
INVITED REVIEW

The role of calcium homeostasis remodeling in inherited
cardiac arrhythmia syndromes

Shanna Hamilton1
& Roland Veress1 & Andriy Belevych1

& Dmitry Terentyev1

Received: 7 October 2020 /Revised: 8 December 2020 /Accepted: 10 December 2020
# The Author(s) 2021

Abstract
Sudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world.
Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for
arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong
basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+

homeostasis which substantially increases arrhythmic risk. This brief reviewwill focus on functional changes in elements of Ca2+

handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymor-
phic ventricular tachycardia, and long QT syndrome.
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Introduction

Cardiac contractility relies on the coordinated actions of intra-
cellular Ca2+ cycling machinery in cardiomyocytes, including
the sarcoplasmic reticulum (SR) Ca2+ release channel
ryanodine receptor (RyR2), SR Ca2+ ATPase (SERCa), the
electrogenic plasmalemmal Na+/Ca2+ exchanger (NCX1),
and the L-Type Ca2+ channel (LTCC) [6, 28]. The tight con-
trol of coupling between excitation and Ca2+-dependent con-
traction of the heart is essential for meeting variable metabolic
demands of the body. Inherited mutations in ion channels,
auxiliary or structural proteins that alter cardiac cell electro-
physiology or cardiac conduction, manifesting as arrhythmia
syndromes, usually do not dramatically change basal cardiac
contractile function [28]. This strongly suggests that adaptive
remodeling of intracellular Ca2+ transport machinery occurs to

ensure long-term survival. However, under certain conditions
such as stress, functional changes in Ca2+ handling proteins
become problematic, exacerbating arrhythmia burden.

Bidirectional control of SR Ca2+ release
and sarcolemmal ion fluxes

During early stages of the action potential (AP), a small
amount of Ca2+ enters the myocyte via LTCCs and NCX1
in reverse mode. This small amount of Ca2+ is sufficient to
activate RyR2s, resulting in a massive Ca2+ release from the
main intracellular storage organelle, the SR. Released Ca2+

instantaneously feeds back on sarcolemmal ionic conduc-
tance, playing important roles in shaping AP [6]. The large
increase in subsarcolemmal [Ca2+] during the Ca2+ transient,
which can reach 20–40 μM at its peak [71], effectively inac-
tivates LTCCs, reducing the depolarizing force of Ca2+ cur-
rent (ICa). At the same time, activation of electrogenic NCX1
in forward mode, which injects 3 Na+ for each 1 Ca2+ re-
moved from the cell, contributes to depolarization and pro-
longs AP duration (APD). In addition, [Ca2+]i can shape AP
via enhancement of Ca2+-dependent K+ and Cl− channels pro-
moting repolarization and shortening APD [39, 40].
Therefore, depending on the specific composition of ionic
fluxes, SR Ca2+ release can either prolong or shorten APD.
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This is especially well illustrated during APD alternans; beat
to beat alterations in APD [27]. Concordant alternans exhibit
long APD when SR Ca2+ release is large and short when Ca2+

release in small. During discordant alternans, this relationship
is reversed. Increase in depolarizing ICa and INCX and decrease
in repolarizing currents along with untimely RyR2-mediated
Ca2+ release cause arrhythmogenic disturbances in membrane
potential called delayed or early afterdepolarizations (DADs
and EADs, respectively) that underlie triggered activity at the
whole heart level [64].

Pharmacological interventions to rapidly change activity of
sarcolemmal ion channels and transporters are known to elicit
profound effects on SR Ca2+ release [6]. Pharmacological
inhibition of repolarizing K+ channels to prolong APD per-
mits larger [Ca2+] influx via LTCCs, resulting in much larger
Ca2+ release. Enhancement of Na+ conductance increases de-
polarization and induces rapid accumulation of Na+ in the cell,
and consequently drives Ca2+ “overload” via inhibition of
forward mode NCX1. This can result in increased amplitude
of Ca2+ release during systole and generation of spontaneous
Ca2+waves during diastole. However, genetic mutations mod-
ifying the same ion fluxes often produce minimal changes in
net intracellular Ca2+ cycling under basal conditions both in
human patients and animal models. Furthermore, even muta-
tions in components of SR Ca2+ release machinery are rela-
tively well tolerated and manifestation in the form of deadly
arrhythmias is a rare, primarily occurring under stress [15, 41,
69]. Therefore, constant change in electrical or mechanical
properties, either acquired or inherited, or even change in ac-
tivity of a single member of Ca2+ handling machinery must
cause secondary adaptive changes that allow preservation of a
primary heart function, i.e., contractility for as long as
possible.

