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Abstract

Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acqui-

sition of a mesenchymal morphology and phenotype in addition to driving migration is a con-

sequential process that promotes metastasis. Although some kinases are known to regulate

a mesenchymal phenotype, the role for a substantial portion of the human kinome remains

uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and

screened a panel of TNBC cell lines to evaluate the compounds’ effects on a mesenchymal

phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemo-

types based on reversal of the mesenchymal cell morphology, which was then prioritized to

twelve compounds based on gene expression and migratory behavior analyses. We

selected the most active compound and confirmed mesenchymal reversal on transcript and

protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify

candidate kinases responsible for the EMT reversal. This investigation shows the novel

application to identify previously unrecognized kinase pathways and targets in acquisition of

a mesenchymal TNBC phenotype that warrant further investigation. Future studies will

examine specific roles of the kinases in mechanisms responsible for acquisition of the mes-

enchymal and/or migratory phenotype.

Introduction

Breast cancer, followed by lung and colorectal cancers, is the most prevalent neoplastic disease

in women. Among U.S. women there are expected to be more than 290,000 new cases of inva-

sive breast cancer in 2016 [1]. There has been minimal improvement in survival in patients
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with metastatic recurrent breast cancer over the past 30 years [2,3], highlighting the impor-

tance of discovering novel targeted therapies. Molecular subtypes of breast cancers are catego-

rized based on the receptors they overexpress: Estrogen receptor (ER+), progesterone receptor

(PR+), and EGFR receptor Her2 (HER2+) amplification. Effective therapies are currently

available to target estrogen and HER2 receptors and provide benefit for the associated breast

cancer subpopulations. Triple negative breast cancers (TNBCs) lack these targetable receptors,

severely limiting therapeutic options and viable means for intervention. Phenotypically, TNBC

frequently presents as a more advanced and metastatic disease than other breast cancer sub-

types [4,5]. Acquisition of a mesenchymal phenotype, based on a change in cell morphology to

more fibroblastic-appearing cells, upregulation of mesenchymal genes and downregulation of

epithelial genes, alteration of the extracellular environment and promotion of a migratory

behavior facilitates engagement of the cancer cells from the primary tumor, extravasation into

the vasculature, and seeding in distal tissue sites to create metastatic lesions. One specific pro-

cess that has been described in the acquisition of a mesenchymal phenotype, Epithelial-

mesenchymal transition (EMT) is defined by the loss of individual cells’ epithelial genes

(downregulation of E-cadherin) and upregulation of mesenchymal genes (vimentin, c-FOS,

SNAI1, TWIST, ZEB1) and positively correlates with cancer cell progression to metastasis and

therapeutic resistance [6–8]. A well-documented example of an EMT regulator is the mitogen-

activated protein kinase (MAPK) family, which is activated by extrinsic cytokines and growth

factor receptors. Once activated, MAPK members have diverse roles in maintaining the mes-

enchymal phenotype through interactions with other signaling pathways [9–11].

The mechanisms responsible for driving mesenchymal phenotypes and cell plasticity are

complex and require regulation of various kinases and coordinated interactions of different

signaling pathways. Kinases are key mediators of metastasis, growth and pro-proliferative

pathways that are essential to tumor progression through regulation of mesenchymal genes

and rearrangement of cytoskeletal components and EMT in a range of tumor types. In fact,

kinases regulate some aspects of mesenchymal phenotypes (upregulate mesenchymal gene

expressions and promote migration) but may not necessarily directly regulate another aspect

(downregulate epithelial genes). Kinases often require coordination with other regulatory pro-

teins to drive metastasis. Unregulated kinase activity affects many cellular pathways involved

in tumorigenesis [12,13], and targeting these kinases has been a primary focus of both past and

emerging therapeutic development studies. To date, the kinases known to contribute to tumor

progression and metastasis represent only a small sample of the expansive human kinome,

which is composed of 518 kinases [14]. Furthermore, deep sequencing reveals 375 kinases

(approximately 75%) are expressed in various breast cancer cell lines [15]. A large proportion

of the human kinome have uncharacterized functions [16]. Our laboratory recognizes that

therapeutically important and innovative targets could emerge from this subset of currently

understudied and poorly understood kinases. Kinases are tractable targets for drug discovery,

and the discovery of new kinase targets useful for treatment of the receptor negative and more

aggressive breast carcinomas is an important goal.

Recently, broad screen approaches using small molecule inhibitor or RNAi libraries have

been employed to implicate alternative pathways and individual kinases involved in acquisi-

tion of a mesenchymal cellular phenotype by cytoskeletal remodeling [17,18] and EMT rever-

sal, also known as mesenchymal-to-epithelial transition (MET) [19–22]. We utilized the

Published Kinase Inhibitor Set (PKIS), a library of 906 compounds provided by GlaxoSmithK-

line (GSK) consisting of compounds from a wide range of chemical scaffolds that were origi-

nally prepared to target known kinase therapeutic targets (including polo-like kinase, c-Jun

N-terminal kinase, protein kinase B, insulin-like growth factor, and others); this library set is

composed of two combined libraries, PKIS1 and PKIS2 [23]. Much of the set has been profiled
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against a large panel of kinases, and thus the use of the set in a phenotypic screen allows inter-

rogation of previously unidentified or understudied kinase pathways [24]. To identify addi-

tional kinase pathways that play a role in regulating the mesenchymal phenotype in TNBC

through genetic alterations, or promotion of a mesenchymal morphology and migratory

behavior, we utilized this small molecule kinase inhibitor library to screen three TNBC cell

lines with mesenchymal phenotypes: MDA-MB-231, MDA-MB-157 and BT549, looking for

compounds that induced reversal to more epithelial-like morphologies.

Materials and methods

Reagents

Dulbecco’s modified Eagle’s medium (DMEM), Dulbecco’s phosphate-buffered saline (DPBS),

phenol-red free DMEM, fetal bovine serum (FBS), minimal essential amino acids (MEMAA),

non-essential amino acids (NEAA), antibiotic/anti-mitotic penicillin/streptomycin (pen/

strep), sodium pyruvate, L-glutamine, trypsin/EDTA, trypan blue stain (0.4%) and ethylenedi-

aminetetraacetic acid (EDTA 0.5 M, pH8) were obtained from GIBCO (Invitrogen; Carlsbad

CA). Insulin was purchased from Sigma-Aldrich (St. Louis MO) and charcoal stripped (CS)

FBS from HyClone (Thermo Scientific; Logan UT). Dimethyl sulfoxide (DMSO) was obtained

from Research Organics, Inc (Cleveland OH).

