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Magnun Nueldo Nunes dos Santos1, Fernando Ferreira Costa1,7, Jaime Millán3

and Erich Vinicius De Paula1,7*

1 School of Medical Sciences, University of Campinas, Campinas, Brazil, 2 Department of Biomedicine, Federal University of
Piaui, Parnaiba, Brazil, 3 Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas,
Universidad Autonoma de Madrid, Madrid, Spain, 4 Genetics Postgraduate Program, Federal University of Pernambuco, Recife,
Brazil, 5 Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil, 6 Department
of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco (HEMOPE), Recife, Brazil, 7 Hematology and
Hemotherapy Center, University of Campinas, Campinas, Brazil

Free extracellular heme has been shown to activate several compartments of innate immunity,
acting as a danger-associated molecular pattern (DAMP) in hemolytic diseases. Although
localized endothelial barrier (EB) disruption is an important part of inflammation that allows
circulating leukocytes to reach inflamed tissues, non-localized/deregulated disruption of the
EB can lead to widespreadmicrovascular hyperpermeability and secondary tissue damage. In
mouse models of sickle cell disease (SCD), EB disruption has been associated with the
development of a form of acute lung injury that closely resembles acute chest syndrome
(ACS), and that can be elicited by acute heme infusion. Here we explored the effect of heme
on EB integrity using human endothelial cell monolayers, in experimental conditions that
include elements that more closely resemble in vivo conditions. EB integrity was assessed by
electric cell-substrate impedance sensing in the presence of varying concentrations of heme
and sera from SCD patients or healthy volunteers. Heme caused a dose-dependent decrease
of the electrical resistance of cell monolayers, consistent with EB disruption, which was
confirmed by staining of junction protein VE-cadherin. In addition, sera from SCD patients, but
not from healthy volunteers, were also capable to induce EB disruption. Interestingly, these
effects were not associated with total heme levels in serum. However, when hemewas added
to sera from SCD patients, but not from healthy volunteers, EB disruption could be elicited,
and this effect was associated with hemopexin serum levels. Together our in vitro studies
provide additional support to the concept of heme as a DAMP in hemolytic conditions.

Keywords: endothelial barrier, heme, sickle cell disease, electric cell-substrate impedance sensing, danger-
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INTRODUCTION

Heme is a ubiquitous molecule present in almost all forms of life,
that is normally found conjugated to hemoproteins such as
hemoglobin (Hb), the most abundant pool of heme in
mammals. However, despite its importance in biological
pathways such as oxygen transportation, several lines of
evidence demonstrate that free extracellular heme (FEH) can
also be toxic to cells, a concept supported by the selection of
extremely effective extracellular scavenging mechanisms (e.g.,
hemopexin) that preclude the circulation of FEH (1–3).

The toxicity of FEH is particularly important for the
pathogenesis of conditions associated with increased
intravascular hemolysis (hence, high free Hb levels), since
oxidation of free Hb has been shown to increase the rate of
heme release to the extracellular space (4). FEH toxicity can be
caused by direct (i.e., intercalation of heme in cellular
membranes) or indirect (i.e., immune-mediated) mechanisms,
and in regard to the latter, several studies demonstrated that
heme can activate a myriad of innate immunity compartments
such as TLR4-dependent pathways (5), neutrophil/neutrophil
extracellular trap release (6, 7), complement (8, 9),
inflammasomes (10), and hemostasis (11–13). Together, these
studies support the notion that heme can act as a danger-
associated molecular pattern (DAMP) in diseases characterized
by high hemolytic rates such as malaria, sepsis, hemolytic uremic
syndrome and sickle cell disease (SCD), where FEH could trigger
and/or contribute to the underlying inflammatory response
(14–17).