Balance of cellular Ca2+ fluxes

At steady state, the amount of Ca2+ entering the cell via
LTCCs during each beat must be equal to Ca2+ extruded by
NCX1 [28]. Similarly, the amount of Ca2+ released from the
SR by RyR2s must be matched by SERCa-mediated seques-
tration. Given the key function of rhythmic Ca2+ cycling in
cardiomyocytes, there are several self-regulation mechanisms
to maintain steady state. The most powerful mechanism is
based on the ability of RyR2 to sense Ca2+ not only on the
cytosolic side but also in the SR lumen as well. A decrease in
luminal [Ca2+] during the Ca2+ transient directly or indirectly
forces the cessation of RyR2 cluster activity, eliciting the ter-
mination of SR Ca2+ release [30, 73, 75]. Increased RyR2s
activity leads to diminished SR Ca2+ content given the loss of
Ca2+ during diastole, named SR Ca2+ leak [28]. However, this
has a limited impact on the amplitude of systolic Ca2+ release
because more active RyR2s remain open at substantially

lower intra-SR [Ca2+]. As a result, RyR2-mediated SR Ca2+

leak must be sufficiently large to reduce Ca2+ transient ampli-
tude. Notably, enhancement of RyR2 activity is the most com-
mon finding throughout the whole spectrum of acquired car-
diac diseases including heart failure (HF), myocardial infarct
(MI), diabetic cardiomyopathy, and age-related cardiac dys-
function [31, 32, 60, 84].

Another important self-limiting mechanism is Ca2+-depen-
dent inactivation of LTCCs [6]. Increased ICa significantly
increases myocyte loading, with Ca2+ consequently increasing
systolic SR Ca2+ release and thereby accelerating LTCC inac-
tivation. Pharmacologically-mediated reduction in NCX1 ac-
tivity leads to similar effects on SR Ca2+ release and LTCC
inactivation [36], which might explain why NCX1 inhibitors
do not produce massive Ca2+ overload when used to attenuate
EADs and DADs that underlie triggered activity [64].
Importantly, when the metabolic demand of the body in-
creases, such as during stress, self-regulatory mechanisms
are overridden to increase cardiac contractility [6]. During
stress, the catecholamine-induced increase in LTCC-
mediated Ca2+ influx and SERCa-mediated SR Ca2+ seques-
tration outpaces NCX1-mediated Ca2+ removal and RyR2-
mediated diastolic Ca2+ leak, reaching a new steady state with
increased systolic SR Ca2+ transient amplitude [28]. Failure to
match the fluxes and deficiencies of self-regulatory mecha-
nisms leads to impaired cardiac contractility and an enhanced
propensity to Ca2+-dependent arrhythmia.

Regulatory mechanisms of modulation
of intracellular Ca2+ homeostasis

As HF is accompanied by profound changes in ionic currents
and increased arrhythmogenesis, it is likely there is a substan-
tial overlap of mechanisms underlying the remodeling of Ca2+

homeostasis in hereditary arrhythmia syndromes. Years of
research studying remodeling of Ca2+ handling in HF and
other models of acquired cardiac disease have revealed a num-
ber of fundamental mechanisms affecting function of Ca2+-
handling complexes. Increased NCX1 activity in HF has been
attributed to increased expression levels and an indirect effect
of cytosolic Na+/Ca2+ overload given increased late Na+ cur-
rent (INaL) [22, 23, 65]. The expression levels of the α1c pore
forming subunit of LTCC are decreased in human HF [16,
80]. However, baseline ICa amplitude is not affected because
PKA-dependent phosphorylation of the channel, which en-
hances channel activity, is increased. This results in reduced
responsiveness of LTCC to β-adrenergic stimulation in HF.
Depressed SERCa activity in HF has been ascribed to de-
creased expression levels and reduced phosphorylation of
auxiliary negative SERCa regulator, phospholamban (PLB)
[14, 35, 79]. Increased localized activity of Serine/Threonine
phosphatase PP1 underlies hypo-phosphorylation of PLB in
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HF [14]. This interferes with the relief of PLB’s inhibitory
action on SERCa under basal conditions and during catechol-
aminergic stimulation. Likewise, changes in intracellular sig-
naling cascades are involved in modulation of RyR2 activity
in HF [60, 84]. Enhanced PKA- and CaMKII-dependent
phosphorylation increase RyR2 activity [1, 52]. Increased
RyR2 phosphorylation has been attributed to the increased
activity of kinases and the dissociation of opposing phospha-
tases PP1 and PP2a from the complex [1, 5, 47, 54]. In addi-
tion, changes in redox state, metabolism, mitochondrial func-
tion, and subcellular structural remodeling are thought to af-
fect Ca2+ homeostasis as well [60, 84]. Recent advances pro-
vide growing evidence that many of these mechanisms are
similarly involved in Ca2+ handling remodeling in hereditary
ventricular arrhythmia syndromes.

