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Abstract: The symbiosis and beneficial effects of arbuscular mycorrhizal fungi (AM fungi) on
plants have been widely reported; however, the effects might be unascertained in tomato industry
production with coconut coir due to the nutrition solution supply, or alternatively with isolate-
specific. Five isolates of AM fungi were collected from soils of differing geographical origins,
identified as Funneliformis mosseae and evidenced closing evolutionary distances with the covering
of the small subunit (SSU) rDNA regions and Pi transporter gene (PT1) sequences. The effects of
these isolates on the colonization rates, plant growth, yield, and nutrition uptake were analyzed in
tomato nutrition solution production with growing seasons of spring–summer and autumn–winter.
Our result indicated that with isolate-specific effects, irrespective of geographical or the SSU rDNA
and PT1 sequences evolution distance, two isolates (A2 and NYN1) had the most yield benefits for
plants of both growing seasons, one (E2) had weaker effects and the remaining two (A2 and T6)
had varied seasonal-specific effects. Inoculation with effective isolates induced significant increases
of 29.0–38.0% (isolate X5, T6) and 34.6–36.5% (isolate NYN1, T6) in the plant tissues respective
nitrogen and phosphorus content; the plant biomass increased by 18.4–25.4% (isolate T6, NYN1),
and yields increased by 8.8–12.0% (isolate NYN1, A2) compared with uninoculated plants. The
maximum root biomass increased by 28.3% (isolate T6) and 55.1% (isolate E2) in the autumn–winter
and spring–summer growing seasons, respectively. This strong effect on root biomass was even more
significant in an industry culture with a small volume of substrate per plant. Our results reveal the
potential benefits of using selected effective isolates as a renewable resource that can overcome the
suppressing effects of sufficient nutrient availability on colonization rates, while increasing the yields
of industrially produced tomatoes in nutrition solution with coconut coir.

Keywords: arbuscular mycorrhizal fungi; soilless culture; nutrient uptake; tomato yield; soil
beneficial microorganisms

1. Introduction

Arbuscular mycorrhizal fungi (AM fungi) are naturally soil-borne benefit microor-
ganisms of terrestrial plants, acting as renewable biological resources. Over 80% of plants
can establish this symbiotic partnership, which is essential for the uptake of inorganic
phosphate (P), nitrogen (N) and various trace elements, while preventing or reducing
abiotic and biotic stresses on plants [1–3].Tomato (Solanum lycopersicum L.), which is the
most widespread vegetable species consumed globally [4], is known to have symbiotic
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partnerships with AM fungi, which promote plant growth and development [5]. For
example, inoculation with AM fungi (Rhizophagus. intraradices) was reported to increase
the P content of tomato fruits by 60% [6]. Industrial soilless cultivation of fresh market
tomatoes has become popular because of the improved growth, yields, and quality of these
commodities grown under such conditions [7]. In these cultures, the root system of the
plants develops within a small amount of growing medium, the nutrient supply must
be adequate, and the root system must be efficient at taking up water and nutrients [8].
Therefore, the use of AM fungi in industrial tomato production may potentially strengthen
the plant’s root system and the efficiency of nutrient uptake. However, some studies have
reported that AM fungi have no effect on plant growth and the uptake of nutrients from
a solution in the case of tomatoes grown in sand or peat as soilless culture [9].

This discrepancy was attributed to a lower rate of colonization in hydroponic cultures
that is likely to be caused by the presence of ample P concentrations in the root zones of
plants in a nutritional solution culture [8,10]. Potted tomato plants inoculated with AM
fungi (Funneliformis mosseae and R. intraradices) showed higher marketable fresh yields,
mainly at lower levels of fertilization (half- and quarter-strength nutrient solutions) [11,12].
Azcoin et al. found that AM fungus inoculation resulted in higher N uptake from fertil-
ization in the presence of medium concentrations of N (6 mM) [13], whereas the reverse
trend was observed with high amounts of N fertilization (9 mM) [14]. Similarly, P uptake,
growth, and biomass were only found to increase in mycorrhizal plants in cases of low
P availability [8,15], while high soil concentrations of P or fertilizer doses could reduce
mycorrhizal abundance [16,17]. All of these findings seemingly indicate that the benefi-
cial effects on the plants nutritional uptake and growth are strongly dependent on the
availability of P and N. From an economic perspective, the efficiency of industrial tomato
production is ensured by high yields and the use of technologies that can easily be adapted
to hydroponic systems [18]. Balanced and adequate nutrient availability is one of the main
requirements for ensuring high fruit yields of tomato plants. However, some studies have
found that plants colonized by AM fungi produce higher yields compared with the yields
from uninoculated plants, irrespective of the use of hydroponic systems [19]. Therefore,
further research and a deeper understanding of symbiosis are required to overcome the
bottleneck of AM fungi utilization in industrial tomato production.