Cell culture

Human MDA-MB-231, BT549 and MDA-MB-157 cells were obtained from the American

Type Culture Collection (ATCC, Manassas, VA, USA) and are characterized as triple-nega-

tive/basal B mammary carcinoma. Cells were maintained in DMEM supplemented with 10%

FBS, non-essential amino acids (NEAA), MEM amino acids, anti-anti (100 U/mL), sodium

pyruvate and porcine insulin (1 x 10−10 mol/L) at 37˚C in humidified 5% CO2. For treatment

studies, cells were grown in phenol red-free DMEM supplemented with 5% charcoal-

stripped FBS and supplemented with NEAA, MEM amino acids, Gluta-Max and penicillin

(100 U/mL).

The published kinase inhibitor sets (PKIS)

The PKIS is openly available in screening quantities from the SGC-UNC. Instructions for

requesting PKIS can be found at www.sgc-unc.org and chemical structures and other pharma-

cologic activity for the compounds can be found at https://www.ebi.ac.uk/chembldb/extra/

PKIS/compounds.html. The set is typically provided as 1 μL of a 10 mM solution in DMSO,

dispensed in 384-well plates. A material transfer agreement was created to ensure that the

screening results are made publicly available. Larger aliquots of requested compounds were

delivered as solids, dissolved in DMSO to a 1 mM stock solution, and stored at -20˚C. The

solutions were diluted in culture media and used at 1 μM concentrations, as determined by

dose-response studies.

Crystal violet staining

MDA-MB-231, BT549 and MDA-MB-157 cells were plated at 5,000 cells per well in 96-well

TC plate in 5% charcoal stripped (CS) DMEM. After 48 hours of exposing the cells to CS

DMEM media, cells were treated with the vehicle or selected GSK library compounds for

72 hours and the plate was incubated in 37˚C, 5% CO2. The plate was then harvested by adding

glutaraldehyde (10 μL) to each well for 20 minutes. After rinsing and drying the plate, the cells

were stained with 0.1% crystal violet in 90% methanol (50 μM) for 20 minutes. After another
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rinse, the cells were left overnight to dry, and the following day morphological alterations of

the cells were visualized with an inverted microscope and images were recorded. Cells were

lysed with 33% acetic acid and quantified to determine proliferation after treatment.

RNA isolation and quantitative real time PCR

MDA-MB-231 cells were plated in 5% CS DMEM and pre-treated for 72 hours with DMSO

(control), or PKIS compounds (1 μM). Cells were harvested and total RNA was isolated using

RNeasy (Qiagen, Valencia, CA) following manufacturer’s protocol, and the quantity and qual-

ity determined by absorbance (260, 280 nm). Total RNA (2 μg) was reverse-transcribed

(iScript kit, BioRad Laboratories, Hercules, CA) and analyzed by qRT-PCR. Primer sequences

are as follows (Invitrogen, Carlsbad, CA): β-actin F—5’- GGCACCCAGCACAATGAAGA-3’;

β-actin R-5’- ACTCCTGCTTGCTGATCCAC -3’; CDH1 F-5’-AGGTGACAGAGCCTCTGGA
TAGA-3’,CDH1 R-3’-TGGATGACACAGCGTGAGAGA-3’.VIM F-5’-GAGAACTTTGCC
GTTGAAG-3’; VIM R-5’- GCTTCCTGTAGGTGGCAATC-3’, SNAI1 F-5’-ACCACTATGC
CGCGCTCTT-3’; SNAI1 R-5’- GGTCGTAGGGCTGCTGGAA-3’, ZEB1 F-5’-ACACAAGC
GAGAGGATCATG-3’;ZEB1 R-5’- CGGAATCTGAATTTGCTTCTACC-3’, c-FOS F-5’-CCT
GTCAAGAGCATCAGCAG-3’,c-FOS R-5’-GTCAGAGGAAGGCTCATTGC-3’. Quantitative

reverse transcription-PCR was conducted as previously published [25]. Data represented as

normalized fold expression compared with DMSO control of biological triplicate

samples ± SEM.

Transwell migration assay

Migration assays were performed following the manufacturer’s instructions (BD Biosciences,

San Jose, CA, USA). MDA-MB-231 cells were grown in charcoal stripped DMEM (5% FBS)

for 48h, then pretreated for 72h (1 μM) with DMSO, GSK198271, GSK448459, GSK346294,

and GSK1173862. Transwell inserts (8 μm pore size; BD biosciences; San Jose, CA) were placed

into each well containing 1 mL 10% FBS DMEM media. Pretreated cells in opti-MEM suspen-

sion were placed on each insert (500 μL, 25,000 cells per well). After 24 hours, membranes

were scrubbed to remove non-migrated cells and membranes were removed and mounted on

glass slides. Migrated cells were visualized by microscopy and counted. Data is represented as

number of migrated cells per field of view for triplicate experiments.

Immunofluorescence staining

PKIS- or DMSO-treated MDA-MB-231 cells were fixed in formalin (10% buffered formalin

phosphate, Fischer Scientific, Hampton NH) and permeabilized with Triton-X100 (MP Bio-

medicals, St. Ana CA). Cytoskeletal components were stained with AlexaFluor 555-conjugated

antibody against phalloidin (Cell Signaling, clone 8953, 1:200, Danvers MA). Cells were coun-

terstained with DAPI (NucBlue Fixed Cell Stain ReadyProbe, Life Technologies, Carlsbad

CA). ApoTome (commercial structure illumination microscopy by Zeiss, Thornwood, NY)

fluorescent images were captured on an inverted microscope (Zeiss) and digitally filtered to

obtain optical slices.

Image-based morphometric analysis

Polygonal outline and length measurement tools provided in the AxioVision software (Zeiss)

formed the basis for morphometric analysis. Based on information obtained from these tools,

four metrics for cellular morphology were identified and defined (see below). Aspect ratio was

determined through the use of the length measurement tool, and two perpendicular length
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measurements were reported. Cellular area coverage, nucleus: cytoplasm area ratio, and circu-

larity assessments were determined from area and perimeter measurements obtained by the

polygonal outline tool (Table 1). A total of 45 individual cells were measured from each treat-

ment group, including the DMSO control. Selection criteria for cells included: 1) well-defined

border (eliminates most cells in aggregates or dimly stained cells) and 2) must contain only

one nucleus (eliminates dividing cells and cells out of the plane of focus).