Inherited cardiac arrhythmia syndromes
and Ca2+ homeostasis remodeling

Catecholaminergic polymorphic ventricular
tachycardia

Catecholaminergic polymorphic ventricular tachycardia
(CPVT) is a highly malignant arrhythmogenic disorder, man-
ifesting as polymorphic or bidirectional VT after emotional
stress or exercise in patients with structurally normal hearts
[15, 82]. Mutations linked to CPVT are typically associated
with gain of function of RyR2 SR Ca2+ release complex that
promotes arrhythmogenic spontaneous SR Ca2+ release
(Fig. 1). CPVT type 1 is primarily caused by gain of function
mutations in RyR2. CPVT types 2–6 have been attributed to
loss-of function mutations in auxiliary proteins regulating
RyR2 activity. CPVT types 2 and 5 are caused by mutations
in SR luminal proteins calsequestrin (CASQ2) and triadin
(TRDN) respectively [15], and characterized by loss of control
of RyR2 complex activity by luminal Ca2+. Mutations in cal-
modulin (Calm) 1 and 3 (underlying CPVT types 4 and 6,
respectively) and more recently Calm2, which tether to
RyR2 at the cytosolic side, interfere with the complex respon-
siveness to activation by cytosolic Ca2+ [82]. CPVT type 3 has
been linked to mutations in trans-2,3-enoyl-CoA reductase-
like (TECRL) [24, 59], an enzyme residing primarily in the
SR, but the mechanism of action is yet to be defined.

Ca2+ homeostasis and post-translational remodeling

Data accumulated over almost 20 years suggest that CPVT
mutations causative of RyR2-mediated SR Ca2+ leak have
minimal impact on Ca2+ transient amplitude under basal con-
ditions. Major changes become obvious under β-adrenergic
stimulation, including diminished Ca2+ transient amplitude
and, importantly, the incidence of spontaneous diastolic

Ca2+ waves that drive EADs and DADs [15, 41]. More direct
treatment strategies targeting the RyR2 macromolecular com-
plex that have been successfully tested using animal models
include (1) pharmacological inhibition of RyR2 (dantrolene
[44], flecainide [81], JTV-519 [48, 83]); (2) overexpression of
WT form of accessory protein (i.e., CASQ) to reduce impact
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Fig. 1 Proteins of cardiac excitation-contraction coupling associated with
long QT syndrome or catecholaminergic polymorphic ventricular tachy-
cardia, caused by pathogenic mutation. Proteins with mutations associat-
ed with long QT syndrome are colored red; proteins with mutations as-
sociated with CPVT are colored blue; proteins with mutations that can
cause long QT syndrome or CPVT are colored purple. Kv7.1; KCNQ1
gene, α-subunit of IKs channel, mutations underlie LQT1. Kv11.1;
KCNH2 gene, α-subunit of IKr channel, mutation underlies LQT2.
Nav1.5; SCN5a gene, α-subunit of INa channel, mutations underlie
LQT3. Ankyrin B;ANK2 gene, functions as an adaptor protein, mutations
underlie LQT4. minK; KCNE1 gene, β-subunit of IKs channel, mutations
underlie LQT5. MiRP1; KCNE2 gene, β-subunit of IKr channel, muta-
tions underlie LQT6. Kir2.1; KCNJ2 gene, α-subunit of IK1 channel,
mutations underlie LQT7. LTCC; CACNA1C gene, mutations in α-
subunit of ICa,L channel underlie LQT8 (Timothy syndrome). Cav3;
CAV3 gene, caveolin-3 protein is a component of caveolae that co-
localizes with Nav1.5, mutations underlie LQT9. β4; SCN4B gene, β-
subunit of INa channel, mutation underlies LQT10. AKAP9; AKAP9
gene, protein mediates Kv7.1 phosphorylation, mutations underlie
LQT11. Syntrophin1α; SNTA1 gene, protein regulates INa function, mu-
tations underlie LQT12. Kir3.4; KCNJ5 gene, subunit of KACh channel,
mutations underlie LQT13. Calm1; CALM1 gene, calmodulin serves as a
Ca2+-binding messenger protein, mutations underlie LQT14 and CPVT4.
Calm2;CALM2 gene, mutations underlie LQT15 and phenotype overlaps
with CPVT. Calm3; CALM3 gene, mutations underlie LQT16 and
CPVT6. TRDN; TRDN gene, triadin is an accessory protein of RyR2,
mutations underlie LQT17, and phenotype overlaps with CPVT5.
TECRL; TECRL gene, trans-2,3-enoyl-CoA reductase like protein be-
longs to the steroid 5-alpha reductase family, mutations underlie
CPVT3 and LQT18. RyR2; RYR2 gene, ryanodine receptor is the major
sarcoplasmic reticulum Ca2+ release channel, mutations underlie CPVT1.
CASQ; CASQ2 gene, calsequestrin2 is an accessory protein of RyR2,
mutations underlie CPVT2. JUN; ASPH gene, junctin is an accessory
protein of RyR2, no CPVT or LQT-associated mutations reported.
SERCa; ATP2A2 gene, protein functions as the sarcoplasmic reticulum
Ca2+-ATPase, no CPVT or LQT-associated mutations reported. PLB;
PLN gene, phospholamban functions as an inhibitory protein of
SERCa, no CPVT or LQT-associated mutations reported
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of a recessive CPVT mutation [52]; (3) gene editing-mediated
disruption or siRNA-mediated suppression of a dominant
CPVT mutation disease-causing allele [8, 62]; and (4) expres-
sion of exogenous plant form of regulatory protein CALM
with enhanced ability to stabilize RyR2 [50].

