HSA/GO complex, in 
comparison with free GO, supports the results. However, the 
ionic strength plays a key role in the binding of HSA and 
GO that this interaction is hindered in blood plasma. Dock-
ing analysis demonstrated that there is a significantly higher 
affinity between HSA and GO in its partly unfolded structure 
at low-ionic-strength compared to native protein conforma-
tion at physiological conditions. The results indicate that GO 
does not cause a toxic effect under physiological conditions 
in blood plasma (Taneva et al. 2021).

Moreover, the hemocompatibility of p-GO and f-GO 
(GO-COOH and GO-PEI) with HSA was tested in vitro. The 
findings demonstrated the considerable toxicity of p-GO and 
GO-PEI which led to malfunctioning of HSA while the GO-
COOH had minor effects on HSA's conformation and its 
ability of bilirubin binding was unaffected (Ding et al. 2014). 
The strong hydrogen bonds between GQDs and HSA was 
observed due to compact structure of HSA but the conforma-
tion of albumin was not altered significantly (Ba et al. 2020). 
In contrast, another study proved the binding of GQDs to 
site I of HSA and their complex formation and GQDs led to 
conformational changes in HSA that indicated the possibility 
of toxicity of GQDs (Huang et al. 2015).

Researchers suggested the usage of nanocomposites 
instead of individual nanoparticles for enhanced efficacy 
of them in biomedical applications. The effect of GO-
based nanocomposites on BSA have been studied (Baral 
et al. 2020; Naskar et al. 2017). Naskar et al. demonstrated 
the interaction of synthesized ZnO graphene nanocom-
posite with BSA and suggested the application of these 
nanocomposites for biomedicine (Naskar et al. 2017). The 
secondary structure of BSA was altered insignificantly by 
nanocomposites of graphene oxide with reduced manga-
nese dioxide content  (MnO2 on RGO). The percentage of 
GO in NCs influenced the molecular interplays between 
NC and BSA. BSA esterase-like activity was slightly 
affected after adsorption on NCs. Aggregates of various 
sizes were formed from the protein-NC complexes consist-
ing of nanorod and sheet-like shapes (Baral et al. 2020).

Fullerene

The biological activity of pristine  C60 is associated with its 
concentration, conformation, water solubility, and stabil-
ity. Due to the poor aqueous solubility of  C60, the biologi-
cal functions are significantly decreased (Liu et al. 2004). 
Wu et al. proposed a direct way to solubilize pristine  C60 
by using BSA directly as a solubilizer. However, solubi-
lized  C60 remained cytotoxic (Wu et al. 2011).

C60 nanoparticles are able to quench the fluorescence 
of serum albumins in non-specific adsorption. The amino 
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residue microenvironment was minimally altered (only 
for BSA), whereas slight damage was caused to the pro-
tein secondary structure of HSA/BSA (Liu et al. 2012). 
Another research demonstrated that the binding of  nC60 
and HSA led to conformational changes of the protein 
resulting in a compacter structure. The interaction of HSA 
with  nC60 aggregates affected the function of drug-binding 
sites of HSA (Song et al. 2011). A docking analysis and 
binding site alignment study indicated that while the HIV 
protease and serum albumin-binding sites were similar, the 
fullerene-specific antibody-binding site was different from 
those observed in others (Benyamini et al. 2006).

The interaction of  C60 and a group of proteins that pos-
sibly bind to it such as antibody Fab fragment and albumin 
was investigated. The results provided useful information 
for a wide variety of bioapplications including anti-inflam-
matory drugs, antitumor, and antiprotozoal therapies, 
novel antibiotics, and etc. (Calvaresi and Zerbetto 2010).

Single‑walled carbon nanotubes

BSA and SWCNTs formed hydrophobic forces and covalent 
bonds in solid nanocomposites, dependent on the nanotube 
diameter utilized. This interaction led to the alteration of the 
conformation of albumin. Furthermore, there was a decrease 
in intensity in the high-frequency region of the absorption 
bands. Additionally, the covalent attachments to the gra-
phene surface led to distortion in SWCNTs (Gerasimenko 
et al. 2020).