Microscopy imaging

The Nikon eclipse TE2000-s inverted fluorescence microscope and camera with x-cite series

120 illuminator (Nikon; Melville, NY), in conjunction with IP Lab version 3.7 software (Rock-

ville, MD) were used in the visualization of crystal violet-treated cells to observe morphological

changes.

Western blot

Western blot analyses were conducted as published25. After 24 hours of treatment in 10% fetal

bovine serum DMEM medium, membranes were probed with primary CDH1 antibody (Cell

Signaling Technology, 24E10) according to manufacturer’s protocol. IR-tagged secondary

antibodies were purchased from LiCor Biosciences (1:10000). Blots were analyzed by the

Odyssey Infrared Imaging System (LiCor Biosciences). Experiments were conducted in

triplicate.

Patient-derived xenografts

Tissues were obtained through the Louisiana Cancer Research Consortium Biospecimen Core

and were processed in compliance with NIH regulations and institutional guidelines, and

approved by the institutional review board at Tulane University. Animals were anesthetized

(isofluorane) prior to the tumor cell implantation and survival surgery and monitored post-

anesthesia till ambulatory. Post-operative monitoring of injection and incision sites were daily

until healed. Animals were treated with anesthesia (CO2 inhalation) prior to euthanasia/

cardiac puncture, which is the only procedure (besides tumor implantation and survival sur-

gery) involving discomfort, distress or pain that warrants anesthesia. Animals were given

meloxicam (20mg/kg/day) for 72 hours’ post-surgery for pain. Animals were euthanized by

administration of CO2 anesthesia prior to cervical dislocation at the end of all experimental

procedures, when tumor volume exceeded 1000mm3. If we observed ulceration or necrosis at

tumor injection or implantation sites, mice were euthanized. These procedures are consistent

with the recommendations of the Panel on Euthanasia of the American Veterinary Medical

Association.: Animal procedures will be carried out in full accordance with established

Table 1. Cellular morphology quantification calculations. Calculations and measurements are described

with the associated formulas based on cellular dimensions of individual cells.

Metric Definition Mathematical

formula

Aspect ratio length of the longest axis divided by longest length of cell in

orthogonal axis
AR ¼ Llong

Lshort

Area coverage surface area covered per cell, as outlined by cell

membrane

A
cell

Nucleus to cytoplasm

ratio

ratio of area covered by nucleus to cytoplasm, as outlined

by membrane

Anucleus
A

Circularity ratio of area to perimeter, as outlined by cell membrane c ¼ 4p A
P2

� �

https://doi.org/10.1371/journal.pone.0177802.t001
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standards set forth in the Guide for the Care and Use of Laboratory Animals (NIH publication

No. 85–23). Procedures involving chronic conditions or treatment of laboratory animals were

performed using sterile equipment (syringes, needles, surgical instruments) and aseptic tech-

nique. Due to their immunocompromised status, mice were housed in sterile cages (5/cage)

and provided with autoclaved food and water. Mice were observed daily for signs of illness

(e.g., reduced activity or water intake) or cutaneous ulceration, and tumors were measured

weekly during tumor initiation. This project was approved by Tulane University Institutional

Animal Care and Use Committee (IACUC). SCID/Beige (CB17.Cg-PrkdcscidLyst bg/Crl) were

used. The autosomal recessive SCID (Prkdcscid) mutation results in severe combined immuno-

deficiency affecting both the B and T lymphocytes. The autosomal recessive beige (Lystbg)

mutation results in defective natural killer (NK) cells. We must use animals with compromised

immune systems in order to prevent rejection of the xenografted human tumors. A triple-neg-

ative lumpectomy sample of approximately 15mm in length was excised from the patient after

informed consent. Tumor tissues from each patient were cut into 1 x 1 mm pieces under asep-

tic sterile conditions, coated with full factor matrigel (Cat No. 354234, Fisher Scientific, Wal-

tham, MA, USA) and implanted bilaterally into the mammary fat pads (m.f.p.) of SCID/beige

mice. Tumors were measured using a digital caliper after ostensible tumor take was estab-

lished. Tumors were passaged when tumor volume grew to 750–1000 mm3. To passage, mice

were euthanized by CO2, tumors were removed and sliced with a scalpel to 3 x 3 mm pieces,

coated in full factor matrigel, then implanted bilaterally into the m.f.p. of new SCID/beige

mice that were anesthetized using a mix of isoflurane and oxygen delivered by mask. After sur-

gery, mice were given meloxicam (20 mg/kg/day, 3 days post-surgery) for pain. For PCR analy-

ses, 3 x 3 mm tumor explants were plated in 12-well plates with 2 ml of 10% DMEM and

treated for 72 hours with DMSO (control) or GSK198271A at 1 μM. After treatment, tumor

pieces were collected, and RNA was extracted using QIAzol Lysis Reagent (Cat No. 79306;

Qiagen, Valencia CA). Synthesis of cDNA and qRT-PCR was performed as described

previously.

Kinase assay

The kinase assay was performed by Reaction Biology Corporation (Malvern, PA, USA) and

contains 350 kinases of interest, as described previously [26].

Statistical analysis

Studies run in triplicate were analyzed by unpaired Student’s t-test (Graph Pad Prism V.4). p-

Values< 0.05 were considered statistically significant. Raw data from the figures, as well as sta-

tistical analyses, are available in S7 Fig.

Results

Small molecule inhibitors induced epithelial morphologies in

phenotypically mesenchymal cell lines

Driven by the need to identify treatment options to target TNBC, an aggressive breast cancer

subtype, we treated the TNBC cell lines MDA-MB-231, MDA-MB-157 and BT549 with the

PKIS library for 72 hours (Fig 1A). We decided to do our initial screen based on morphology

differences, because a change in cell morphology to an epithelial phenotype is a process central

to many aspects of a mesenchymal phenotype, due to downregulation of mesenchymal genes,

upregulation of epithelial genes, and/or promotion of a migratory phenotype due to cytoskele-

tal rearrangements. Once we identified small molecule inhibitors that altered the mesenchymal
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morphology, we then screened for other components that define a mesenchymal phenotype.