Importantly, several indirect approaches to reduce
arrhythmogenicity and improve Ca2+ homeostasis in CPVT
models were also proven to be successful. For example, the
Radwanski group reported that inhibition of late Na+ current is
sufficient to alleviate catecholamine-induced arrhythmia in
CASQ2-R33Q knock in (KI) CPVT mice [67]. Liu et al.
[49] demonstrated that CaMKII inhibition with pharmacolog-
ical inhibitor KN93 or inhibitory peptide AIP reduces sponta-
neous SR Ca2+ release and thereby triggered activity in the
form of DADs in cardiomyocytes from RyR2-R4496C(+/−) KI
CPVT mice. CaMKII inhibition with KN93 completely alle-
viated catecholamine-induced sustained ventricular tachyar-
rhythmia in this model. The efficacy of CaMKII-
suppression-based therapy was further validated in experi-
ments using CPVT patient-derived iPSCs and CPVT mice
with AAV-mediated overexpression of AIP [7, 25].
Moreover, experiments using CRISPR/CAS9 technology re-
cently showed that phosphorylation at RyR2 CaMKII-specific
site Serine-2814 is necessary to reveal CPVT phenotype [63].
Experiments using isolated channels from a CPVT RyR2-
V2475F(+/−) KI mouse model showed that phosphorylation
at PKA RyR2 phosphorylation site Serine-2030 is increased
in response to PKA application, while phosphorylation of
CaMKII site Serine-2814 was not changed under similar con-
ditions [51]. Taken together, these findings raise the possibil-
ity that in CPVT RyR2 complex loses association with resi-
dent phosphatases PP1 and PP2A that counter local activities
of PKA and CaMKII, the phenomenon described in HF [1, 5].

Mitochondrial dysfunction

The information regarding CPVT-related changes in mito-
chondria SR-communication remains limited. Electron mi-
croscopy studies have revealed subcellular structural changes
in the RyR2-A4860G(+/−) mouse model of CPVT, suggesting
altered tunneling and thereby communication patterns be-
tween jSR and mitochondria [45]. To our knowledge, there
are no reports yet as to whether there are differences in ex-
pression levels of mitofusins, the scaffolding proteins that
tether SR and mitochondria [68]; and mitochondrial Ca2+ han-
dling proteins including mitochondrial Na+/Ca2+ exchanger
(NCLX), and partners of mitochondrial Ca2+ uniporter
(MCU), includingMicu1, Micu2, and EMRE [29]. Our recent
study [34] showed unchanged MCU expression and increased
expression of MCU inhibitory paralog MCUb in CASQ2 KO
CPVT mouse hearts. We demonstrated that disturbances in
the RyR2 SR Ca2+ release complex profoundly affect mito-
chondrial function, causing excessive production of

mitochondrial reactive oxygen species (ROS) such as super-
oxide and hydrogen peroxide [10, 34]. The role of less reac-
tive of the two, hydrogen peroxide, as a second messenger is
well established [72]. Given it can diffuse several microns in
the cell milieu from the source [56], mitochondria-derived
H2O2 can reach RyR2 clusters which are situated at a distance
as close as 20 nm in ventricular myocytes [19]. Increased
mito-ROS emission results in oxidation of RyR2, further in-
creasing its activity. Importantly, mito-ROS scavenging with
the mitochondrial-targeted antioxidant mito-TEMPO reduced
RyR2 oxidation, restored SR Ca2+ content, and reduced inci-
dence of pro-arrhythmic spontaneous Ca2+ waves in β-
adrenergic agonist-treated cardiomyocytes from the CASQ2
knock out (KO) CPVT mouse model [34]. Earlier studies
using a canine model of tachypacing-induced HF demonstrat-
ed increased RyR2 oxidation in ventricular cardiomyocytes
[76]. Furthermore, mito-ROS scavenging using mito-
TEMPO attenuated RyR2 oxidation and arrhythmogenic
spontaneous Ca2+ release in a rabbit model of aging [18].
Together, these studies establish a direct link between RyR2
complex hyperactivity, RyR2 oxidation, and excessive
mitochondrial-mediated ROS production, a common phe-
nomenon in both hereditary CPVT and acquired cardiac
diseases.