Quantum dot

Some research has been conducted in the investigation of 
the interaction of QDs with BSA and HSA (Dzagli et al. 
2010; Lai et al. 2012; Xiao et al. 2018; Yang et al. 2013). 
Glutathione-capped CdTe quantum dots (GSH-CdTe QDs) 

was indicated to form a ground-state complex with trivial 
changes in the conformation of HSA. This study provided 
insight into QD bioactivities in vivo and how they can be 
used to design biocompatible and stable QDs (Yang et al. 
2013).  Ag2Te QDs and CdTe QDs were shown to statically 
quench the fluorescence of HSA by electrostatic interactions, 
but  Ag2Te QDs had weaker quenching and binding ability 
than CdTe QDs. Micro-environmental and structural vari-
ations of HSA were induced by their binding interactions 
with both QDs but  Ag2Te QDs led to a less conformational 
change in HSA, demonstrating the lower toxicity risk (Xiao 
et al. 2018). As a result of the interaction of CdSe/ZnS 
core–shell QDs with BSA, QDs on BSA bioconjugates had 
been formed. The temperature dependence of the QDs on 
BSA emission was more complex than the monotonically 
declining fluorescence intensity of non-conjugated QDs and 
was highly dependent on the protein's conformation (Dzagli 
et al. 2010).

In the evaluation of the charge effect, a study indicated 
that negative coated CdTe QDs and HSA formed a protein 
corona and showed an adsorption behavior while the adsorp-
tion of HSA onto the surface of positive coated CdTe QDs 
led to the aggregation of QDs which can act as the nuclei 
adsorbing larger amounts of proteins (Lai et al. 2012). Xiao 
et al. studied the interplays between different charge-capped 
CdSe/ZnS QDs and BSA. The formation of QDs–BSA com-
plex was observed and the biological activity of BSA was 
altered as a result of the structural changes of BSA by QDs 
(Xiao et al. 2012).

Carbon dot

In the investigation of the photochemical interaction of CDs, 
Maity et al. studied the interaction of the synthesized amine-
coated Ru (III) doped carbon nanodots (Ru:CNDEDAs) 
with BSA and HSA. The results of the circular dichroism 

Fig. 2  The results of graphene oxide binding to bovine serum albumin
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study indicated the perturbation of albumin structure by 
Ru:CNDEDAs. In contrast, the absorption study implied the 
formation of a ground-state complex between Ru:CNDEDAs 
and BSA/HSA. The transfer of energy from BSA/HSA to 
Ru:CNDEDAs was also demonstrated and the efficiency of 
this energy transfer was highly dependent on the stability 
of the protein nanoparticle complex (Maity et al. 2019). In 
another study, dynamic quenching of protein fluorescence 
was observed and C-dots had no significant effect on HSA 
or γ-globulin structure. C-dots affected the transport func-
tion of proteins by varying the affinity of drugs with HSA 
and γ-globulins (Xu et al. 2016). It was also reported that 
the quenching mechanism of nitrogen and three kinds of 
sulfur co-doped carbon dots (N,S-CDs) was different but 
All N,S-CDs led to conformational changes in HSA (Liang 
et al. 2020). The role of surface charge on the interaction of 
negative PEG C-dots and positive PEI C-dots with HSA was 
also studied by researchers. The fluorescence of HSA was 
quenched by both C-dots. The binding affinity of PEG and 
PEI C-dots to HSA was approximately similar. PEG C-dots 
interacted with the site I of HSA through electrostatic forces, 
whereas PEI C-dots interacted with the site II through hydro-
phobic and van der Waals forces. Moreover, the structure of 
HSA was insignificantly affected by PEG C-dots. In contrast, 
only the high content of PEI C-dots caused notable distor-
tion of HSA conformation (Li et al. 2018). Figure 3 indicates 
the interaction of charged carbon nanodots with HSA.

Table 3 summarizes the studies on interactions of non-
metal NPs and serum albumin.