Cell morphology was observed through crystal violet stain and images were captured for each

treatment via brightfield microscopy (Fig 1B). Small molecule inhibitors that visually altered

cell morphologies were recorded following treatment. Cells consistent with an acquired epithe-

lial phenotype were identified through observance of a rounded cell morphology and growth

in close proximity to surrounding cells with increased cell-cell contacts, and a greater cyto-

plasm: nuclear ratio. Cells designated as maintaining a mesenchymal phenotype were

fibroblast-like in appearance, exhibited a loss of polarity, and possessed long, thin processes

(consistent with invadopodia).

Our initial screen in MDA-MB-231 cells identified 36 compounds that reversed EMT based

on cellular morphology observations. The initial screen was performed blind: the primary

kinase targets of the small molecule inhibitor hits were unknown at the time of treatments and

active compounds were selected solely based on cellular morphology observations. To confirm

that these observed changes were not cell type specific, we next treated other TNBC

(MDA-MB-157, BT549) cell lines with the PKIS library (Fig 1B, S1 Table). Overall, we identi-

fied twelve compounds that consistently reversed the mesenchymal phenotype in all phenotyp-

ically mesenchymal TNBC cell lines. These compounds represent a number of different

chemical classes and were originally published as inhibitors of a range of kinase targets

Fig 1. Cell morphology screen of small molecule kinase inhibitors from PKIS library induce MET in mesenchymal breast cancer cell

lines. (A) Three phenotypically mesenchymal breast cancer cell lines (MDA-MB-231, MDA-MB-157 and BT549) were treated with small molecule

kinase inhibitors provided in the GlaxoSmithKline PKIS library or vehicle (DMSO) for 72 hours’ treatment (1μM). Schematic representation of the

broad screen approach. (B) Crystal violet staining techniques were used to observe changes in cellular morphology after treatment. Images were

captured with Nikon Camera at 100X magnification. Representative inset images of select hit compounds are shown; additional hit compounds as

well as full images are found in S1 Fig. LBH-589 treatment (100 nM) was used as a positive control [27]. Morphological changes to a more

epithelial phenotype included rounder cells, cells that congregate (indicative of increased cell-cell contacts) and fewer fibroblastic-like cells.

https://doi.org/10.1371/journal.pone.0177802.g001

Novel use of PKIS to identify therapeutic targets in TNBC

PLOS ONE | https://doi.org/10.1371/journal.pone.0177802 August 3, 2017 7 / 20

https://doi.org/10.1371/journal.pone.0177802.g001
https://doi.org/10.1371/journal.pone.0177802


including IGF-1R, PLK1, EGFR, VEGFR, PDGFβ, LCK and AKT (S1 Table). These 12 com-

pounds were selected for further analysis. To assure that the observed changes in the morphol-

ogy screen were unique to TNBC cells, we screened the PKIS library with a luminal, epithelial

non-invasive cell line, MCF-7 (S1 Fig).

Identification of small molecule inhibitors that induced MET and/or

suppressed cell migration

Acquisition of epithelial markers and suppression of cellular motility are defining characteris-

tics of the reversal of a mesenchymal phenotype. In some specific processes, this is known as

mesenchymal-to-epithelial transition, MET. These events can be preceded by cytoskeletal rear-

rangements and observed changes in cellular morphology [9,28]. To confirm if the observed

morphological effects on MDA-MB-231 cells were related to MET on a gene expression level,

qRT-PCR was performed. Upregulation of E-cadherin (CDH1) indicates reversal of a mesen-

chymal phenotype to an epithelial phenotype. Concordantly, downregulation of mesenchymal

proteins, including transcription factors c-FOS, ZEB1, SNAI1 and the cytoskeleton protein

vimentin (VIM) indicates reversal of a mesenchymal phenotype as well. (S2 Fig). We followed-

up our morphology screen with the following molecular and biological experiments first using

the MDA-MB-231 cell line.

In MDA-MB-231 cells, six of the twelve tested kinase inhibitors increased CDH1 expression

(Fig 2A). Two kinase inhibitors significantly increased CDH1 expression, including the pyra-

zolopyridazine GSK198271A that was previously identified as active in a phenotypic anti-

malarial screen and a thiophene benzimidazole, GSK346294A, originally prepared to target

PLK1. Other compounds that increased CDH1 include pyrrolopyrimidine GSK1173862A

originally prepared to target IGF-1R, two additional thiophene benzimidazoles originally pre-

pared to target PLK1, GSK237700A and GSK448459A, and the diaminopyrimidine

GW809897X which was originally prepared to target VEGFR2. Interestingly, an opposite effect

on CDH1 expression occurred after treatment with GSK494610A, GSK1010829B,

GSK296115X, GSK350559A, GSK1660450B and GW856804X.

Suppression of cellular migration is another defining aspect of EMT reversal; next, we per-

formed transwell migrations using MDA-MB-231 cells after 72-hour pre-treatment with the

twelve kinase inhibitor hits (Fig 2B). Treatment with DMSO was utilized as the vehicle control

(100% migration). After treatments, PKIS compounds with lower migration percentages com-

pared to DMSO control indicate the compounds suppressed cell migration. Seven of the twelve

compounds significantly reduced cell migration compared to DMSO control: GW856804X,

GSK346294A, GSK1010829B, GSK296115X, GSK1173862A, GSK1660450B and GSK448459A.

Notably, some of the inhibitors that did not increase CDH1 expression suppressed migration

(GW856804X, GSK296115X, and GSK1660450B). Notably, the top compound that showed

the most significant changes in promoting an epithelial phenotype based on the gene expres-

sion analyses, GSK198271A, did not affect cellular migration.

On a transcriptional level, we examined gene changes of c-FOS, and SNAI1, transcription

factors that promote a mesenchymal phenotype (Fig 2C and 2D). Treatment of MDA-MB-231

cells with GSK198271A, the EGFR-targeting compound that increased CDH1 expression most

significantly, also reduced SNAI1 expression significantly, but had no effect on c-FOS mRNA

expression. GSK346294A, a PLK1-targeting compound, and GSK1173862A, an IGF1-R target-

ing compound, that also significantly increased CDH1 expression, significantly reduced c-FOS

expression, but had no effect on SNAI1 expressions. Other compounds that increased CDH1

expression significantly (GSK23700A, GSK809897X, GSK448459A) did not significantly

downregulate mesenchymal gene expression of SNAI1 nor c-FOS. Additionally, some PKIS
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compounds that did not increase CDH1 expression reduced expression of the mesenchymal

markers. GSK494610A and GSK350559A, EGFR-targeting compounds, are such examples

because they reduce c-FOS and SNAI1 expressions.