Of note, there is ongoing debate whether mitochondria can
shape intracellular Ca2+ cycling serving as a Ca2+ buffer, in
addition to being source of ROS [61]. Interestingly, pharma-
cological enhancement of inner mitochondrial membrane-
residing Ca2+ uniporter (MCU) complex, or outer mitochon-
drial membrane residing channel VDAC, reduced spontane-
ous Ca2+ release incidence in myocytes from CPVT mice
[70]. However, this beneficial effect conflicts with recent data
where pharmacological facilitation of mitochondria Ca2+ ac-
cumulation was shown to produce mito-ROS surge, exacer-
bating RyR2 hyperactivity and thereby spontaneous Ca2+ re-
lease [33]. Furthermore, analysis of temporal parameters of
spontaneous Ca2+ waves in this work showed that both inhi-
bition and facilitation of mitochondrial Ca2+ uptake have no
discernible effects on wave propagation velocity, suggesting a
minimal role of mitochondria as Ca2+ buffer in adult ventric-
ular myocytes [33]. Changes in Ca2+ wave incidence and fre-
quencies caused by facilitation and inhibition of mito-Ca2+

uptake reported in this manuscript were attributable to the
changes in RyR2 oxidation levels by mito-ROS. These results
are in line with the view accepted by several leading groups
that mitochondria Ca2+ buffering ability in terminally differ-
entiated VMs is very low in comparison to contractile appa-
ratus or SERCa [4, 9, 28, 53].

Subcellular structural remodeling

Typically CPVTmutations do not cause structural remodeling
of the heart [15]. However, there is a growing evidence of
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CPVT-associated changes in ventricular myocyte subcellular
organization. The first indications of such phenomena have
been obtained using CASQ2 KO CPVT mouse model where
Knollmann et al. [43] documented dramatic increase in SR
volume, potentially a compensatory change to preserve SR
Ca2+ buffering capacity in the absence of CASQ2, a major
luminal Ca2+ buffer. An elegant study from this group which
followed demonstrated that KO of luminal accessory protein
TRDN (to mimic CPVT-linked loss-of TRDN-function muta-
tions) causes profound changes in RyR2 complexes and sub-
cellular structural organization, leading to almost 50% loss of
contacts between T-tubules and junctional SR [17]. Loss of
contacts between T-tubules and jSR is a recurrent finding in
HF [12, 16, 74]. Importantly, prevention of proteasomal deg-
radation ofmisfolded proteins by an inhibitor of mannosidase-
I kifunensine successfully reduced CPVT occurrence in
TRDN-KO mice [13]. The loss of jSR-T-tubular contacts in
TRDNKO cardiomyocytes results in reduced Ca2+-dependent
inactivation of LTCCs, enhancing Ca2+ influx through the
plasmalemma. Interestingly, later studies revealed that
CPVT linked to TRDN mutations exhibit features consistent
with long QT syndrome (LQTS) as well [2], which is not
surprising given LTCC inactivation impairment. The overlap
with LQTS was also noticed for CPVT TECRL loss-of func-
tion mutations manifested by QTc prolongation in patients
under catecholaminergic surge [24, 59].

Taken together, these works provide strong support for the
concept that initial insult by CPVTmutations causes profound
secondary changes in the following: (a) posttranslational con-
trol of RyR2 activity; (b) mitochondrial function; and (c) in-
tracellular structural organization. Evidently, these secondary
changes are key to revealing the arrhythmogenic phenotype in
CPVT.

LQT syndrome and Ca2+ release

Long QT syndrome (LQTS) is a malignant arrhythmogenic
disorder, characterized by QT prolongation accompanied with
ventricular tachyarrhythmias typically in the form of torsade
de pointes (TdP) and polymorphic VT [3, 15, 41, 69].
Arrhythmic events in LQTS usually occur in patients during
emotional stress or exercise and less frequently during sleep.
Mutations in three genes are responsible for the vast majority
of LQTS cases in humans, namely KCNQ1 encoding Kv7.1
channel α-subunit (LQT1, 35% of cases), KCNH2 encoding
Kv11.1 channel α-subunit (LQT2, 30% of cases), and SCN5A
encoding Nav1.5 Na+ channel α-subunit (LQT3, 10% of
cases). Loss-of-function K+ channel mutations reduce
repolarizing K+ currents IKs (LQT1) and IKr (LQT2) leading
to AP prolongation, similarly to gain-of-function LQT3 mu-
tations in Na+ channel which promote depolarization. Asmen-
tioned above, acute pharmacologically induced AP prolonga-
tion in ventricular myocytes leads to severe intracellular Ca2+

overload, enhancing both systolic and arrhythmogenic spon-
taneous SR Ca2+ release. Increased Ca2+ transient amplitude
increases cardiac contraction. However, a robust increase in
cardiac function is not a common observation in inherited
LQTS. Available literature documents mechanical changes
in human LQTS patients and large animal models consistent
with diastolic dysfunction [41, 69], which implies adaptive
remodeling of Ca2+ homeostasis occurs. Given HF is accom-
panied by a loss of repolarizing currents and increase in INaL,
the mechanisms underlying changes in Ca2+ handling may
have substantial overlap with those in LQTS.