According to Rouphael et al., (2015), AM fungus inoculation has particular effects
associated with variations in genotypes and environmental conditions [12]. The dynamic
responses of plants to both the interacting partners and the environmental conditions merit
consideration [20,21]. There is evidence that ‘functional diversity’ relating to plant and
fungal genotypes determines the benefits resulting from these interactions, with some
combinations being more effective than others in terms of nutrition and/or stress resis-
tance [21–23]. For example, one study found that colonization of plant roots by F. mosseae
and R. irregularis, which are the most prevalent AM fungi, resulted in different levels of
disease control and drought tolerance [24]. The effectiveness of the colonization process
was found to be contingent on the cultivar or ecotype and the mycorrhizal species, although
there was no strict specificity of symbiotic partners [25]. Mycorrhizal plants show different
patterns of adaptation to environmental stresses depending on the fungus species [26]. Sim-
ilarly, maximal multiple benefits were obtained using AM fungi isolates that were found to
be effective after ensuring the accurate selection of compatible species/genotype-fungus
combinations and the adoption of favorable management practices [12]. Accordingly, we
hypothesized that AM fungi isolates with different origins or evolutionary distances of
SSU rDNA or PT1 sequences have different functional effects on tomato plants in spite
of receiving sufficient nutrition, including N and P supplies. This study was aimed at
determining the impacts of mycorrhizal association with the effects of five isolates of
F. mosseae collected from geographically distant sites on plants of two growing seasons
under industrial production using coconut coir. Specifically, we examined the effectiveness
of root colonization as well as plant growth and yield responses, N and P uptake, and
root biomass.
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2. Material and Methods
2.1. Experimental Site and Design
2.1.1. Isolation and Identification of the AM Fungi

The following five AM fungi isolates were collected from wild soils in different
geographical locations: (1) the isolate NYN1 (109◦57′ E and 39◦19′ N), (2) the isolate A2
(116◦10′ E and 40◦08′ N), (3) the isolate T6 (129◦57′ E and N46◦42′ N), (4) the isolate X5
(129◦46′ E and 46◦54′ N), and (5) the isolate E2 (10◦59′ E and 47◦25′ N). They were collected
using the wet-sieving method [27]. One gram of soil from each of these sites was added
into a pot planting white clover (Trifolium repens L.) with sterilized sands around 3 months.
Afterwards, the spores in each pot were collected with wet-sieving, 5 spores according to
same morphology of F. mosseae were collected and propagated with white clover again in
sands until enough spores were produced. The species and their genetic relationships were
identified on the basis of both morphology and the gene SSU (covers the small subunit SSU)
rDNA regions [28]; and the Pi transporter gene (PT1) which was identified as phosphate
transporter gene, a gene marker for the identification and discrimination of AM fungi in
the Genus Glomus [29]. Polymerase chain reaction (PCR) analysis of the SSU and PT1 with
specific primers for AM fungi and sequencing was performed, as described below.

2.1.2. DNA Extraction, Amplification and Sequencing

Spores were extracted through 30% sucrose with 4000 density gradient centrifugation,
and wet sieving was used for DNA extraction [30]. Approximately 40–60 spores from
each isolate were placed in an Eppendorf tube. A sterile steel ball was inserted into the
sample tube, and the sample was crushed using a plant tissue crusher (45 kHz, 30 s). DNA
extraction was performed using the cetyltrimethylammonium bromide (CTAB) method
(the DNA kit was provided by Aidlab Biotechnology Co. Ltd. Beijing, China). A fragment
of approximately 1500 bp, covering the entire SSU rDNA regions was amplified using
the nested protocol. In the first PCR, a reaction mix of 50 µL was prepared using primers
GeoA1 (5′-GGTTGATCCTGCCAGTAGTC-3′) and ART4 (5′-TCCGCAGGTTCACCTACGG-
3′). The nested PCR reaction were performed by diluting the first PCR amplification (1:100)
and using the primers GeoA2 (5′-CCAGTAGTCATATGCTTGTCTC-3′) and Geo11 (5′-ACC
TTGTTACGACTTTTACTTCC-3′) [31]. To enable further identification of the relationships
among the different isolates, we used the Pi transporter gene (PT1) region to reveal genetic
differences among isolates [29], and the sequence identified by [32]. The following primer
pairs were designed using Primer Premier V6.0 (PREMIER Biosoft International, 3786 Co-
rina Way, Palo Alto, Canada 94303-4504): (1) Pm1-F (5′-TTCCGCCATGGGTACTGTTC-3′)
and Pm1-R (5′-CGAAATGCCATGACCGGTTG-3′) and (2) Pm2-F (5′-CGTCTCACGGTCCC
AGAATC-3′) and Pm2-R (5′-TCGGGAAGACTTCTCCTGGT-3′).

2.1.3. Sequence and Phylogenetic Analysis

The PCR products for DNA sequencing analysis were conducted by the company
(Tsingke Biological Technology Co., Ltd., Beijing, China). The results of sequences (Gen-
Bank Banlit submission. Submission ID: 2441966) were compared with those shown on
the website of the National Center for Biotechnology Information (https://www.ncbi.nlm.
nih.gov/; accessed on 26 April 2021). Accordingly, we selected the ten closest sequences
and aligned them with the Molecular Evolutionary Genetics Analysis across Comput-
ing Platforms version 5.0 MEGA X software (Mega Limited, Auckland, New Zealand)
(https://www.megasoftware.net; accessed on 26 April 2021). The systematics of the Glom-
eromycota [33,34] all neighbor-joining (NJ) phylogenetic analyses were computed using
the MEGA X software, with 1000 bootstraps. Referring to Kumar et al. (2018) [35], we
performed a molecular evolutionary genetics analysis, viewing and editing phylogenetic
trees with the MEGA X software.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.megasoftware.net
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2.2. Experimental Site and Design
2.2.1. Experimental Protocol and Growing Seasons

The experiments were performed from September 2018 to March 2019, covering the
autumn–winter growing season (tomato cultivar, ‘Futesi’) and from April to July 2019,
covering the spring–summer growing season (cultivar, ‘Qidali’), with coconut coir used as
the growth medium. The experimental site was a greenhouse located at the Agricultural
Technology Extension Centre in Beijing, China (40◦10′ N and 116◦24′ E). The ‘Qidali’ tomato
cultivar (with big fruit, F1) was suitable for spring–summer season and obtained from
Beijing Golden World Seeds Co., Ltd., Beijing, China; and the ‘Futesi’ cultivar (small fruit,
F1) was suitable for autumn–winter season and obtained from Rijk Zwaan Distribution
B.V., De Lier, Netherlands.

