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Abstract: Phenylalanine ammonia-lyase is one of the most widely studied enzymes in the plant
kingdom. It is a crucial pathway from primary metabolism to significant secondary phenylpropanoid
metabolism in plants, and plays an essential role in plant growth, development, and stress defense.
Although PAL has been studied in many actual plants, only one report has been reported on potato,
one of the five primary staple foods in the world. In this study, 14 StPAL genes were identified in
potato for the first time using a genome-wide bioinformatics analysis, and the expression patterns of
these genes were further investigated using qRT-PCR. The results showed that the expressions of
StPAL1, StPAL6, StPAL8, StPAL12, and StPAL13 were significantly up-regulated under drought and
high temperature stress, indicating that they may be involved in the stress defense of potato against
high temperature and drought. The expressions of StPAL1, StPAL2, and StPAL6 were significantly up-
regulated after MeJa hormone treatment, indicating that these genes are involved in potato chemical
defense mechanisms. These three stresses significantly inhibited the expression of StPAL7, StPAL10,
and StPAL11, again proving that PAL is a multifunctional gene family, which may give plants
resistance to multiple and different stresses. In the future, people may improve critical agronomic
traits of crops by introducing other PAL genes. This study aims to deepen the understanding of the
versatility of the PAL gene family and provide a valuable reference for further genetic improvement
of the potato.

Keywords: potato; phenylalanine ammonia-lyase (PAL); evolution; expression; gene family

1. Introduction

Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) catalyzes the deamination of
L-phenylalanine to trans-cinnamic acid, which catalyzes the first step in the phenyl-
propanoid pathway and is conserved in virtually all eukaryotes [1]. This pathway en-
genders many aromatic metabolites, such as flavonoids, isoflavonoids, and lignins [2,3].
Therefore, PAL is involved in the biosynthesis of a wide range of secondary metabolites.
These metabolites are critically important for the growth and development of plants. In
addition to its essential role in plant growth and development, PAL is also a key enzyme in
plant stress responses. Its expression activity is affected by drought [4], pathogen attack,
tissue wounding, extreme temperatures, UV irradiation, deficiency of nutrition [5], and
exposure to plant signaling molecules, including jasmonic acid (JA) [6], SA [7], and abscisic
acid (ABA) [8]. After being stimulated by multiple stresses, expression of the PAL gene
rapidly induced PAL gene expression at the transcriptional level [9]. This indicates that
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the PAL gene plays a crucial role in plants resisting various biotic and abiotic stresses.
Therefore, it will become possible to improve plants’ resistance to multiple stresses by
increasing the expression of the PAL gene.

The PAL gene was first isolated from Hordeum vulgare [10] and has since been found
across various organisms, including plants, viruses, algae, and fungi [11]. This shows that
PAL widely exists in different creatures on earth. It is usually encoded by small multi-gene
families [12]; the PAL gene family often contains multiple family members, the number
of which varies from species to species. For instance, the number of PAL gene copies
is 4 in Arabidopsis thaliana [13] and Nicotiana tabacum L. [14], 5 in Populus trichocarpa [15],
7 in Medicago sativa [16] and Cucumis sativus L. [17], 9 in Oryza sativa L. [15], and 12 in
Citrullus lanatus [18]. The expression of the PAL gene in plants is tissue-specific, its relative
molecular mass weight is 220,000–340,000, and it is an oligomer composed of four 77,000 to
83,000 subunits [19]. In higher plants, PAL activity varies significantly with the stage of
development, with cell and tissue differentiation, and upon exposure to various kinds of
stress [20]. Take Arabidopsis thaliana as an example; the active PAL isoforms are encoded
by four genes designated as AtPAL1-4 [13]. Expression studies of the AtPALs have shown
that AtPAL1 expression is localized to vascular tissue, AtPAL2 and AtPAL4 are expressed
in seeds [21], and AtPAL3 is expressed only at basal levels in stems [22]. Studies on stress
induction of these four PALs found that only AtPAL1 and AtPAL2 were induced under low
temperature and reduced nitrogen content [23]. These prove that there may be significant
differences in the expression of the PAL gene in different plants, tissues, and stresses.

Potato (Solanum tuberosum L.) is one of the essential therophyte Solanaceae herbaceous
species, and it is planted at >19 million hectare worldwide [24]. There are many studies
on phenylalanine ammonia-lyase in potato; for example, rapid and local PAL gene acti-
vation has been demonstrated in fungus-infected potato leaves [25], expression during
tissue differentiation [20], and the effects of injury stress on the activity of this enzyme
in potato [26]. There are research studies showing that the levels of total phenolic and
flavonoid compounds in potato are controlled primarily by PAL and CHS gene expression,
and that the expression of PAL, CHS, and AN1 are regulated in a coordinated manner [27].
The PAL gene plays a key and decisive role in the metabolism of potato bioactive sub-
stances. In addition, research has found that biogenic elicitors (chitosan and its complex
with salicylic acid) and an immunosuppressor (laminarin) were shown to increase the
activity of L-phenylalanine ammonia-lyase and protein synthesis in potato tubers [28]. The
results of this study suggest that potato may have the same expression specificity as other
plants where PAL has been studied. So far, the potato has been found to contain only about
40–50 phenylalanine ammonia-lyase (PAL) genes/haploid genome and at least 10 active
genes [25]. The existing literature reveals only a very general understanding of the potato
PAL gene family members, and no one has conducted in-depth and detailed research on
the topic.