LQT2

Notably, IKs and IKr have minimal roles in repolarization in
rodents [6]. Therefore, the studies using large animal models
of LQT1 and LQT2 provide vital opportunities to delineate
arrhythmia mechanisms and potential role of changes in Ca2+

homeostasis secondary to mutation-induced AP prolongation
[3]. Transgenic rabbits overexpressing LQT2-linked mutant
KCNH2 (HERG-G628S) in the heart exhibited significant
AP prolongation and high incidence of SCD (> 50% at 1 year)
due to polymorphic VT, recapitulating human LQTS [11].
Experiments using isolated ventricular myocytes from LQT2
hearts revealed decrease in SR Ca2+ content and Ca2+ transient
amplitude, particularly noticeable under β-adrenergic stimu-
lation [77]. Further analysis showed unchanged ICa and NCX1
function, while SR SERCa-mediated Ca2+ uptake and RyR2-
mediated SR Ca2+ leak were accelerated in LQT2 ventricular
myocytes. Increased SERCa activity in LQT2 has been attrib-
uted to an increase in PKA PLB phosphorylation under base-
line conditions [77]. Typically SERCa activity is reduced in
HF; however, increased PLB phosphorylation was previously
reported in a rabbit pressure-overload-induced model of HF
[20]. Enhanced RyR2 activity in LQTS has been ascribed to
an increase in PKA and CaMKII phosphorylation of the chan-
nel due to the loss of phosphatases PP1 and PP2a from the
complex. Identical results were reported earlier in rabbit and
canine HF models [1, 5].

Enhanced RyR2-mediated loss of SR Ca2+ during diastole
facilitates NCX1-mediated Ca2+ removal to balance increased
LTCC-mediated influx during longer AP [6]. More active
SERCa plays a primary role in shortening the Ca2+ transient
during AP plateau when membrane potentials are close to
NCX1 reversal potential. Together, these events prevent a
substantial increase in Ca2+ transient amplitude in LQT2 ven-
tricular myocytes under basal conditions, in contrast to phar-
macological IKr block. However, in the presence of β-
adrenergic agonist isoproterenol, enhanced RyR2 activity be-
comes the major contributor to triggered activity in the form of
arrhythmogenic EADs [67]. Stabilization of RyR2 function
by pharmacological inhibition of CaMKII is sufficient to
completely alleviate Ca2+-dependent afterdepolarizations in
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LQT2 ventricular myocytes [67]. Partial inhibition of NCX1
activity either directly by using pharmacological NCX inhib-
itor SEA400 [55] or indirectly by blocking Late INa with
GS967 [37] also effectively eliminates EADs in this model.
However, chronic use of NCX1 or INaL inhibitors for arrhyth-
mia prevention in LQT2 requires extensive testing to ensure
no adverse effects of such treatments.

The data whether or LQT1 or 2 induces subcellular struc-
tural remodeling is lacking. However, proteomics analysis
demonstrated significant changes in expression levels and ac-
tivities of enzymes involved in ATP generation via glucose
utilization and fatty acids β-oxidation pathways [38], suggest-
ing increased energy demand and increased supply in LQT1
and LQT2 transgenic rabbit hearts.