2.2.2. AM Fungi Material and Inoculation

The plants inoculated with the five AM fungi isolates were compared with the uninoc-
ulated control plants. After transplanting, each plant for the AM fungi treatments, there
was 30 g of AM fungus inoculant with approximately 50 spores per gram and well mixed
with the growth media of coconut coir moss. The same amount of inoculant washed
microorganisms and nutrients were added to each control pot for the non-AM fungi treat-
ments. The microorganism wash was prepared as follows: the inoculant sands were
drained with distilled water to collect possible microorganisms; then, the drainage was
filtered through filter paper (Hangzhou tezhong zhiye GmbH, Hangzhou, China) with
a particle retention potential of 5–8 mm. The washed sands were sterilized afterwards.
Both the filtered solution and the residues sterilize sand was added to the non-AM fungi
treatments, to keep the same amount of nutrition and other microorganisms from the
inoculant in non-AM fungi treatments [27].

2.2.3. Growth Conditions of Tomato Plants

Seven-week tomato seedlings were transplanted on 5 September 2018 (the autumn–
winter growing season) and on 15 March 2019 (the spring–summer season), with an average
density of 2.4 plants per m2. The growth medium, coconut coir moss, is commercially
available and is imported from Sri Lanka (by Shouguang Lvtian International Trade Co.,
Ltd. Shouguang, China). This substrate is commonly used in soilless industrial tomato
production in China. A split plot design with four replicates was applied with each
treatment covering a surface area of 58.3 m2. Uniform seedlings, cultivated using the
same method, were randomly transplanted in the plots. The plants were grown in a solar-
powered greenhouse, with day and night temperatures of 25 ± 4 ◦C and 16 ± 4 ◦C,
respectively and humidity between 60–80%, under natural radiation. The plants were
fertilized with a nutrient solution modified following Hoagland and Arnon (1950) that
supported the growth of tomato plants [36]. The substrates (per liter) comprised 165 mg of
N and 100 mg Ca added as KNO3 and Ca (NO3)2·4H2O, 55 mg of P as KH2PO4, 220 mg of
K and 65 mg S as K2SO4, 50 mg of Mg as MgSO4·7H2O, 10.4 mg of Fe as Fe-EDTA, 10 mg
of Zn as ZnSO4·7H2O, and 10 mg of Cu as CuSO4·5H2O based on dry substrates. The
average nutritional solution supply was 1200–1600 mL per plant per day according to the
plants’ growth requirements.

2.3. An Analysis of Biomass, Yields, Nutrients, and Colonization Rates

Five plants from each subplot were randomly sampled, and 20 plants were assessed
per treatment at the end of the 5-month growing season. The samples of shoots were oven
dried for 48 h at 70 ◦C for the biomass and nutrient analysis. The roots were carefully
removed from the growth medium, washed, weighed to record their fresh weight and
separated into two sections. One section was dried to determine the biomass and nutrients,
and the other section was soaked in 30% alcohol to analyze the AM fungi colonization
rate. The N and P concentrations in the shoots were measured using a DC plasma ccelle
spectrometer (Beckman Instruments, Beijing, China) and the Kjeldahl digestion method.
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The root colonization rate was determined using the method described by Koske and
Gemma [37]. The yield was recorded and summed according to each harvest.

2.4. Statistical Analysis

The data were recorded on MS Excel sheets and analyzed using the IBM SPSS software
to determine mean values and standard errors. The statistical results derived from the
experiment were expressed as means± SE. The differences among the means were analyzed
via a one-way ANOVA, followed by Fisher’s least significant difference t test (LSD) for
multiple comparisons test (p ≤ 0.05) to determine if significant differences existed among
the plants inoculated with AM fungi isolates and the uninoculated control. A univariate
analysis of variance was also performed to analyze the main effects observed for the AM
fungi isolates and the control sample. We have not compared the statistical differences of
the data between two growing seasons due to different cultivars; one was big fruit another
was small fruit.

3. Results
3.1. Isolate Identification and Their Root Colonization

After the DNA extraction was completed, PCR with specific primers for AM fungi
and sequencing were conducted to verify the AM fungi identities and variability. Al-
though the isolates were from different geographical areas, both the SSU rDNA and PT1
region sequences of the Glomerales (Pm1 and Pm2 sequences) revealed the closeness of
the isolates E2 and NYN1, and T6 and A2 (Figure 1A–C). The frequency of root fragment
colonization by hyphae of mycorrhizal in tomato plants inoculated with the different
isolates evidenced significant differences compared with uninoculated plants at the end of
cultivation (Figure 2). The effectiveness of the inoculation was found to vary according to
the isolates and growing seasons. The isolate A2 evidenced the highest colonization rate,
followed by the T6 and NYN1 during the autumn–winter growing season (‘Futesi’); NYN1
had the highest colonization rate, followed by A2 and T6, and lastly X5 and E2 during the
spring–summer season (‘Qidali ’) (Figure 2).
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126719649. 