Localized endothelial barrier (EB) disruption is an important
and finely regulated part of innate immune response that allows
circulating leukocytes to reach inflamed tissues (18). However,
deregulated EB disruption can lead to widespread microvascular
hyperpermeability and secondary tissue damage (19, 20). While
this possibility is more evident in conditions such as sepsis-
associated acute lung injury (ALI) and cerebral malaria, studies
in mice models of SCD recently demonstrated that EB disruption
could contribute to the pathogenesis of acute chest syndrome
(ACS), a form of ALI that figures among the main causes of
death in SCD (21). Moreover, these studies demonstrated that
FEH can cause a severe and fatal form of ALI in SCD mice,
preceded by congestion and edema of alveolar spaces (22). In
fact, the barrier-disrupting effects of heme have been
demonstrated more than 15 years ago (23), and were recently
confirmed in studies using endothelial cell cultures stimulated by
FEH by independent groups, using different experimental
designs (24–26). However, to the best of our knowledge no
study evaluated the effect of sera from SCD patients with varying
levels of heme on EB integrity. Moreover, one of the caveats of
studying the pathological relevance of heme refers to the unstable
nature of FEH in biological systems due to its fast binding
kinetics to circulating proteins (such as hemopexin and
albumin), allowing some authors to question the concept that
heme can act as a DAMP in living organisms (27). Here we
explored the effect of heme on human endothelial cell
monolayers in experimental conditions designed to address
some of these caveats, using a robust functional assay (28, 29)
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that has been previously used in studies of EB function in other
inflammatory conditions (30, 31).
MATERIALS AND METHODS

Reagents, Antibodies, and Cells
Heme was obtained from Frontier Scientific (Frontier Scientific,
USA) and TNFa from Biolegend (Biolegend, USA). Endothelial
basal medium (EBM-2), endothelial cell growth medium
supplement (EGM-2), and primary human umbilical vein
endothelial cells (HUVEC) were obtained from Lonza
(Walkersville, MD, USA). Rabbit monoclonal anti–VE-
cadherin antibody was from Cell Signaling Technology
(Boston, MA, USA), and Alexa fluor 555-phalloidin was
obtained from Life Technologies (Gaithersburg, MD, USA).

Cell Culture
HUVECs were grown in fibronectin (10 μg/ml) pre-coated 75 cm²
flasks inEBM-2mediumsupplementedwith2%fetal bovine serum
and with EGM-2, at 37°C in an atmosphere of 5% CO2/95% air, as
previously described (32). Medium was replaced every 48 h until
confluence (approximately 80%) was reached. All experiments
were performed in HUVECs between passages 3 to 5.

In Vitro Evaluation of Endothelial Barrier
Function
EB integrity was measured using ECIS, an electric cell-substrate
impedance sensing system (ECIS Zq, Applied BioPhysics, Troy,
NY) (28, 29, 33). Cells were seeded (2.5 × 105 cells/well) and
grown to confluency on fibronectin-coated (10 μg/ml) eight-well
arrays (8WE10, Applied BioPhysics, Troy, NY) containing
interdigitated gold electrodes, specific for this system. The
system is based on the application of a weak alternating
current through the electrode array, and on the continuous
measurement of the ability of the cell monolayer to impede the
movement of electrons between adjacent endothelial cells. This
resistance is expressed by the parameter R (resistance), a
component of the impedance measured by ECIS (34). As
previously shown, at low frequencies the movement of current
between cells is mostly restricted by the presence of intercellular
junctions (35, 36). Endothelial cells were normally seeded 48 h
before experiments and R was recorded after 48 h. Only wells
with R > 1,500 ohms and stable impedance/resistance readings
were used. Before stimulation, resistance was continuously
monitored for 2 h, to confirm EB stability represented by a
plateau in the R curve. Stimuli were then added to wells under
continuous impedance/resistance monitoring, for the time
indicated in each experiment. A baseline R value was recorded
immediately prior to the addition of each stimuli, and results
were then expressed as a ratio from baseline resistance
(normalized R). The lower the normalized R value, the higher
the magnitude of EB disruption of cell monolayers.