LQT3

LQT3 is associated with SCN5A gain-of-function muta-
tions that impede inactivation of the channel, leading to
increased INaL [3, 11, 41]. Unlike most LQTS, arrhythmia
episodes in LQT3 occur during sleep or rest in the ab-
sence of increased catecholaminergic tone. A decrease in
heart rhythm provokes profound lengthening of AP and
increases incidence of tdP and polymorphic VTs in hu-
man patients. Pharmacological INaL enhancement to mod-
el LQT3 in rabbit ventricular myocytes induces intracel-
lular Na+/Ca2+ overload, which accelerates mitochondrial
ROS production [78]. Increased ROS leads to oxidation
and thereby activation of CaMKII. Activated CaMKII
phosphorylates RyR2 increasing its activity, which under-
lies an increase in pro-arrhythmic spontaneous Ca2+ re-
lease. In this work, both antioxidants and CaMKII inhibi-
tion restored diminished Ca2+ transients and reduced dia-
stolic [Ca2+] and spontaneous Ca2+ waves, similar to the
effects in mouse ventricular myocytes with pressure-
overload induced HF [78]. Experiments using LQT3 mu-
tation mouse models suggest that increased INaL increases
SR Ca2+ load and this increase promotes arrhythmogenic
spontaneous waves [46]. Interestingly, in mice with LQT3
evoked by deletion residues 1510–1512 (ΔQKP) in the
Scn5a gene, SERCa activity was depressed due to in-
creased PLB expression and its reduced phosphorylation
[58]. Furthermore, NCX1 expression and activity were
unaltered. This is an interesting finding because Na+ over-
load is expected to impede forward mode NCX1. The
simplest explanation of these phenomena is that INaL en-
hancement is insufficient to significantly alter intracellular
[Na+] despite the profound effect on APD. If this is the
case, prolonged LTCC-mediated Ca2+ influx during the
long AP is sufficient to increase SR Ca2+ content in
LQT3. Indeed, mouse models of LQT8 (Timothy
Syndrome) linked to LTCC gain-of-function mutations
in CACNA1C also show increase in SR Ca2+ content

and increased frequency of spontaneous Ca2+ waves in
ventricular myocytes [26]. Remarkably, in the Scn5a
ΔQKP LQT3 model, RyR2 phosphorylation remained un-
changed and no evidence of enhanced activity of the
channel was presented despite an increase in spontaneous
Ca2+ waves [58], which is not the case in HF. However,
LQT3 Ca2+ transients exhibited longer time-to-peak, sug-
gesting subcellular dyadic structural remodeling: a hall-
mark of HF.

Notably, to our knowledge, a large animal model of hered-
itary LQT3 is yet to be created. Given substantial differences
in Ca2+ cycling patterns between mice and larger animals,
mechanisms of secondary remodeling uncovered in mice
may differ greatly than those in humans. In small rodents, an
increase in stimulation frequency decreases Ca2+ transient am-
plitude, e.g., a negative staircase. In rabbits or humans, in-
creased stimulation frequency increases Ca2+ transients [6].
Accordingly, the SR loses Ca2+ at slower rates due to higher
NCX1 activity and lower SERCa activity in large animals and
humans vs mice. Therefore, given that arrhythmia episodes in
human LQT3 patients are prevalent during slower heart rates
and assuming that spontaneous Ca2+ release is a key element
of trigger [58], there is a good chance that SERCa activity is
increased, in stark contrast to mice. Indeed, Xiao Yan Qi et al.
[66] showed enhanced SERCa activity and PLB phosphory-
lation due to enhanced activity of CaMKII in rabbit hearts
with slowed heart rate induced by AV block 2 weeks after
the procedure. At the cellular level, bradycardia was accom-
panied by AP prolongation resulting in enhanced LTCC-
mediated Ca2+ influx, increased SR Ca2+ load, increased
Ca2+ transient amplitude, increased contraction, and impor-
tantly, arrhythmogenic EADs at very slow pacing rates in
the absence ofβ-adrenergic stimulation. At higher stimulation
rates, presence of β-agonist was necessary for EADs
induction.

Other inherited arrhythmia syndromes

The list of genes associated with LQTS is rapidly expanding.
Althoughmost of these genes encode proteins that regulate K+

and Na+ conductance, the list of mutations in genes directly
involved in Ca2+ handling that manifest as LQTS continues to
grow. Calm1, Calm2, Calm3, TRDN, and TECRL (LQT14–
18) are recent additions to the CACNA1C gain-of-function
mutations associated with LQT8 [2, 24, 26, 41, 58] (Fig. 1).
Althoughmuch remains to be done to delineate specific mech-
anism underlying electrical defects triggered by these muta-
tions, it is unequivocally obvious how tightly changes in elec-
trical activity are coupled with changes in Ca2+ handling.
Furthermore, the key roles of secondary to initial insult Ca2+

remodeling become widely recognized in other forms of he-
reditary arrhythmias including Arrhythmogenic Right
Ventricular Hypertrophy [21] and Brugada Syndrome [57].
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Perspective