Figure 1. Pm1 sequences (A), Pm2 sequences (B) and AM fungi isolates identified on the basis of both PT1 and SSU rDNA
(C) region sequences of the Glomerales. The percentage of replicate trees in which the associated taxa clustered together
in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in
the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were
computed using the maximum composite likelihood method and are in the units of the number of base substitutions per
site. Evolutionary analyses were conducted in MEGA X. (A) The length of partial sequence of PT1 gene is 320 bp, and
the sum of branch length = 1.21661574; (B) The length of partial sequence of PT1 gene is about 680 bp, and the sum of
branch length = 0.22664112. (C) The length of partial sequence of SSU fragment is about 1600 bp, and the sum of branch
length = 126719649.
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Figure 2. A comparison of tomato root colonization (%) by isolates of arbuscular mycorrhizal fungi during the autumn–
winter growing season (A) and the spring–summer season (B). Different letters indicate significant differences among
isolates as revealed in a one-way ANOVA and followed by a Fisher’s least significant difference t test (LSD test) at p ≤ 0.05.

3.2. Effects of Mycorrhizae on Plant Growth and Yields

There were significant differences in plant biomass and yields observed between the
inoculated and control plants and among all five isolates during the two growing seasons
(Table 1). During the autumn–winter season (for the ‘Futesi’ cultivar), the biomass of the
shoots of the plants colonized by the isolates T6, NYN1, and X5 increased by 20.7%, 22.0%
and 20.1%, respectively, compared with those of the control plants. Further, the biomass of
roots in plants that were colonized by the isolates T6, NYN1, and A2 increased by 28.3%,
12.8% and 21.2%, respectively. The yields increased the most when the isolates NYN1, A2,
and X5 were added, with these isolates inducing increases in the total biomass by 25.4%,
18.9%, and 16.8%, respectively, in this season (Table 1).

Table 1. Effects of AM fungi on biomass and yield of tomato plants of two growing seasons.

Treatment Shoot Biomass
(g plant−1)

Root Biomass
(g plant−1)

Fruit Biomass
(g plant−1)

Total Biomass
(g plant−1)

Yield
(kg m−2)

Autumn–Winter (cv. ‘Fortesa’)
Control 47.2 ± 1.69bc 5.15 ± 0.15d 45.8 ± 0.71b 98.2 ± 2.02c 3.09 ± 0.08b

Isolate E2 46.7 ± 2.81c 5.55 ± 0.21cd 49.9 ± 3.73ab 102.2 ± 6.21bc 3.31 ± 0.15ab
Isolate A2 55.3 ± 3.33ab 6.24 ± 0.34ab 55.2 ± 1.78ab 116.8 ± 3.28a 3.46 ± 0.05a
Isolate T6 56.7 ± 2.31a 6.61 ± 0.17a 46.8 ± 2.70b 110.2 ± 1.46abc 3.21 ± 0.05ab
Isolate X5 57.0 ± 4.03a 5.70 ± 0.23bcd 52.0 ± 2.32ab 114.7 ± 3.53ab 3.43 ± 0.11a

Isolate NYN1 57.6 ± 1.14a 5.81 ± 0.07bc 59.7 ± 8.47a 123.1 ± 8.24a 3.37 ± 0.06a
Spring–Summer (cv.‘Qidali’)

Control 84.9 ± 5.12b 4.68 ± 0.34b 159.9 ± 4.08b 249.5 ± 3.43b 13.3 ± 0.08c
Isolate E2 100.7 ± 9.30ab 7.26 ± 1.45a 162.2 ± 15.0ab 270.1 ± 16.4ab 13.6 ± 0.15bc
Isolate A2 90.4 ± 5.93ab 5.23 ± 0.30ab 182.0 ± 3.26a 277.7 ± 3.99a 14.2 ± 0.05ab
Isolate T6 106.3 ± 3.92a 6.91 ± 0.23a 182.2 ± 3.05a 295.4 ± 4.65a 14.2 ± 0.05ab
Isolate X5 90.9 ± 7.04ab 6.00 ± 0.86ab 177.0 ± 3.73ab 273.9 ± 9.82ab 14.0 ± 0.11abc

Isolate NYN1 102.2 ± 6.08ab 7.04 ± 0.26a 181.4 ± 1.40a 290.6 ± 5.58a 14.5 ± 0.06a

Fruit biomass was identified after dried at 70 ◦C. Total biomass as the sum of dried shoot, root, and fruits. Yield is fresh weight of fruits.
The values are expressed as the means ± SE. Different letters indicate significant differences (p ≤ 0.05, n = 4) among different treatments
according to ANOVA and followed by Fisher’s least significant difference t test (LSD tests). Within each column, means followed by
different letters are significantly different according to LSD test at p ≤ 0.05.