Inhibitors that most profoundly affected the mesenchymal phenotype, either due to acquisi-

tion of epithelial markers, downregulation of mesenchymal genes or due to suppression of cell

migration, were selected for further morphometric analyses to quantify observed morphology

changes in MDA-MB-231 cells. Quantification involved a series of measurements including

aspect ratio analysis, which refers to the overall dimensions of the individual cells. First cells

were stained with phalloidin, to highlight actin cytoskeletal filaments, and DAPI, a nuclear

stain. Immunofluorescence was performed to visualize the morphologies and confocal

Fig 2. Kinase inhibition induces MET through enhanced MET gene expression and suppression of cellular migration. (A) Fold change in

the epithelial marker CDH1 was observed after MDA-MB-231 cells were treated with 1 μM of select small molecule inhibitors after 72 hours’

pretreatment. Data was obtained by qRT-PCR and normalized both to actin and the vehicle (DMSO)-treated control designated as 1. (B) Transwell

migration assays of MDA-MB-231 cells revealed GSK346294A, GSK1010829B and GSK1173862A most significantly suppressed TNBC cellular

migration. Migrated cell counts were normalized to vehicle. Images of migrated cells were captured with microscopy at 200X. Cells were counted in

eight views of the wells, and migration was performed in triplicate for each treatment. (* p < 0.05, *** p < 0.001). (C, D) Mesenchymal transcription

factors c-FOS and SNAI1were also analyzed was observed after MDA-MB-231 cells were treated with 1 μM of select small molecule inhibitors after

72 hours’ pretreatment. Data was obtained by qRT-PCR and normalized both to actin and the vehicle (DMSO)-treated control designated as 1. For

all experiments, N = 3, error bars represent SEM and significantly different * p < 0.05, *** p < 0.001.

https://doi.org/10.1371/journal.pone.0177802.g002
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microscopy was employed to capture the images (Fig 3A). Dimensional analyses include

nuclear area fraction (nuclear: cytoplasmic ratio), circularity of the cell, overall area and aspect

ratio. GSK237700A treatment increased overall cellular area and circularity most significantly,

followed by GSK198271A and GSK1010829B. GSK809897X treatment led to the lowest aspect

ratio, a measurement that examines the longest length related to the shortest length of the cells

and is reflective of cellular polarity. GSK237700A and GSK1010829B also had reduced aspect

ratios. Finally, GSK198271A, GSK1010829B and GW809897X exhibited the smallest nuclear

area fraction. A larger nuclear area in relation to cytoplasm is a feature often found in pheno-

typically mesenchymal cells [29,30]. Thus, a smaller nuclear area fraction is reflective of an epi-

thelial phenotype. Overall, GSK198271A treatment of MDA-MB-231 cells most dramatically

reversed mesenchymal morphologies (Fig 3B).

The PKIS can be subdivided into groups of compounds with common core structure. In

some cases, compounds with common core structures had divergent effects on morphology

changes in breast cancer cell lines. For example, GSK198271A and GSK350559A, have highly

similar structures, but had opposing effects on CDH1 and VIM expression (Fig 4A). The PKIS

is comprised of inhibitors that function via competitive binding with the cofactor ATP.

Fig 3. Immunofluorescence staining to observe morphological changes after treatment with GSK inhibitors. (A) Apotome-based microscopic

imaging of triple negative MDA-MB-231 cells treated with DMSO (control; panel a), GSK198271A, GSK350559A, GSK494610A, GSK346294A,

GSK448459A, GSK237700A, GSK809897X, and GSK1010829B. The samples were pretreated for 72 hours before staining and experiment was

performed in triplicate. A phalloidin stain was used to highlight actin filaments (red), DAPI stained for the nucleus (blue). (B) Quantitative morphological

analysis of MDA-MB-231 cells after treatment with select GSK compounds. A minimum of 45 cells were quantified per treatment group. Measurements of

cellular morphology after immunofluorescence staining and Apotome microscopy imaging are reported. Area is defined as the length of the cell x the width;

Circularity = 4(π) x (area/perimeter2). Aspect Ratio = length/width; Nuclear Area Fraction = (Area of Nucleus/Area of Cell). Greater area, cell circularity,

aspect ratio and nuclear area fraction are associated with a mesenchymal phenotype due to cytoskeletal rearrangement [31]. For quantification

experiments, N� 45, error bars represent SEM and significantly different * p < 0.05, *** p < 0.001.

https://doi.org/10.1371/journal.pone.0177802.g003
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Because the ATP binding pocket is conserved but not identical across the kinome, many of the

PKIS compounds have some degree of promiscuity in their kinase activity. Consequently, the

kinase for which a compound was originally prepared might not be the only potently inhibited

kinase, and importantly the original kinase may not be a contributor to the phenotype result-

ing from compound treatment. Furthermore, three structurally similar PLK inhibitors in the

thiophene benzimidazole chemotype increased CDH1 and suppressed cellular migration,

albeit to varying degrees (Fig 4B). Based on these observations, we hypothesize that there is a

common off-target kinase or kinase family that is inhibited by the three PLK inhibitors

(GSK346294A, GSK448459A, GSK237700A). Analysis of the structures reveals the importance

that the structure itself may have in on- or off-target activity of the PKIS compounds and how

this affects reversal of the mesenchymal phenotype.

GSK198271A promotes MET and novel potential MET kinase targets

and pathways are identified

After establishing the application of the PKIS library to identify novel kinase pathways

involved in EMT reversal, we focused on the small molecule inhibitor that had the most dra-

matic effects on EMT gene expressions, GSK198271A. The following data compares the gene

expression and behavioral profiles of two small molecule inhibitors that share similar pharma-

cophore, but have differing effects on acquisition of an epithelial phenotype based on the initial

screening results, GSK198271A and GSK350559A. First, we confirmed increased expression of

CDH1 after GSK198271A treatment at a protein level using western blot of MDA-MB-231

cells. Rho was visualized for normalization. We observed significant overexpression of CDH1

protein in GSK198271A treated cells, compared to DMSO (Fig 5A). Interestingly, we did not

observe these effects in GSK350559A treated cells, confirming our previously acquired PCR

data. Next we utilized a TNBC patient-derived xenograft model in an ex vivo experiment to