Sudden cardiac death remains a major health problem in the
postindustrial world. Over the last quarter of century, signifi-
cant progress has been made in identification of genetic com-
ponents of malignant cardiac arrhythmia and improved diag-
nostics. This lead to rapid development of effective therapies;
however, further advancement in this area requires a signifi-
cantly new level of mechanistic understanding. The body of
evidence accumulated over the last decade provided strong
foundation for a new paradigm-shifting concept when it

became obvious that the impact of a single point mutation
goes far beyond elementary modification of a certain enzyme
or ion channel function. Instead, mutation can induce systemic
changes affecting numerous cellular signaling cascades, ener-
gy production, protein expression and degradation, and Ca2+

homeostasis. This remodeling, in an attempt to provide long-
term preservation of basic contractile cardiac function, ulti-
mately exacerbates arrhythmic potential under certain condi-
tions such as stress. Notably, since the main goal is the same,
i.e., preservation of contractile function, remodeling pathways
evoked by arrhythmogenic mutations in genes encoding
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Fig. 2 Comparison of proarrhythmic changes in action potentials and
Ca2+ homeostasis in HF, CPVT, and LQTS 2 and 3 ventricular
myocytes. a Schematic of action potentials, Ca2+ transients, and
changes in intra-SR Ca2+ in a healthy human ventricular myocyte under
β-adrenergic stimulation. Grey dashed lines indicate minimum and max-
imum Ca2+ levels reached in healthy myocytes. b In HF, APD is
prolonged due to decrease in K+ currents and increase in late INa. Ca

2+-
dependent EADs/DADs underlie arrhythmogenesis under β-adrenergic
stimulation. Enhanced sensitivity of RyR2 to intra-SR [Ca2+] due to in-
creased phosphorylation and oxidation of the channel leads to termination
of systolic Ca2+ release at reduced intra-SR [Ca2+]. Faster RyR2-
mediated SR Ca2+ leak and reduced refractoriness of RyR2 also contrib-
utes to the enhanced propensity for proarrhythmic spontaneous Ca2+ re-
lease. Enhanced NCX1 activity, depressed SERCa activity and SR Ca2+

leak underlie reduced intra-SR [Ca2+] and diminished Ca2+ transient am-
plitude. Loss of dyadic contacts between T-tubular LTCCs and jSR
RyR2s impedes Ca2+ transient rise. c Under β-adrenergic stimulation,
CPVT myocytes exhibit spontaneous Ca2+ release via defective RyR2
complexes, leading to reduced Ca2+ transient amplitude and reduced
intra-SR [Ca2+]. Posttranslational remodeling, mitochondrial

dysfunction, and subcellular structural remodeling contribute to the hy-
peractivity of RyR2 caused by CPVT-associated mutations.
Proarrhythmic activity of RyR2 drives NCX1 activity, causing a
depolarizing inward current and DADs. Uncoupling of LTCCs and
RyR2s due to dyad remodeling may increase Ca2+ transient rise time
and reduce LTCCCa2+-dependent inactivation which can result in longer
APD. d In LQT2, loss-of-function mutation in KCNH2 reduces outward
IKr and prolongs APD during β-adrenergic stimulation. SR Ca2+ leak is
accelerated due to hyperphosphorylation of RyR2. SERCa-mediated SR
Ca2+ uptake is accelerated at baseline due to PLB phosphorylation.
Enhanced activity of hyperphosphorylated RyR2s contributes to a reduc-
tion of SR [Ca2+], Ca2+ transients amplitude, and arrhythmogenic EADs
under β-adrenergic stimulation. e In LQT3, gain-of-function mutation in
SCN5A increases inward late INa and prolongs APD. Arrhythmogenic
activity occurs at rest, in the absence of β-adrenergic stimulation. Longer
APD increases LTCC-mediated Ca2+ influx. Na+/Ca2+ overload and in-
creased activity of SERCa due to PLB phosphorylation underlies increase
in SR Ca2+ content, Ca2+ transient amplitude, and spontaneous RyR2-
mediated Ca2+ release thereby EADs at slow rates

383Pflugers Arch - Eur J Physiol (2021) 473:377–387



proteins involved in Ca2+ transport, cell electrical activity, or
structural elements that underlie cardiac conduction often con-
verge, bearing resemblance of those in structural heart disease
and each other (see Fig. 2).

Given that arrhythmia syndromes are accompanied by cell
systems remodeling, there is great promise in expansion of
classical reductionist approaches with rapidly developing
new techniques including proteomics, transcriptomics, meta-
bolomics, and big data analytical tools to identify druggable
nodes. This is expected to facilitate development of brand new
classes of antiarrhythmic agents with improved efficacy and
reduced adverse effects. The understanding that remodeling
secondary to initial insult caused by a specific mutation has an
enormous impact on arrhythmogenesis points to a necessity
for expanded genetic screening panels of patients with idio-
pathic arrhythmias to a new level far beyond classical sus-
pects. Also, although valuable information is being obtained
generated using patient-induced pluripotent stem cell (iPSC)–
derived cardiomyocytes, this experimental platform needs fur-
ther development to ensure the highest maturation degree of
subcellular structure, metabolic, and signaling cascades, given
their key roles in revealing arrhythmogenic phenotype [42].
Finally, the value in future development of engineered tissues
and large animal models of hereditary arrhythmias to study
mechanisms and test antiarrhythmic therapies cannot be
overstated.
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