During the spring–summer season (for the ‘Qidali’ cultivar), inoculation of plants with
the isolates NYN1, T6, and A2 increased the yields by approximately 8.8%, 6.9% and 6.7%,
respectively, and the total biomass by 16.5%, 18.4%, and 11.3%, respectively, compared
with those of the control plants. Further, the biomass of the shoots evidenced a significant
increase of 25.2% when the T6 was introduced compared with that of the shoots in the
control plants, while the root biomass showed significant increases following inoculation
with the E2, NYN1, and T6 by 55.1%, 50.4%, and 47.6%, respectively (Table 1).
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3.3. Effects of Mycorrhizae on Plant Nutrient Uptake

Colonization by these five isolates significantly increased N and P uptakes of tomato
plants compared with those of the uninoculated plants in both seasons (Tables 2 and 3).
During the autumn–winter season of the ‘Futesi’ cultivar, among the experimental isolates,
only the X5 significantly influenced N concentrations in the shoot tissue (8.1%), while the
T6 and A2 significantly influenced N concentrations (28.7% and 14.4%) in the root tissue
of the plants. During this season (‘Futesi’ cultivar), the isolates A2, T6, X5, and NYN1
stimulated greater N accumulation in the shoots per plant compared with those of the
uninoculated plants, with increases of 23.0%, 23.0%, 31.1%, and 26.2%, respectively. And N
accumulation in the root tissue was higher for the A2 and T6, with increases of 37.4% and
64.2%, respectively (Table 3).

Table 2. Effects of AM fungi on nitrogen and phosphorus concentrations in tomato plants of two growing seasons.

Treatment
N Concentration

(mg g−1)
P Concentration

(mg g−1)

Shoot Root Shoot Root

Autumn–Winter(cv.‘Fortesa’)
Control 25.9 ± 0.14b 16.7 ± 0.34bc 5.57 ± 0.06d 5.10 ± 0.24d

Isolate E2 26.1 ± 0.96ab 16.9 ± 0.77bc 5.74 ± 0.18cd 5.29 ± 0.08cd
Isolate A2 27.2 ± 0.62ab 19.1 ± 0.63a 5.78 ± 0.03bcd 6.36 ± 0.38ab
Isolate T6 26.4 ± 0.12ab 21.5 ± 1.61a 6.01 ± 0.06abc 6.65 ± 0.27a
Isolate X5 28.0 ± 0.40a 17.2 ± 0.57bc 6.08 ± 0.06ab 5.85 ± 0.16bc

Isolate NYN1 26.7 ± 1.09ab 16.4 ± 0.19c 6.23 ± 0.17a 5.33 ± 0.11cd
Spring–Summer(cv.‘Qidali’)

Control 25.9 ± 0.48b 24.3 ± 1.18ab 7.34 ± 0.04b 5.55 ± 0.28a
Isolate E2 27.7 ± 0.87ab 24.7 ± 0.80ab 7.64 ± 0.12ab 6.17 ± 0.39a
Isolate A2 28.2 ± 0.97a 26.0 ± 0.57a 7.75 ± 0.21ab 5.99 ± 1.28a
Isolate T6 28.5 ± 0.62a 25.8 ± 0.54a 7.93 ± 0.23a 6.07 ± 0.48a
Isolate X5 29.2 ± 0.36a 22.4 ± 1.01b 7.78 ± 0.11ab 5.86 ± 0.47a

Isolate NYN1 28.3 ± 0.65a 24.8 ± 1.02ab 7.63 ± 0.08ab 6.68 ± 0.11a

The results are expressed as the means ± SE. Different letters indicate significant differences (p ≤ 0.05, n = 4) among different treatments
according to ANOVA and followed by Fisher’s least significant difference t test (LSD tests). Within each column, means followed by
different letters are significantly different according to LSD test at p ≤ 0.05.

Table 3. The effects of AM fungi on nitrogen and phosphorus uptake in plants of two growing seasons.

N Content P Content

Shoot
(g plant−1)

Root
(mg plant−1)

Total
(g plant−1)

Shoot
(mg plant−1)

Root
(mg plant−1)

Total
(mg plant−1)

Autumn–Winter (cv. ‘Fortesa’)
Control 1.22 ± 0.04b 86.2 ± 3.51c 1.31 ± 0.04b 263.0 ± 10.2b 26.2 ± 1.37c 289.2 ± 9.37b

Isolate E2 1.23 ± 0.12b 93.7 ± 4.43c 1.32 ± 0.11b 268.8 ± 21.1b 29.4 ± 1.51bc 298.2 ± 22.4b
Isolate A2 1.50 ± 0.08a 118.4 ± 3.23b 1.62 ± 0.08a 319.8 ± 20.2a 39.5 ± 2.42a 359.3 ± 20.3a
Isolate T6 1.50 ± 0.06a 141.5 ± 7.93a 1.64 ± 0.07a 341.0 ± 16.3a 43.9 ± 1.20a 384.9 ± 17.0a
Isolate X5 1.60 ± 0.11a 97.7 ± 3.40c 1.69 ± 0.11a 345.8 ± 21.1a 33.3 ± 1.23b 379.1 ± 21.8a

Isolate NYN1 1.54 ± 0.05a 95.4 ± 1.67c 1.63 ± 0.05a 358.4 ± 7.57a 30.9 ± 0.86bc 389.3 ± 8.05a
Spring–Summer (cv. ‘Qidali’)

Control 2.20 ± 0.14b 113.0 ± 6.33b 2.31 ± 0.14b 623.3 ± 35.6c 26.0 ± 2.23b 649.2 ± 36.4c
Isolate E2 2.80 ± 0.31ab 176.3 ± 30.5a 2.98 ± 0.33ab 766.1 ± 59.7abc 45.2 ± 10.8a 811.3 ± 65.7ab
Isolate A2 2.57 ± 0.25ab 135.9 ± 5.27ab 2.71 ± 0.25ab 697.3 ± 31.2bc 31.5 ± 7.65ab 728.9 ± 28.6bc
Isolate T6 3.04 ± 0.17a 178.4 ± 8.11a 3.21 ± 0.18a 844.4 ± 49.2a 42.0 ± 3.89ab 886.4 ± 52.0a
Isolate X5 2.67 ± 0.24ab 136.5 ± 24.4ab 2.80 ± 0.26ab 707.1 ± 56.2abc 35.2 ± 5.49ab 742.3 ± 59abc