Fig 4. Analysis of structurally similar PLK inhibitors and anti-malarial inhibitors. (A) Three small molecule PLK inhibitors (GSK346294A,

GSK448459A and GSK237700A) are similar in structure and have similar effects on reversal of a mesenchymal phenotype as indicated by an

increase in CDH1 and suppression of cellular migration. (B) Two structurally similar anti-malarial inhibitors (GSK198271A, GSK350559A)

identified in the initial screen alter cellular morphology, but only GSK198271A increases CDH1 expression. These data indicate there is a

potential off-target effect that drives the observed effects of the inhibitors. Pharmacophores are outlined in blue. Compounds selected for further

in-depth analyses altered the mesenchymal phenotype by affecting gene expressions or suppression of cellular migration.

https://doi.org/10.1371/journal.pone.0177802.g004
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confirm GSK198271A treatment promotes an epithelial phenotype on a gene expression level

in a translational model. Tumor pieces were treated for 72 hours in triplicate with

GSK198271A and DMSO control. Similar to data analyzed from MDA-MB-231-treated cell

lines, GSK198271A increased epithelial marker (represented by CDH1) mRNA expression

and reduced mesenchymal marker (represented by CDH2 and matrix metalloproteinase 2,

MMP2) expressions (Fig 5B). To evaluate if the results were cell line specific, we repeated the

migration assay and analysis of CDH1 mRNA expression in another triple negative cell line,

BT549. Although neither GSK198271A nor GSK350559A increased CDH1 expression (data

not shown), GSK198271A reduced c-FOS and SNAI1 expressions, although not significantly

(Fig 5C). Furthermore, GSK198271A did suppress cell migration (Fig 5D).

Next we next sought to determine the effects of the pyrazolopyridazine kinase inhibitors

(GSK198271A, GSK350559A) on cell proliferation and viability in a dose dependent manner.

Cell viability was determined with crystal violet analysis and demonstrates loss of cellular sur-

vival with increasing drug concentrations (Fig 5E–5G). GSK350559A suppressed cell prolifera-

tion at concentrations greater than 1μM; GSK198271A also suppressed cell proliferation at this

concentration, although not as dramatically as GSK350559A. To evaluate a potential polyphar-

macologic effect that is responsible for the observed genetic and behavioral differences

Fig 5. The pyrazolopyridazine GSK198271A promotes MET. (A) Western blot analyses of MDA-MB-231 cells after treatment with GSK198271

confirms CDH1 protein expression in increased. Full length western blots are found in S3 Fig. Cells were pre-treated for 72 hours at 1μM; data was

normalized to Rho. (B) Treatment of PDX tumors ex vivo with GSK198271 resulted in increased the epithelial marker CDH1 mRNA expression and

reduced expression of CDH2 and MMP2, mesenchymal markers. Tumor pieces were treated for 72 hours at 1μM. (C) GSK198271A and not

GSK350559A suppresses migration in another TNBC cell line, BT549. (D) Neither GSK198271A nor GSK350559A significantly increase CDH1

expression in BT549 cells. (E) GSK198271A and GSK350559A affected cellular proliferation at drug concentrations greater than 1μM. MDA-MB-231

cells were treated for 72 hours, then crystal violet stained and imaged. Absorbance was measured at 570 nm to obtain dose-response curves. Data

was normalized to DMSO and performed in triplicate. (F,G) Representative images are enlarged for 1μM concentrations. Images were taken at 200x

magnification using the Nikon color microscope. For qRT-PCR experiments, N = 3, error bars represent SEM and significantly different * p < 0.05, ***
p < 0.001.

https://doi.org/10.1371/journal.pone.0177802.g005
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between the two pharmacologically-similar compounds, we analyzed mesenchymal gene

expressions with varying doses (100nM, 1μM, 10μM). GSK198271A, and not GSK350559A,

increased CDH1 and reduced VIM, c-FOS CDH2 and SNAI1 expressions in a dose-dependent

manner (Fig 6A).

Because the compounds are structurally similar, but have distinct effects on changes to both

cell morphology and genomic expression, as GSK198271A mostly upregulates epithelial and

suppresses mesenchymal genes and GSK350559A suppresses the migratory abilities of the

cells, we were interested in determining if these differences were due to an off-target kinase

unique to GSK198271A. We utilized a broad kinase screen provided by Reaction Biology Cor-

poration to identify targets inhibited by both pyrazolopyridazines (Table 2). We divided the

Fig 6. Kinase assay identified off-target kinase activities of GSK198271A and GSK350559A. Dose-response analyses of various mesenchymal-

associated genes comparing GSK198271A to GSK350559A. qRT-PCR was performed to analyze mRNA expression of CDH1, an epithelial marker, and

mesenchymal proteins and transcription factors (VIM, CDH2, c-FOS, SNAI1). For all experiments, N = 3, error bars represent SEM and significantly

different * p < 0.05, *** p < 0.001.

https://doi.org/10.1371/journal.pone.0177802.g006

Table 2. Common targets and unique targets of GSK198271A and GSK350559A. Unique targets of GSK198271A include EGFR, HER2, TAOK2, and

the SRC family kinases HCK, LYN, LCK, CSK and c-SRC. Data is shown as percent activity, or the remaining activity of the kinase in the presence of the

inhibitor.

Common Targets (% Activity) Unique Targets (% Activity)

GSK198271A GSK350559A GSK198271A GSK350559A

DDR1 -0.5 0.5 EGFR 0 42

FGR 0 1.5 HER2 0 25

YES1 0.5 1 TAOK2 0.5 40.5

HER4 1 1 HCK 1 22

BRK 0.5 5 LYN 2 13

BMX 4 6 LCK 2.5 11

RET 4 8 CSK 4 17

TNIK 4.5 4 c-SRC 4 26

https://doi.org/10.1371/journal.pone.0177802.t002
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kinases into targets common to both inhibitors, and targets more unique to GSK198271A. Tar-

gets more unique to GSK198271A included HER2, TAOK2, and members of the SRC family

kinases, HCK, LYN, LCK, CSK and c-SRC. This data suggests that the SRC pathway potentially

plays a role in driving a mesenchymal phenotype, although future studies are required to

investigate this in greater depth. In TCGA data provided by the Cancer Genome Atlas, we find

HCK, LYN, LCK, and CSK are higher in basal-like breast cancer subtypes (S4 Fig). TAOK2

appears to have lower expression in basal-like subtypes (S4 Fig), although Kaplan-Meier sur-

vival analyses show higher expression of TAOK2 is associated with reduced overall survival in

a cohort of TNBC patients (HR of 3.06, n = 68 patients) compared to non-TNBC patients in

the same study (HR = 0.67, n = 526 patients; S5 Fig) [32,33]. Both TAOK2 and HCK are over-

expressed in breast cancers, based on patient data provided by cBioPortal (S5 Fig) [34,35].