Factor VIII

Coagulation factor VIII (FVIII) is a co-factor for the pro-
teolytic activation of factor X by factor IXa (Bhopale and 
Nanda 2003). This product is used for hemophilia patients. 
The final quality of this product is a crucial factor and is 
influenced by the protein purification procedure (Gouw et al. 
2013). The in vivo and in vitro stability of FVIII is low and 
needs frequent drug administration and also lyophilization 
for long-term storage which leads to challenging self-admin-
istration of it for hemophilia patients (Wang et al. 2003). 
NPs can also be used for the purpose of improved stability of 
coagulation factors, anticoagulant or procoagulant effects, or 
as drug carriers. Therefore, the interactions of NPs with the 
blood coagulation system have to be investigated (Ilinskaya 
and Dobrovolskaia, 2013; Mehrizi and Hosseini, 2021).

Silica

SiNPs have procoagulant effects and reduce the time of 
coagulation in activated partial thromboplastin time (APTT) 
and prothrombin time (PT) tests. SiNPs also increase the fac-
tor X activation by RVV in plasma by absorption of intrinsic 

pathway factors on their surface. SiNPs are introduced as 
hemostatic agents for therapeutic purposes (Gryshchuk and 
Galagan 2016).

The effect of the surface morphology of silica nanoparti-
cles on the loading and release of three small, medium, and 
large size model proteins, respectively, including Myoglo-
bin, BSA, and FVIII was investigated using porous silica 
nanoparticles with different pore sizes. The results indicated 
that the release of the small pore silica particles follows a 
controlled diffusion mechanism, whereas the kinetic analy-
sis can distinguish two components associated with the sur-
face adsorbed protein and the portion of protein allocated to 
the pores. Particles characterized by the largest pore sizes 
(approximately 25 nm) exhibit a non-Fickien release pro-
file and mono-exponential dependence, indicating a mono-
modal distribution of proteins on the silica matrix. In addi-
tion, the conformation or activity of the released proteins 
was evaluated by in vitro methods and the data showed the 
superb quality of the recovered proteins. Mesoporous struc-
tures of the silica nanoparticles relative to the size of protein 
confirmed the results (Zampini et al. 2019).

Fullerene

Liu et al. suggested the development of a fullerene-based 
anticoagulant by impeding the activity of coagulation fac-
tor X (FXa). Researchers analyzed the interplays between 
FXa and fullerene derivatives including fullerenol molecules 
 (C60(OH)24)/carboxy fullerene molecules  (C60(C(COOH)2)2) 
with different hydrophilic–hydrophobic properties using 
molecular docking. The results demonstrated that  C60 
(C(COOH)2)2 binds more stably to the active site of FXa 
than  C60 (OH)24 with lower binding energy during competi-
tive absorptions. The uptake of  C60(OH)24 is due to hydro-
philic interactions, while the uptake of  C60 (C(COOH)2) is 
due to hydrophobic interactions (Liu et al. 2019).

Carbon nanotube

Researchers designed a platform for biocompatible nitro-
gen-doped carbon nanotube for extraction of plasma from 
human blood by nanomaterial synthesis with microfabrica-
tion. They developed a microfluidic device with a double 
helix channel with cross-flow filtration. This canal was made 
of aligned CNTs with an average distance of 80 nm and a 
porosity value of 93%. While blood extraction through this 
canal, the larger molecules such as blood cells were trapped 
and smaller ones like proteins and clotting factors passed 
through it. It also recovered albumin with an efficiency of 
80% (Yeh et al. 2018).
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Quantum dots

The anticoagulant effect of 3.2 nm QDs compared to 3.6 nm 
counterparts in plasma was demonstrated. QDs by affect-
ing the intrinsic pathway increased the coagulation time in 
APTT and PT tests. The activity of intrinsic pathway factors 
including Factors VIII, IX, XI, and XII was normal. The 
Factor VIII activity was reduced to 51% but led to normal 
hemostasis. The anticoagulant role of QDs was significantly 
affected by the concentration of calcium ions, but not by 
cadmium ions leached from the QDs. This role was not 
dependent on platelets and phospholipids. The results of 
this study indicated the potential role of the physicochemi-
cal properties of the QDs in the modulating of hemostasis 
and the coagulation cascade, but the underlying mechanism 
is unclear (Maguire et al. 2018).