Isolate NYN1 2.89 ± 0.17a 174.2 ± 5.65a 3.07 ± 0.17a 781.0 ± 51.4ab 47.0 ± 1.05a 828.0 ± 50.8ab

The results of the analysis were expressed as mean ± SE values. Different letters indicate significant differences (p ≤ 0.05, n = 4) associated
with different treatments according to the ANOVA and followed by Fisher’s least significant difference t test (LSD) test results. Within each
column, the means followed by different letters are significantly different according to the results of LSD test at p ≤ 0.05.
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During the spring–summer season (the ‘Qidali’ cultivar), the isolates A2, T6, X5,
and NYN1 increased N concentrations in the shoots of plants by 8.9%, 10.5%, 12.7%,
and 9.3%, respectively, compared with uninoculated plants (25.9 mg g−1). Further, N
concentrations in the root tissue were affected by the treatments A2 and T6 induced
increased N concentrations in the root tissue of plants (7.0% and 6.2%, respectively) during
this season (Table 2). While the T6 and NYN1 induced higher N accumulation in the
plant shoot tissue (increases of 38.2% and 31.1%, respectively), and the E2, T6, and NYN1
induced higher N accumulation in the root tissue, with increases of 56.0%, 57.9% and 54.2%,
respectively, compared with those of uninoculated plants during this season (the ‘Qidali’
cultivar) (Table 3).

The isolates T6, X5, and NYN1 affected P concentrations in the shoot tissue of plants,
which increased by 7.9%, 9.2% and 11.8%, respectively, compared with those of the uninoc-
ulated plants in autumn–winter season (the ‘Futesi’ cultivar). The isolates A2, T6, and X5
induced significant increases in P concentrations in the root tissues (24.7%, 30.4%, and
14.7%, respectively) compared with those of the uninoculated plants in this season (Table 2).
Further, the P accumulation in the tomato shoots was influenced by the isolates A2, T6, X5,
and NYN1, with increases of 21.6%, 29.7%, 31.5% and 36.3%, respectively; the A2, T6, and
X5 induced higher P accumulation in the root tissue, with increases of 50.8%, 67.6%, and
27.1%, respectively, in this season (Table 3).

During the spring–summer season (the ‘Qidali’ cultivar), the isolate T6 increased P
concentrations in the shoots of plants (by 8.0%) compared with the uninoculated plants
whereas P concentrations in the root tissue were not affected by inoculations in any of the
five isolates (Table 2). In this season, the P accumulation in the shoots of tomato plants
was induced by the T6 and NYN1 isolates, with increases of 35.5% and 25.3%, respectively,
compared with that of uninoculated plants; P accumulation the root tissue were higher in
plants inoculated with the E2 and NYN1, with increases of 73.8% and 80.8%, respectively,
compared with those of the non-inoculated plants (Table 3).

4. Discussion
4.1. Mycorrhizal Colonization of Roots

In the present study, in the presence of an adequate nutrient supply, the coloniza-
tion rates of the five tested isolates of F. mosseae in the roots of inoculated tomato plants
were significantly increased compared with the uninoculated plants, but with isolate-
specific (Figure 2). AM fungi colonization was found to vary in plants grown in soilless
media [8,38], with colonization associated with cultivation on perlite, peat, coir, and
sawdust [8,10,19,39,40]. In the present study, the isolates E2 and A2, respectively, evi-
denced the lowest and highest root colonization rates for tomato plants at 32% and 52%
during the autumn–winter growing season; the isolates E2 and NYN1 were associated
with the lowest and highest rates of root colonization at 38% and 55%, respectively, during
the spring–summer season (Figure 2). The mycorrhizal frequency for the uninoculated
plant roots was less than 7% during both growing seasons (Figure 2). This small amount
of colonization was also reported by the other study that it is possibly because of the
air-borne transfer of propagules from the inoculated plants [8]. From our study, within the
5-month growing seasons under field conditions, it was possible with the air-borne transfer
of spores. Nevertheless, this small amount of colonization was not taken a substantial
effect on the results.

These values of colonization rates are lower than those obtained by Maboko et al. [10],
who reported root colonization rates of 78.2% for tomato plants grown in coconut and
78% for those grown in sawdust. However, another study conducted by Dasgan et al.
found that the colonization rate in both open (without recirculation) and closed (with
recirculation) fertigation systems was approximately 28% [19], while Cwala et al. found
that the colonization rate ranged between 14% and 25% in hydroponic cultivation [40].
Kowalska et al. found that the colonization rates of tomato roots were affected by both the
growing times (days after inoculation) and the specific P level of the nutrient solution [8].
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Overall, low levels of root colonization were attributed to an abundant supply of nutrients,
especially P, available to the plants [41]. In a study entailing the same P level as that used
in the present study, Kowalska et al. reported a 33% colonization rate in plants grown
in a coconut culture [8]. The differences in colonization levels in the present study, in
which nutrient supplies were adequate, can be attributed to the diversity of the isolates and
their interactions with the growing seasons (Figure 2). The rates of post-inoculation root
colonization by hyphae of mycorrhizal in the plants during both growing seasons were
52% and 54%, respectively, for the isolates A2 and NYN1, and 32% for the E2. Furthermore,
A2 and T6 achieved stable colonization that exceeded 50% for plants during both growing
seasons, while colonization rates associated with X5 and NYN1 varied according to the
season (and cultivar), and E2 demonstrated a weak ability to achieve stable colonization
(Figure 2). Another study also found that colonization rates varied for different species:
F. mosseae (56%) and Claroideoglom. etunicatum (63%) [42] (Rafique et al., 2018). Although
all of the tested isolates in the present study were from the same species, F. mosseae, there
were nevertheless significant differences among the different isolates (Figure 2). Therefore,
colonization is evidently influenced by different isolates regardless of the level of nutrients
supplied. In this context, the effect of nutrients on AM fungi symbiosis might be attenuated
by selecting fungi isolates or species of effective symbiosis applied in soilless industrial
tomato production entailing nutrient solution supplies.