Another candidate target was inhibited at varying degrees by some of the top compounds of

interest, STK10, also known as LOK (S1 Fig). We show relative expressions of TAOK2, HCK

and STK10 in different breast cancer cell lines in S6 Fig. Data was obtained using data from

the Gene expression based Outcome for Breast cancer Online algorithm (GOBO), a web-based

analysis tool that utilizes Affymetrics gene expression data [36].

Discussion

Despite emerging small molecule therapeutic development, the TNBC subtype remains elusive

to available targeted chemotherapies and requires discovery of novel targetable pathways and

proteins involved in the pathogenesis of this aggressive subtype. The mesenchymal characteris-

tics of TNBCs promotes a metastatic phenotype; specifically, altered morphology with accom-

panying genomic changes from expression of epithelial genes to expression of mesenchymal

genes and acquisition of migratory behavior contributes to TNBC cancer cells’ ability escape

the primary tumor and metastasize. The maintenance of an epithelial phenotype is critical in

the prevention of tumor cell migration and invasion, enhancing patient survival and overall

prognosis [37,38]. Although some kinases have been extensively investigated as regulators of

key cell signaling processes that promote a mesenchymal phenotype and cell motility, a sub-

stantial number of kinases have not yet been characterized to determine if they play a role in

these processes. To address this, we utilized a commercially available small molecule inhibitor

library in a morphology screen of various TNBC cell lines to identify novel pathways and

potential targetable kinases in invasive breast cancer subtypes. Future studies will examine the

specific roles the identified kinases have in acquisition and maintenance of a mesenchymal

morphology and characteristics and/or cell motility.

Twelve small molecule inhibitors representing various kinase pathways from PKIS1 and

PKIS2 libraries reverted TNBC cells to an epithelial phenotype based on morphology. Of those

twelve inhibitors, eleven kinase inhibitors were ultimately identified to exhibit the potential to

reverse mesenchymal phenotype, based on the acquisition of epithelial markers and subse-

quent loss of mesenchymal markers (GSK198271A, GW809897X), solely based on suppression

of TNBC migration (GSK1660450B, GW856804X, GW296115X), or a combination of migra-

tion inhibition and epithelial phenotype acquisition (GSK346294A, GSK1173862A,

GSK448459A and GSK237700A). Only GSK494610A did not promote a mesenchymal nor

migratory phenotype in the follow-up studies. Crystal violet staining for morphology,

qRT-PCR analyses, transwell migration studies and quantitative morphometric analyses pro-

vided evidence of the altered phenotype, after the initial morphology screen. Of the ‘hit’ kinase

inhibitors identified, two were originally identified in an antimalarial phenotypic screen as

EGFR inhibitors (GSK198271A, GSK350559A), one was originally prepared to inhibit IGF-1R

(GSK1173862A), and the remainder originated in drug discovery programs targeting PLK1
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(GSK346294A, GSK237700A GSK448459A), VEGFR2 (GW809897X), AKT (GSK296115X)

and LCK (GSK1010829B).

Interestingly, because each of these compounds elicited diverse changes in molecular and

biological studies, this suggests that the kinase inhibitory profiles of the individual kinases

have differential effects on promoting a mesenchymal phenotype. After our initial morphology

screen, we were interested in identifying kinases that altered morphology through a mesenchy-

mal-epithelial transition (upregulation of epithelial markers, suppression of mesenchymal

markers); we then used CDH1 to further screen the selected compounds. We discovered that

some kinase inhibitors that changed the cells’ morphologies did not upregulate CDH1. These

data suggest that these inhibitors affect cell morphology and mesenchymal phenotype through

a CDH1-independent mechanism, and not necessarily through MET. Furthermore, the differ-

ences in the assays between structurally related compound that have the same primary target

suggests that specific kinases differentially inhibited by one compound and not the structurally

similar compound may be responsible for the observed phenotypic changes. For example,

GSK237700A, GSK448459A and GSK346294A were originally designed to inhibit PLK1 and

have similar structures, but have varying effects on cell morphology, mesenchymal and epithe-

lial gene expressions and migratory behavior. This is also evident when comparing

GSK198271A activity with GSK350559A, both originally published as EGFR kinase inhibitors

showing activity in an anti-malarial phenotypic screen. These two compounds share a com-

mon pharmacophore, but again the changes of substituents on the core greatly affects the

activity of the compounds.

We chose to focus this study on evaluating the differences between GSK198271A and

GSK350559A to demonstrate the valuable tool this screen provides to identify novel kinase tar-

gets and pathways, although other hit compounds will be evaluated in future publications.

Additionally, the observed changes in morphology may differ between cell lines, due to the

variety of molecular TNBC subtypes that exist as well as the fact that immortalized cell lines

contain varying mutations that may affect gene expression changes. To address this, we uti-

lized a translational ex vivo patient-derived xenograft model to show that the EMT gene

expression effects seen with GSK198271A treatment was not limited to immortalized cell lines.

Furthermore, CDH1 protein overexpression was confirmed in treatment with MDA-MB-231

cells treated with GSK198271A, but not with GSK350559A. We also examined the effect of

GSK198271A and GSK3505559A treatments on cell proliferation. We did not observe signifi-

cant inhibition of cell proliferation at the concentrations utilized in our studies; however, after

staining with crystal violet we observed a much more dramatic change in cell morphology

after GSK198271A treatment in MDA-MB-231 cells. These data further support our hypothe-

sis that there is a kinase target and/or family in GSK198271A driving the MET changes, and

this target is more specific to GSK198271A than GSK350559A. To elucidate a potential target,

we utilized a large kinome enzymatic screen and discovered a number of kinase candidates.

Future studies will parse out which of these identified kinases are capable of promoting a mes-

enchymal phenotype in epithelial, non-invasive cell lines. Two of these candidate kinases,

TAOK2 and HCK, have not been previously investigated as regulators of EMT and acquisition

of cell motility/invasion in breast cancer, although one group recently referenced TAOK2 as a

potential activator of TNBC cell growth [39]. Furthermore, members of the SFK family,

including HCK, have been investigated as regulators of cell migration and motility in cancers

[40,41], although the specific role of HCK in acquisition of a motile phenotype in metastatic

breast cancers has not yet been investigated. Finally, we found another potential kinase target

that was inhibited, at varying degrees, by multiple ‘hit’ compounds in our screen, STK10.