Stimulation of Endothelial Cells
Heme was diluted to an initial working concentration of 5 mM in
NaOH 0.1 M. This solution was filtrated through a 0.22-μm filter
December 2020 | Volume 11 | Article 535147
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and immediately used in experiments, at concentrations from 5
to 100 μM (diluted in serum free EBM-2 medium). Of note, the
final concentration of NaOH in these solutions varied from 0.01
to 0.2 μM respectively. NaOH solutions with concentrations
equivalent to those used to in heme dilutions of 30, 50, and 100
μM were used as negative controls (vehicle), as detailed in figure
legends. TNFa was diluted in serum free EBM-2 medium and
immediately added to cell monolayers. Sera from patients or
healthy volunteers were diluted (20% v/v) in EBM-2, as
previously described (37). The protein concentration of final
sera preparations corresponded to 20% of serum total protein
concentration from each subject (shown in Table S1) and varied
from varied from 1.24 to 1.98 g/dl in patients, and 1.22 to 1.54 g/
dl in healthy volunteers.

Patients and Healthy Volunteers
The study was performed in accordance with the Declaration of
Helsinki and approved by the local Institutional Review Boards
of both HEMOPE and University of Campinas (protocols
510.517 and 3.291.418 respectively). Written informed consent
was obtained from all subjects or their legal representatives prior
to enrollment. The study population consisted of 20 patients with
SCD (all with sickle cell anemia—HbSS) followed at HEMOPE
Foundation (Recife, PE, Brazil) and 10 healthy volunteers from
the same geographic region and ethnic background. These
individuals were part of a cohort from an ongoing
collaborative study aimed to investigate the association of
haptoglobin polymorphisms with markers of endothelial
activation in SCD. Patients were selected from this cohort
based on pre-determined serum heme levels measured by a
colorimetric assay (QuantiChrom Heme Assay Kit, BioAssay
Systems, USA), so that patients with highest and lowest heme
levels were represented in sample. All included SCD patients
were in steady state (i.e., at least 3 months from the last vaso-
occlusive crisis or red blood cell transfusion), and 8/20 were
using hydroxyurea. Whole blood samples were obtained by
venipuncture and allowed to clot at room temperature for
30 min, and then centrifuged at 1,000g (4°C, 15 min) for
serum separation, which was stored at −80°C until analysis.
Subject characteristics were recorded at the time of sample
collection. Based on ECIS results from a previous study from
our laboratory with sepsis patients, a sample size of 20 patients
and 10 controls was planned, to obtain a power of 80% and a type
II error rate of 0.05.

Immunofluorescence
Cells were grown to confluence for 48 h on fibronectin (10 μg/
ml) pre-coated microscopy-grade glass coverslips, serum starved
for 2 h, and stimulated with heme 30 μM for 6 h. HUVECs were
then fixed in paraformaldehyde (4% for 20 min), washed with
phosphate-buffered saline (PBS), treated (5 min) with 10 mM
glycine, permeabilized with 0.2% Triton-X in PBS, rinsed and
blocked with 3% bovine serum albumin in PBS (15 min). Cells
were then incubated with anti VE-cadherin antibody (30 min),
rinsed and incubated with Alexa Fluor-coupled secondary
antibodies (30 min). Actin filaments were detected with
Frontiers in Immunology | www.frontiersin.org 3
fluorescent phalloidin. Confocal laser scanning microscopy was
carried out using a Zeiss LSM 510 microscope, equipped with a
63 × 1.3 oil immersion objective. Intercellular gaps were
quantified using Image J, by an investigator blinded to
experimental condition, as previously described (38). Briefly, a
total of 10 images, each containing approximately twenty cells
were analyzed for each experiment. Image contrast was adjusted
semi-automatically until saturation, so that areas of the confluent
monolayer that yielded no signal in all fluorescence channels
could be identified as gaps, and selected by creating a threshold.
Then, the proportion of empty areas in respect to total image
area was calculated. To show the empty areas, the region
obtained with the threshold was blue-colored and flattened to
the original image.