4.2. Biomass and Yield Production

As presented in Table 1, in the present study, successful colonization of five isolates of
AM fungi induced higher biomass and yields for the inoculated tomato plants compared
with the uninoculated plants. Variability in growth and yields was also found among the
different isolates (Table 1). During the autumn–winter growing season, the shoot biomass
of the mycorrhizal plants inoculated with the T6, X5, and NYN1 increased by 20.7%, 20.1%,
and 22.0%, respectively, and evidenced similar colonization levels. However, these effects
were not produced by the A2. The root biomass of the plants significantly increased
following inoculation with the A2, T6, and NYN1—but not with the X5—by 21.2%, 28.3%,
and 12.8%, respectively (Figure 2). In this context, the influences of the AM fungi isolates
on biomass accumulation did not always correspond with the shoot and root N and P
content or with the colonization rate. The yields and total biomass also varied, with most
increases associated with the isolates NYN1, A2, and X5. The yields increased by 9.1%,
12.0%, and 11.0%, respectively, using these isolates, and the total biomass increased by
25.4%, 18.9%, and 16.8%, respectively, compared with those of the control plants. However,
the plants inoculated with T6 did not evidence increased yields and total biomass, differing
from root biomass in autumn-winter season (Table 1). It was still an open question that this
root biomass increasing was not extending to shoot biomass and yield accumulation of T6
treatment. Further study could be concerning this point.

During the spring–summer season, the yields of tomato plants inoculated with the
isolates NYN1, T6, and A2 increased by approximately 8.8%, 6.9%, and 6.7%, respectively,
while their total biomass increased by 16.5%, 18.4%, and 11.3%, respectively, compared with
those of the control plants (Table 1). In this season, the A2 was associated with the highest
yields and root biomass but not with the highest shoot biomass (Table 1). In addition, T6
induced a significant increase in the dry biomass of the shoots by 25.2% relative to the
control, while root biomass increased significantly by 55.1%, 50.4% and 47.6%, respectively,
following inoculation with the E2, NYN1, and T6 (Table 1).

In sum, the A2 and NYN1 had stable positive effects on the growth and yields of
tomato plants of both growing seasons. While the beneficial effect of X5 was more pro-
nounced in the autumn–winter season, while that of T6 was more apparent in the spring–
summer season. Significantly higher yields—as much as 9.1% and 12.0% in autumn-winter
season, and 8.8% and 6.7% in the spring–summer season occurred after inoculation with
NYN1 and A2, respectively (Table 1).
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The tested isolates induced increases with a range of 6.7–12.0% in the yields of the two
growing seasons in this soilless environment, using coconut coir as the growth medium.
This increase was less than the 23% figure reported by Affokpon et al. [43], who inoculated
tomato plants in an open field with a mixture of AM fungi isolates. In general, the soil
water and plant nutrition status in open fields are not controlled as well as they are
under greenhouse conditions with soilless production. Maboko et al. found that under
greenhouse conditions of soilless production, the AM fungi (four arbuscular mycorrhizal
species, Glomus etunicatum, Paraglomus occultum, Glomus clarum, and Glomus mosseae) have
limited effects on tomato production [10]. However, another study found that under
conditions of severe, moderate, and mild drought stress, the AM fungi R. intraradices
affected yields, which increased by 25%, 23%, and 16%, respectively, compared with those
of uninoculated plants [44]. The results of the present study revealed increased yields of
approximately 6.7–12.0% in response to selected isolates of AM fungi under conditions
of adequate nutrient supply, indicating the economic value of applying these isolates in
tomato production systems using coconut coir as the growth medium.

The isolate E2 evidenced the lowest colonization level and had no significant effect
on the biomass growth of tomato plants of either growing seasons (Table 1). Although
this isolate induced an increase in root biomass, this positive effect did not impact on
shoot growth or yields (Table 1). The yield response was also correlated with the higher
colonization rate of A2, but not with the colonization rate of NYN1 compared with the other
four isolates (Figure 2). Maboko et al. found that despite relatively high root colonization
rates of AM fungi in tomato plants (78.2% and 77.7% in coir and sawdust, respectively) [10],
there was no significant improvement in tomato yields, indicating that a higher colonization
rate is only one of the factors—and not the deciding one—that influences the effectiveness
of AM fungi. These varying results could be attributable to different nutrient supplies,
especially N and P availability, and the different AM fungi species or isolates used in the
different studies.