STK10 is additionally upregulated in basal B TNBC subtypes, which represent a more mesen-

chymal phenotype. Interestingly, a recently published study that also screened the PKIS library
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also identified STK10 as a novel kinase target, albeit as a candidate target that modulates can-

cer cell growth and angiogenesis [23]. These findings from this study encourages us to pursue

STK10 in future characterization studies.

We understand EMT and acquisition of a metastatic phenotype is a complicated process

defined by not one single mechanism, but various mechanisms that interplay. Thus, we found

it difficult to claim that one compound of interest was more interesting than another solely

because it altered one aspect of acquisition of a mesenchymal phenotype (cell motility) and not

another (gene expression changes). Based on this, as we gathered data from the cell morphol-

ogy screen and subsequent molecular and biological analyses, we determined we could not use

a set criteria to rank the compounds. However, this also makes our screening data valuable, in

that we can focus future investigations of novel kinase pathways to the specific mesenchymal

and/or migratory component that was altered in this screen. It is also important to note that

the compounds available in the PKIS library are not selective inhibitors of single kinases.

Rather, the compounds inhibit multiple kinases at a range of potency in values. Consequently,

the kinase responsible for eliciting the observed morphological changes is not always immedi-

ately evident from the initial screening. Furthermore, we understand that there might be a

poly-pharmacology effects responsible for the observed conversion to an epithelial phenotype.

Consistent with this, patient survival data supports that overexpression of cassettes of kinases

may in fact be responsible for promoting cancer cell progression and metastasis. Future studies

to define the individual and combinatorial role for the identified kinases in development of a

mesenchymal phenotype of cancer cells would potentially lead to second generation PKIS

structure based compounds with focused selective targeting activity. A limitation with our

qRT-PCR analyses in the screen is the use of actin as a house-keeping gene; because we utilized

phalloidin to highlight cytoskeletal components in our morphometric quantification, it would

be more appropriate to follow-up studies with specific kinase targets using a different house-

keeping gene such as GAPDH.

Elucidating novel pathways and kinases that promote a mesenchymal phenotype in TNBC

would identify drug targets for an aggressive subtype of breast cancer that has limited treatment

options to date. Our primary objective was to evaluate the novel application of the PKIS library

as a tool to identify previously uninvestigated kinase pathways and potential targets involved in

TNBC. The major translational impact of this project lies in the potential for discovery of novel

targeted therapies designed to prevent metastatic lesions that are the primary cause of mortality

in breast cancer patients. This discovery would drastically change patient survival outlook and

lead to a previously unknown molecular pathway that has wide therapeutic application in neo-

plasias independent of breast cancer. The primary objective of our small molecule inhibitor

screen was to identify key kinase pathways and previously uncharacterized kinases that may

have key regulatory roles in EMT and acquisition of a mesenchymal and invasive phenotype.
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S1 Table. Top twelve small molecule inhibitors from the PKIS library that affect cellular

morphology in TNBC cell lines. Images were captured at 100x magnification. Inhibitor

names and structures are provided, as well as a list of top targets of the compounds.
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S1 Fig. Cell morphology screen of PKIS library with the control epithelial cell line, MCF-7.

Only GSK809897X appeared to affect the luminal, epithelial non-invasive cell line MCF-7 cell

morphologies in addition to triple negative breast cancer cell lines utilized in the cell morphol-

ogy screen. Images were captured at 100x magnification.

(DOCX)
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S2 Fig. PKIS compounds affected mesenchymal gene expression. Fold change in the mesen-

chymal protein VIM (S2A) and transcription factors ZEB1 (S2B) was observed after

MDA-MB-231 cells were treated with 1 μM of select small molecule inhibitors after 72 hours’

pretreatment. Data was obtained by qRT-PCR and normalized both to actin and the vehicle

(DMSO)-treated control designated as 1. N = 3, error bars represent SEM and significantly dif-

ferent � p< 0.05, ��� p< 0.001.

(DOCX)

S3 Fig. Example of full-length western blots images of MDA-MB-231 cells treated with

DMSO (control, lane 1), GSK198271 (1 μM, 24 hours, lane 2) and GSK350559 (1 μM, 24

hours, lane 3). E-cadherin molecular weight is 135 kDa (S3A). Rho was utilized to normalize

(35 kDa; S3B).

(DOCX)

S4 Fig. The Cancer Gene Atlas (TCGA) gene expression data shows HCK, TAOK2, LYN,

LCK CSK and c-SRC relative gene expression by RNAseq in breast cancer subtypes Lumi-

nal A, Luminal B, HER2-enriched and Basal Like. Red indicates upregulation, blue indicates

downregulation.

(DOCX)

S5 Fig. TAOK2 and HCK expressions in breast cancers. (S5A) High TAOK2 expression is

associated with reduced overall survival is a cohort of TNBC-positive patients (n = 68) com-

pared to TNBC-negative patients (n = 526). Hazard ratio was calculated to be 3.06 with a sig-

nificant p-value of 0.0299. Data provided by the PROGgene database [32,33]. (S5B) TAOK2

and (S5C) HCK are amplified in breast cancers (amplification = red, mutation = green),

according to patient data provided by cBioPortal [34,35].

(DOCX)

S6 Fig. STK10, HCK and TAOK2 relative expressions in breast cancer cell lines, divided by

subtype. STK10, and not HCK nor TAOK2, is upregulated in basal B TNBC molecular sub-

types. Expression data is provided online and represents the various breast cancer subtypes

and was obtained by the Gene expression-based Outcome for Breast cancer Online (GOBO;

S6A) [36]. Cell line specific data for STK10, HCK and TAOK2. The various breast cancer cell

lines commonly used are shown (S6B). Cell lines are grouped based on the TNBC molecular

subtype into which they are categorized: Red indicates basal A subtype, grey indicates basal B

subtype and blue indicates luminal subtypes.

(DOCX)

S7 Fig. Complete data and statistical analyses. This supplementary spreadsheet contains

complete data of individual data points, with accompanying statistical analyses, and is orga-

nized by the order of the figures as they appear in the manuscript.

(XLSX)
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