Table 4 summarizes the biocompatibility studies of non-
metal NPs with plasma factor VIII.

Immunoglobulins

Immunoglobulin G (IgG) is present in blood plasma as the 
second abundant protein after albumin (Strengers 2017). 
Normal polyvalent IgG contains multiple antibodies and is 
used in inflammatory and autoimmune diseases and immune 
deficiencies. Hyperimmune IgG is derived from typically 
vaccinated donors and exhibits higher titer in neutralizing 
antibodies against particular antigens such as the D antigen, 
cytomegalovirus, or hepatitis B or A (Burnouf 2018). The 
high quality and purity of IgG are crucial for the therapeutic 
application of this product. Nonetheless, current methods 

of IgG purification contain multiple steps and are not cost-
effective. Thus alternative low-cost and high-efficient 
approaches are in demand (Azevedo et al. 2007; Ferreira 
et al. 2016).

Silica

Recently, researchers modified silica nanoparticles with 
antibodies for different purposes (Moore et al. 2015; Ngam-
cherdtrakul et al. 2018). Ngamcherdtrakul et al. developed 
a small-interfering RNA nanoparticle carrier consisting 
of 50-nm mesoporous silica nanoparticles modified with 
a copolymer of polyethylenimine and polyethyleneglycol, 
and antibody. It was demonstrated that the lyophilized mate-
rial can be stored stably for 2 months at 4 ℃ and at least 
6 months at − 20 ℃. The findings suggested this process 
could be utilized for other similar nanoparticle systems 
(Ngamcherdtrakul et al. 2018). Moore et al. also synthetized 
antibody-coated silica NPs (Ab-NPs) using multivalent poly-
amidoamine dendrimers and dextran as crosslinkers which 
maintained colloidal stability during NP-linker binding and 
the subsequent conjugation reaction between linker-coated 
NPs and proteins to fabricate monodisperse Ab-NPs. It was 
discovered that freeze-drying Ab-NPs from a 1% BSA solu-
tion enabled the colloid in solid form to be reconstituted into 
a stable state by adding solvent and shaking the sample vial 
using hand (Moore et al. 2015).

Graphene

The interplays between GQDs and γ-globulins are through 
electrostatic forces. The presence of binding sites on the 

Fig. 3  The interaction of charged carbon nanodots with human serum albumin. PEG C-dots interact with the site I of HSA via electrostatic 
forces whereas PEI C-dots interacted with the site II via hydrophobic and van der Waals forces
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surface of γ-globulins results in a high binding constant of 
these proteins with GQDs. GQDs had a negligible effect on 
the secondary structures of γ-globulins, suggesting possible 
biological usage of GQDs at the molecular level (Ba et al. 
2020).

There are few studies on the interaction of IgG with non-
metal NPs and more investigations are required for enhanced 
purification of IgG.

Conclusion

Blood products are used in various life-threatening clinical 
indications such as hemorrhage, anemia, and other blood 
deficiencies and disorders. This paper discussed the chal-
lenges of the shelf-time, stability, and purification of each 
blood product and provided comprehensive data on the 
interaction and hemocompatibility of different non-metal 
nanoparticles with these components and their side effects, 
to design alternative methods of blood products improve-
ment in the future using nanoparticles. The compatibility 
of p-G with RBCs was observed by a study but research-
ers suggested functionalization of it for better compatibil-
ity. GQDs also indicated insignificant adverse effects on 
RBCs in a concentration-dependent manner. Nanodiamonds 
also showed the hemocompatibility with RBCs in a concen-
tration and size-dependent way that 100-nm cNDs localized 
around RBCs, whereas 5-nm cNDs penetrated them. But 
they did not cause hemolysis and did not alter cell viabil-
ity or oxygenation/deoxygenation. However, some studies 
demonstrated the aggregation of RBCs by nanodiamonds.