The results of the present study showed that the responses of root biomass to the
effective AM fungi isolates were more pronounced for plants of the spring–summer season
compared with those of the autumn–winter season. However, this relatively higher root
biomass did not correspond to higher total biomass or yields (Table 1). The significant
influence of these AM fungi isolates on root biomass remains strong even in soilless culture
because soilless cultures are designed to foster well-developed root systems because of the
small substrate volumes available per plant, as the absorption surface of the roots via the
presence of AM fungi could significantly benefit the plants [45]. Because one of the benefits
of successful colonization of plants in soilless cultures is strongly developed root systems,
the plants could absorb large quantities of water and nutrients as a result of the increased
absorption surface of the roots via the AM fungi association [8].

4.3. Nitrogen and Phosphorus Uptake

Many previous studies have reported that the application of mycorrhization results in
remarkable improvements in nutrition status of plants, especially their N and P nutrition
status [46]. Variability in nutritional dynamics observed in the present study was caused
by differences among the isolates in growing seasons (Table 2). In the autumn–winter
season, N concentrations in the shoot tissue were only influenced by the isolate X5, which
did not have the same effect in the roots, whereas T6 induced significantly increased N
concentrations in the root tissue but not in the shoots (Table 2). T6, X5 and NYN1 affected
P concentrations in the shoot tissue, while the A2, T5, and X5 significantly increased P
concentrations in the root tissue during the autumn–winter growing season (Table 2). In
the spring–summer season, the isolates A2, T6, X5, and NYN1 increased N concentrations
in the shoots, whereas only the A2 and T6 increased N concentrations in the root tissue
(Table 2). Moreover, only the T6 increased P concentrations in the shoots, with none of
the isolates affecting P concentrations in the root tissue of the plants during this season
(Table 2). In sum, the N and P concentrations in the shoot and root tissues of the plants
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were not always inherent to the holistic mycorrhizal plants. This finding may imply that
the different isolates affect the distribution of these two main plant nutrients. The effects of
the AM fungus inoculations were found to be greater on N concentrations in plants during
in the spring–summer growing season than during the autumn–winter growing season,
whereas the reverse was true for P concentrations, which were greater for plants during
the autumn–winter season (Table 2).

Because of the interaction effects of nutrient concentrations and plant biomass accu-
mulation, the N and P content in the mycorrhizal plant tissue were significantly higher
compared with those of the uninoculated plants. Moreover, these levels varied among the
isolates and between growing seasons (Table 3). Higher accumulation of both N and P in
the tomato plant shoots were associated with the isolates A2, T6, X5, and NYN1, whereas
higher N content levels in the root tissue were stimulated by the A2 and T6 during the
autumn–winter season. Further, the isolates A2, T6, and X5 induced higher P content
levels in roots of inoculated plants compared with these levels in the uninoculated plants
(Table 3). Higher N and P accumulation in the shoot tissue of plants were stimulated by
T6 and NYN1, while higher N accumulation in the root tissue were stimulated by E2,
T6 and NYN1 during spring–summer. And the isolates E2 and NYN1 showed higher
P accumulations in the root tissue compared with those of the uninoculated plants in
this season (Table 3). In sum, the total content of N and P in the plants in both seasons
were most influenced by T6 and NYN1, with E2 evidencing positive effects on N and P
accumulation in spring-summer season, and X5 showing in the autumn–winter season
(Table 3). There were corresponding increases in the biomass, growth, and yields of inocu-
lated plants with the isolates (Tables 1 and 3). Thus, the effects of the different isolates on
N and P accumulation were varied but correlated with the growing seasons (together with
cultivars) used in this study. Considering the plant biomass accumulation and nutrient
uptake together, we found the same pattern of responses of selected effective isolates on
both plant growth and nutrient accumulation (Tables 1 and 3).

Labour et al. observed that studies of mycorrhizae in natural ecosystems and low
tillage agriculture clearly illustrate the multiple benefits of this ancestral symbiosis in any
climate and geographical location [47]. Moreover, they suggested that inoculation and the
subsequent management of AM fungi could lead to advances in agricultural practices but
would require more knowledge concerning the functioning of the two symbiotic partners.
In the present study, the F. mosseae isolates from far distances in China and Germany,
although with same the species identification according to morphology and ITS, and near
evolution based on PT1 sequence, their influence on the growth of tomato plants were
varied in growing seasons with sufficient nutrient supplies in soilless industrial cultures.
The yields of the inoculated plants were correlated with higher nutritional status among
the isolates. The higher yields were induced by increasing biomass accumulation, which
was a result of nutritional benefits from inoculation with effective isolates of F. mosseae.

5. Conclusions

The results of this study revealed that the fruit yields and mineral status of tomato
plants responded to specific F. mosseae isolates in symbiotic partnership produced in a co-
conut coir growth medium. The effective isolates were associated with high colonization
rates in spite of the adequate supply of nutrients. Although with the closing evolutionary
distances based on both SSU rDNA and PT1 region sequences of these five isolates, two of
them had positive effects of yield on plants of both the growing seasons, two varied in their
influence on yield of both seasons/cultivars and one had a weaker influence relative to the
uninoculated plants. Inoculation with more effective isolates was found to stimulate N and
P uptake in the plant tissues, which increased significantly by 29.0–38.0% and 34.6–36.5%,
respectively, while the biomass and fruit yields increased by 18.4–25.4% and 8.8–12.0%,
respectively. In conclusion, this study is the first to compare the influence of F. mosseae
isolates collected from soils obtained from different geographical locations that were used
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as renewable biological resources on plant yields and allows more effective use of chemical
fertilizer in soilless industrial tomato production.
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