Measurement of Hemopexin and
sVCAM-1 Levels
Hemopexin and sVCAM-1 levels were measured in serum by
Elisa in accordance with manufacturer’s instructions (Abcam
ab171576, Cambridge, UK; and R&D #DY809, Minneapolis,
USA, respectively).

Statistical Analysis
Differences in continuous variables were analyzed using
Student’s t-test/Anova or Mann-Whitney/Kruskal-Wallis tests
according to: variable distribution (Gaussian or non-Gaussian
respectively) assessed by the D’Agostino & Pearson normality
test, and to the number of groups in each comparison.
Correlation was calculated using the Spearman correlation
coefficient. Data are expressed as mean ± SEM or median and
range, as specified. A P-value ≤ 0.05 was considered statistically
significant. All statistical analysis was performed with GraphPad
Prism 7.0 Software (GraphPad Inc., San Diego, CA, USA).
RESULTS

Heme Induces a Transient and Dose-
Dependent Disruption of EB
We first demonstrated that heme is capable to induce a dose-
dependent disruption of EB in HUVECs, which attains statistical
significance as early as 10 min after stimulation, and that persists
for 30 min with heme concentrations between 20 and 30 μM, for
60 min with heme 50 μM, returning to baseline values after these
timepoints except for heme 100 μM concentration (Figure 1A).
Of note, the effect vehicle (NaOH) caused no changes in EB
integrity measured by ECIS (Figure S1A). In order to confirm if
these functional changes were associated with morphological
changes, we selected a representative heme concentration (30
μM) to stimulate HUVECs, which increased intercellular gap
counts in VE-cadherin stained slides (Figures 1B, C).

Sera From SCD Patients Cause EB
Disruption In Vitro
Next, we investigated whether sera from patients with SCD,
containing varying levels of heme, could elicit changes in EB
December 2020 | Volume 11 | Article 535147
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integrity in HUVECs. Characteristics of our study population are
shown in Table S1. First, we compared the effect of sera from all
SCD patients with those from healthy volunteers. As shown in
Figure 2, after a period of EB stability observed in both groups,
SCD sera elicited a significant decrease in normalized resistance,
consistent with EB disruption (Figure 2A). This effect persisted
for at least 4 h. We then separated patients in two groups
according to median levels of total heme in serum (63.0 μM).
However, no differences could be observed between these two
patient subgroups (Figure 2B). It should be noted that while
statistically significant, the effects of serum presented a lower
magnitude than the effects of heme in aqueous solutions. Of note,
no difference could be observed between HU users and non-users
(Figure S1B).
Frontiers in Immunology | www.frontiersin.org 4
Sera From Healthy Volunteers, but Not
From SCD Patients, Inhibit EB-Disrupting
Effects of Heme
Since total serum heme (which includes mainly the protein-
bound fraction of this molecule) was not a significant
determinant of the magnitude of EB disruption, we
hypothesized that an acute increase in heme levels would be
necessary to reproduce the effect of heme shown in Figure 1,
based on the assumption that FEH might not be available in a
protein-rich matrix such as serum. In order to test this
hypothesis, cells were incubated with serum from healthy
volunteers or SCD patients for 24 h in ECIS arrays, and then
challenged with heme to a final concentration of 30 μM. While
the presence of sera from healthy volunteers prevented the effects
A