SiNPs hampered ADP-induced platelet-rich plasma 
aggregation but activated some platelets in a concentration 
and size-dependent way. The p–G also exhibited compat-
ibility with platelets, and plasma coagulation pathways and 
did not disrupt the platelets' function. A novel synthesized 
CDOT NP from fresh garlic cloves exhibited a suppressive 
impact on collagen-stimulated human platelet aggregation 
by inhibiting PKC activation and Akt, JNK1/2, and p38 
MAPK phosphorylation. It also inactivated the platelets via 
reduction of the phospholipase C/PKC cascade and inactiva-
tion of MAPK in vitro.

There is a strong interaction between GO and free HSA 
that preserves free HSA from thermal shocks at low ionic 
strength. Thus, under physiological conditions, GO does not 
cause toxicity in blood plasma. But other researchers pro-
posed the usage of functionalized GO and GO-based nano-
composites instead of individual nanoparticles for enhanced 
compatibility with albumin.

In the investigation of loading and release of FVIII, large 
pore size MSNs resulted in superb quality of the recovered 
protein due to mesoporous structures of the silica nanopar-
ticles relative to the size of the protein. The anticoagulant Ta
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effect of 3.2 nm QDs through affecting the intrinsic pathway 
was also demonstrated. This effect is dependent on calcium 
ions concentration.

There are electrostatic forces between GQDs and 
γ-globulins. The presence of binding sites on the surface 
of γ-globulins results in a high binding constant of these 
proteins with GQDs. GQDs had a negligible effect on the 
secondary structures of γ-globulins.

In conclusion, this review study suggests GQDs and 
nanodiamonds as the most promising nanoparticles for 
improving the stability of RBCs. For platelets, SiNPs exhib-
ited a suppressive impact on platelet aggregation. Pristine 
graphene also shows compatibility with platelets and is a 
potential candidate for increasing the stability of platelets. 
For better stability of plasma products, GO was indicated 
to preserve  free HSA from thermal shocks at low ionic 
strength. For increased stability of FVIII, MSNs with large 
pores exhibited the superb quality of recovered proteins. 
Additionally, 3.2 nm QDs exhibited anticoagulant effects. 
As the preferred nanoparticles for immunoglobulin stability, 
GQDs showed compatibility with γ-globulins.

Altogether, despite some promising reports, most carbon-
based nanoparticles does not show good hemocompatibil-
ity. However, it seems that nanotechnology may have great 
potential to improve the blood banking system by control-
ling physicochemical properties of non-metal nanomateri-
als and introducing novel alternatives to conventional meth-
ods of blood storage. Nevertheless, current information on 
using nanoparticles for improved blood storage suffers from 
serious studies which need to be conducted in this field. 
This review provided a useful vision for the recognition of 
promising hemocompatible non-metal nanomaterials for 
enhanced blood banking through novel nanoparticle-based 
approaches.
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Table 4  Biocompatibility studies of nanoparticles with plasma factor VIII

Row Nanoparticle type Surface modification Nanoparticle size Effects Study type References

1 Silica – 10–40 Procoagulant effects, 
increased the factor X 
activation

In vitro Gryshchuk and Galagan 
(2016)

2 Porous silica – 74 ± 11, 83 ± 9 and 
94 ± 9

Controlled diffusion 
mechanism of the 
release of the small 
pore silica particles, 
a non-Fickien release 
profile and mono-
exponential depend-
ence by the nanaopar-
ticles with largest pore 
sizes (approximately 
25 nm),superb qual-
ity of the recovered 
proteins

in vitro Zampini et al. (2019)

3 Fullerenol and 
carboxy fuller-
ene

Carboxyl and hydroxyl 
groups

– Anticoagulant by imped-
ing the activity of 
FXa, more stably bind-
ing of carboxy fuller-
ene to the active site of 
FXa than fullerenol

In silico Liu et al. (2019)

4 Carbon nanotube Nitrogen – Albumin recovery with 
an efficiency of 80%, 
biocompability of 
CNTs

In vitro Yeh et al. (2018)

5 Quantum dots – 3.2, 3.6 The anticoagulant 
effect of 3.2 nm QDs 
calcium ions concen-
tration dependent, 
increased coagulation 
time, reduced Factor 
VIII activity

In vitro Maguire et al. (2018)
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