B

C

FIGURE 1 | Endothelial barrier integrity after heme stimulation. (A) Each line represents the mean ± SEM of the normalized resistance of HUVECs stimulated with
heme in serum-free solutions measured by ECIS at 4,000 Hz. Differences between vehicle and heme-stimulated cells were compared using the Kruskal-Wallis test
with the Dunn’s posttest. Statistical significant differences are indicated by colored asterisks on each timepoint. *P= 0.01 to 0.05; **P<0.01; ***P< 0.001; n = 5 to 15
independent experiments in at least three different days per heme concentration. (B) HUVECs were treated for 6 h with vehicle or heme 30 µM, and stained for the
cell-cell junction marker VE-cadherin and for filamentous actin (F-actin). White arrows indicate intercellular gaps. (C) Semi-automated image processing identified
intercellular gaps in the images that were quantified respect to the total area of the cell monolayer (n= 4 to 5 per group in two independent experiments). Mann-
Whitney test; *P =0.01. Vehicle corresponds to the same solution used to dilute heme (NaOH 0.1 M), without heme. The final NaOH concentration in each heme
dilution varied from 0.01 to 0.2 µM for heme 5 µM to heme 100 µM. In vehicles, higher NaOH concentrations were used (0.06 to 0.2 µM in panel A, and 0.06 µM in
panel B).
December 2020 | Volume 11 | Article 535147
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of heme on EB integrity, a milder, yet significant disruption of EB
was observed when heme was added to cells incubated with sera
from SCD patients (Figure 3).

Heme-Induced EB Disruption Is
Associated With Hemopexin Levels
Since free heme is quickly removed from the circulation by
hemopexin, we hypothesized that the induction of EB disruption
by the addition of heme to SCD sera could be associated with lower
hemopexin levels when compared to healthy volunteers. In fact,
hemopexin levels were significantly lower in SCD patients
compared to controls (0.33 ± 0.32 vs 1.29 ± 0.23; P< 0.001)
(Figure 4A). As expected, a strong correlation (Rs = 0.90; P <
0.0001) was observed between heme and hemopexin levels (Figure
4B). Interestingly, when all participants were divided according to
median hemopexin levels (0.59 mg/ml), lower values of normalized
resistance (which indicate heme-induced EB disruption) were
observed in individuals with lower hemopexin levels (Figure 4C).
Frontiers in Immunology | www.frontiersin.org 5
Moreover, the magnitude of heme-induced EB disruption at 12min
(the timepoint when this effect was more evident) were correlated
with hemopexin levels (Rs = 0.68; P < 0.0001) (Figure 4D). Of note,
a strong correlation was observed between hemopexin and
sVCAM-1 (Rs = −0.72; P< 0.001). However, while levels of
sVCAM-1 were also associated with normalized resistance, the
correlation coefficient was weak (Rs = −0.42; P = 0.03).
DISCUSSION

EB disruption is a hallmark of several inflammatory diseases (39–
42), and studies in animal models suggest that this process is
involved in the pathogenesis of acute complications of SCD,
namely ACS (21, 22). Accordingly, the effects of hemolysis
byproducts such as free hemoglobin and heme on EB integrity
in endothelial cell monolayers have been recently investigated,
with consistent data supporting an EB-disrupting effect of heme
A

B

FIGURE 2 | Effect of sera from SCD on EB integrity. Confluent HUVEC monolayers were incubated with sera (20% v/v) from SCD patients (n=20) or healthy
volunteers (n=10) and normalized resistance was recorded at 4,000 Hz. Each line represents the mean ± SEM in the specified time points from experiments
comparing (A) patients and healthy volunteers; or (B) patients subgrouped by total levels of heme in serum. Differences were compared using the Mann-Whitney
test. Statistical significant differences are indicated by colored asterisks on each timepoint. *P= 0.01 to 0.05; **P<0.01.
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FIGURE 3 | Heme is capable to induce EB disruption in the presence of serum from patients with SCD, but not from healthy volunteers. Confluent HUVEC
monolayers were incubated with sera (20% v/v) from SCD patients (n = 20) or healthy volunteers (n = 10) for 24 h, followed by challenge with heme 30 µM (black
arrow). Normalized resistance was recorded at 4,000 Hz. Each line represents the mean ± SEM in the specified time points. Differences were compared using the
Mann-Whitney test. Statistical significant differences are indicated by colored asterisks on each timepoint. *P= 0.01 to 0.05; **P<0.01; ***P<0.001. Heme was diluted
in NaOH, and the final NaOH concentration in heme dilutions was 0.06 µM.
A B

C D

FIGURE 4 | Heme-induced EB disruption in the presence of serum is associated with hemopexin levels. (A) Hemopexin levels were measured by Elisa and were
lower in SCD patients (n=19) compared to healthy volunteers (n=10) (Mann-Whitney test). (B) A strong negative correlation was observed between hemopexin and
heme levels (Spearman correlation coefficient). (C) Lower values of normalized resistance at the timepoint of peak heme-induced EB disruption were observed in
individuals with lower hemopexin levels (t test). Accordingly, peak heme-induced EB disruption (i.e., after 12 min) was statistically correlated with hemopexin levels
(Spearman correlation coefficient) (D).
Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 5351476
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(24–26). However, due to the strong affinity of heme to
circulating proteins, coupled with the possible interplay of
heme with other inflammatory mediators, it is important to
confirm these effects in experimental conditions that more
closely resemble those observed in the clinic. The most
important result of our study was the demonstration that heme
is capable to induce EB disruption even in the presence of serum
proteins, but that this effect only occurs with serum from SCD
patients, but not from healthy volunteers, and is associated with
hemopexin levels.

Based on the demonstration that heme can trigger innate
immunity activation (1, 13–15), excess heme was associated with
the pathogenesis of vaso-occlusion (43) and ACS (22, 44) in
SCD. Accordingly, a growing interest emerged on whether
alterations of the alveolar-capillary barrier participated in the
pathogenesis of ACS, as well as if heme was capable to induce EB
disruption. In regard to the former, studies using mice models of
SCD suggested that EB disruption was involved in the
pathogenesis of ACS (21, 22). Moreover, isolated pulmonary
endothelial cells from homozygous sickle mice (SS) were shown
to be more sensitive to the EB-disrupting effects of LPS
(measured by ECIS) than cells from heterozygous (AS) mice
(45). In regard to the latter question, the first demonstration that
heme could elicit EB disruption was published almost 20 years
ago in a study that demonstrated the accumulation of
radiolabeled liposomes in different organs of C57Bl/6 mice
treated with heme (46), a finding that was also demonstrated
using other in vivo assays of EB integrity in mice (11). In the last
4 years this observation was confirmed and further explored in
cell-based assays, in which the exposure of pulmonary or
microvascular endothelial cells to heme (diluted in aqueous
solutions of NaOH) consistently induced EB disruption in
both static and flow-based (microfluidic) assays (24–26). These
studies also demonstrated that these effects occurred in the
context of the effects of heme on innate immunity, since they
were TLR4-dependent. However, one of the caveats of studies
about the effects of heme on innate immunity is the strong
affinity of this molecule for proteins that are abundant in serum
such as hemopexin and albumin, so that some authors recently
questioned their biological relevance at all (27). Of note, all of the
recent cell-based studies about the effects of heme on EB
disruption used heme diluted in protein-free solutions.

In our study we first confirmed that heme can disrupt EB, in a
dose dependent (in our system, in concentrations above 10 μM)
and transient fashion. Barrier integrity returned to normal
within 25 to 60 min in cells exposed to the lower range of
heme concentrations used in our study (below 30 μM), which
more closely resemble the concentrations of FEH in contact to
cells in humans. This transient nature indicates that heme-
induced barrier disruption is not caused by cell death, and
raises the question on which of the signaling pathways
involved in the regulation of EB integrity are modulated by
heme. This observation is also consistent with a previous study
that also showed a dose-dependent effect of heme on EB
integrity, and that showed that heme used at a higher
concentration (40μM) was associated with a more delayed
disruption of EB integrity that was attributed to necroptotic
Frontiers in Immunology | www.frontiersin.org 7
cell death (25), but other pathways that are modulated by heme
such as autophagy (47–49) and MKK3/p38MAPK (50) have also
been recently associated with EB changes. It should be noted that
our results also confirm that the EB of HUVECs behave similarly
to pulmonary and microvascular endothelial cells in response to
heme, supporting their use in our subsequent experiments.

We also demonstrated that sera from patients with SCD, but
not from healthy volunteers, induce EB disruption of HUVEC
monolayers. Regulation of EB integrity is a complex process that
involves cellular and humoral mediators (51–53), both altered in
SCD. In this regard, our results suggest that soluble inflammatory
mediators contribute at least in part to EB disruption in SCD, and
that their identification could generate important insights about
the pathogenesis of this disease. Given the complex nature of this
process, high-throughput strategies such as proteomics or
metabolomics would possibly be more adequate than the testing
of isolated candidate modulators by immunological methods. As
far as we are aware, only one group studied evaluated the effect of
specific plasma components on EB integrity in SCD. This study
showed that exosomes from SCDpatients with a higher frequency
of ACS (mainly derived from red blood cells), induced a more
pronounced disturbance of the EB on human microvascular
endothelia cells than exosomes from patients with no history of
ACS (54).Ofnote, the samegrouphadpreviously shown that these
exosomes were mainly derived from endothelial cells, and had a
miRNA cargo capable to discriminate mild from severe clinical
phenotypes (55). As in our study, all patients from the former
study were in steady-state when samples were collected, and EB
function was measured by ECIS. Since our study was focused on
the role of heme as an EB-disrupting agent in SCD, we first
investigated whether total heme levels in these serum samples
influenced the magnitude of EB disruption, which was not
confirmed. Our negative results can be probably explained by
the fact that total heme levels encompass not only FEH, butmainly
heme bound to hemopexin, albumin and hemoglobin (56), which
is not capable to activate the immune system. Accordingly, it is
likely that levels of FEH in stored serumsamples are extremely low,
or even absent, as suggested by others (56). So, we added heme to
cells in the presence of serum to investigate whether an acute
increase in serumheme concentrations could reproduce the effects
of heme on EB. By doing this, we were able to show that proteins
present in serum from patients with SCD are not sufficient to
inhibit the EB-disruption induced by an acute challenge with
heme. Interestingly, addition of heme to sera from healthy
volunteers did not elicit any effect on EB, suggesting that the
inflammatory milieu characteristic of serum from SCD patients is
required for heme-induced EB disruption.

Of all heme scavenging proteins present in serum, hemopexin is
the one with the highest affinity, recognized as a critical line of
defense against FEH. As expected, hemopexin levels were
markedly lower in SCD patients compared to healthy volunteers.
Moreover, hemopexin levels were also correlated with both heme
and sVCAM-1, which is amarker of endothelial activation in SCD.
Interestingly, we demonstrated that peak heme-induced EB
disruption in the presence of serum was associated with
hemopexin levels, which as far as we are aware represent the first
time when human hemopexin levels were associated with
December 2020 | Volume 11 | Article 535147
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modulation of EB function. Together these results provide
additional support for the concept that FEH can directly
contribute to EB disruption in SCD. Of note, in a recent study,
the mechanisms by which heme disrupts the EB were further
elucidated and shown to involve endothelial cytoskeleton
remodeling (50), paving the way for the study of these pathways
inSCD.Finally, our results alsodemonstrate that the effects ofheme
on endothelial cells are not restricted to serum free conditions.

Our study has limitations that need to be acknowledged. First,
although theECISmethodhas been validated as amethod to assess
the integrity of intercellular junctions by both empirical data (35,
36), as well as by its use in the description of several key features of
endothelial barrier function (57–61), it only evaluates the response
of endothelial cells to a discrete stimulus, compared to the much
more complex regulation of endothelial function in vivo. On the
other hand, this very characteristic represents an advantage to
answer focused research questions such as the one from our study.
Another limitation is the use ofHUVECs as opposed to other adult
organ-specific endothelial cell types, since phenotypic differences
have been reported between different endothelial cell types. It
should be noted however, that HUVECs have been a valuable
tool for studies of vascularphenotype for several decades, including
studies about central aspects of endothelial barrier biology during
inflammation (62, 63). In addition, in the first part of our study
using heme in NaOH solutions we demonstrated that HUVECs
respond to heme in a similar fashion compared to pulmonary and
microvascular endothelial cells in regard to EB function. We
should also mention that although our results demonstrate a yet
unknown association of serum hemopexin levels with heme-
induced in vitro EB disruption in SCD, this association does not
allow us to claim for a causal relationship between hemopexin
deficiency and EB disruption, which requires additional studies
investigating whether hemopexin can reverse these changes.
Another limitation of our study is related to the fact that
methods used to measure heme in most studies involving SCD
are not capable to separate total or cell free heme, fromprotein-free
heme (i.e., not bound to hemopexin, albumin or other proteins).
This fraction, referred in our study as FEH, is the one that is
expected to be toxic to cells and tissues. This methodological
limitation could explain why total heme levels were not
associated with EB disruption, whereas hemopexin levels, which
is consumed by the release of free heme, were. Studies using
recently described methods capable to measure protein-free
heme (64, 65) are warranted to address this issue. Another
limitation that deserves to be discussed is the relevance of adding
NaOH-solubilized heme to cell cultures, as a model of heme
release. In fact, important details about the kinetics of heme
release from damaged red blood cells in patients with hemolytic
disorders are yet to be clarified, and the very existence of FEH in
vivo has been discussed (27). Although the role of red blood cell
microparticles as mediators of heme transfer has been recently
demonstrated (66), one cannot exclude that other aspects of the
interaction of heme with blood components that are not included
in our model may be key to its pathological effects in vivo.
Nevertheless, we believe that our strategy of adding heme to
patient serum, and measuring EB function in real time can
overcome at least some of these limitations, potentially
Frontiers in Immunology | www.frontiersin.org 8
representing a closer model to the pathological effects of heme in
vivo. Since all our experiments were performed with serum, we
should also mention the fact that some of the pro-inflammatory
effects of heme in cell models were only observed in serum free
conditions (1). Finally, the relatively low sample size of our study
should also be considered when interpreting our results.

In conclusion, we demonstrated that the previously described
transient disruption of EB by heme is also observed in the
presence of sera from SCD patients, corroborating the role of
FEH in the pathogenesis of this condition, through the
demonstration that its effects are not restricted to serum free
conditions. The fact that the effects of heme on EB are only
observed in serum from SCD and that this effect is associated
with hemopexin levels support the concept that heme could
directly contribute to EB disruption in SCD, thus warranting
additional studies to confirm this causal relationship. Together
our in vitro studies provide additional support to the concept
that heme may act as a danger-associated molecular pattern
(DAMP) in hemolytic conditions.
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SUPPLEMENTARY FIGURE 1 | Exploration of the effects of NaOH and
hydroxyurea (HU) on EB. In (A), different concentrations of NaOH, which was the
vehicle used to dilute heme, were used under the same experimental conditions.
Each line represents the mean ± SEM of the normalized resistance of HUVECs
stimulated with either NaOH or thrombin used as a positive control. Normalized
resistance was measured by ECIS at 4,000 Hz. As shown in the upper panel, NaOH
at different concentrations did not affect EB. In (B), data from SCD patients used in
Figure 3 were subdivided according to the use or not of hydroxyurea (HU). No
difference in ECIS readings after heme stimulation could be detected between these
two subgroups. Kruskall Wallis and Dunn’s posttest.
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