We identified this study’s potato PAL gene family and obtained 14 potato PAL genes.
The physical and chemical properties, sequence characteristics, phylogenetic evolution,
chromosome location, tandem replicated genes, gene structure, conservative motif, cis-
regulatory element prediction, protein–protein interaction networks, interspecies collinear-
ity, gene expression, and qRT-PCR analysis of potato StPAL protein were studied using
bioinformatics analysis, which provided some clues for further revealing the function of
the potato PAL gene family.

2. Results
2.1. Identification of Members of PAL Gene Family in Potato

Using the Arabidopsis PAL gene family protein sequences, the potato genome database
was searched using the NCBI “blastp” software program, and 20 potato protein sequences
were screened. Simultaneously, the sample was screened using HMMER software according
to the PAL gene domain (PF00221). Two repeated sequences were found in the screening re-
sults and could be deleted. After sequence alignment, it was found that Soltu.dm.03G004920
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(1), Soltu.dm.03G011450 (2), Soltu.dm.05G017030 (3), and Soltu.dm.s001510 (4) did not
contain the AlA-SER-Gly A highly conserved MIO (4-methylidene-imidazole-5-one) elec-
trophilic group. Although (1) and (3) do not contain the MIO domain, their sequences are
complete and valuable for research and can be retained, while (2) and (4) do not contain the
MIO domain, and their sequences are incomplete. Genes can be deleted. In addition, we
removed two genes containing the MIO domain but with more than 50% sequence defects,
and, finally, we identified 14 PAL genes from the potato genome (Table 1). To verify the
correctness of the preliminary identification results, we used SPDE2.0 software for further
comparison and screening to confirm that the selected genes were the same.

Table 1. The PAL genes in potato and properties of the deduced proteins (Solanum tuberosum).

Gene 1 Gene ID 1 Chromosome Location 1

(bp) 1

ORF
Length
(bp) 1

No. of
Exons 1

Protein 2

Subcellular
LocalizationLength

(aa)
MW
(Da) pI

StPAL1 Soltu.DM.03G004870 Chr03:5254948—5259172 (+) 2171 2 723 78,585.86 6.11 Cytoplasm

StPAL2 Soltu.DM.03G004900 Chr03:5293236—5296444 (+) 2172 2 723 78,749.96 6.00 Cytoplasm

StPAL3 Soltu.DM.03G004920 Chr03: 5304263—5308005 (+) 2172 5 708 77,814.62 6.23 Plasma
membrane

StPAL4 Soltu.DM.03G011440 Chr03: 31804241—31801966 (−) 1956 4 651 70,751.77 6.75 Cytoplasm

StPAL5 Soltu.DM.03G011480 Chr03: 31877150—31874688 (−) 2022 2 673 73,124.54 6.21 Cytoplasm

StPAL6 Soltu.DM.03G011490 Chr03: 31902002—31895849 (−) 2142 3 713 77,929.94 7.97 Plasma
membrane

StPAL7 Soltu.DM.05G017030 Chr03: 40539165—40534755 (−) 2004 2 667 73,689.12 5.41 Cytoplasm

StPAL8 Soltu.DM.05G026870 Chr05: 54865269—54869381 (+) 2124 2 707 77,510.48 6.07 Cytoplasm

StPAL9 Soltu.DM.09G005690 Chr09: 5255916—5252152 (−) 2169 2 722 78,590.86 6.32 Cytoplasm

StPAL10 Soltu.DM.09G005700 Chr09: 5262994—5260062 (−) 2169 2 722 78,488.71 6.04 Cytoplasm

StPAL11 Soltu.DM.09G005710 Chr09: 5280698—5283618 (+) 2160 2 719 78,330.48 6.15 Cytoplasm

StPAL12 Soltu.DM.09G005720 Chr09: 5287714—5290290 (+) 2172 2 723 78,819.07 6.00 Cytoplasm

StPAL13 Soltu.DM.10G005900 Chr10: 5983790—5987501 (+) 2130 2 709 77,707.78 6.16 Cytoplasm

StPAL14 Soltu.DM.10G020990 Chr10: 52868738—52864254 (−) 2136 2 711 77,543.40 5.86 Cytoplasm

1 Gene information was retrieved from the S. tuberosum v6.1 genome annotation (http://solanaceae.plantbiology.
msu.edu/dm_v6_1_download.shtml (accessed on 21 November 2020)). 2 Protein profile information from the
ExPASy-ProtParam tool (https://web.expasy.org/protparam/ (accessed on 21 November 2020)).

Detailed information regarding the 14 PAL genes, including gene names, gene IDs,
chromosome locations, open reading frame (ORF) lengths, exon numbers, basic protein
parameters, and subcellular localization predictions, are provided in the Table 1. The
ORF size of the StPAL protein ranged from 1956–2172 bp. The length of the protein is
651–723 amino acids, the molecular weight is 70.75–78.82 kDa, and the predicted pI value
is 5.41–7.97.

2.2. Phylogenetic Analysis of PAL Gene Family in Potato

In Arabidopsis, multiple sequences were compared between StPAL and AtPAL proteins
(Figure 1). All PAL proteins were highly conserved. Consistent with other plant PALs, the
StPAL protein has four functional domains. Taking StPAL1 as an example, it includes an
N-terminal domain (1–29), an MIO domain (30–268), a core domain (269–534 and 652–723),
and an inserted shielding domain (535–651) [9]. Similar to PAL contrast among other plants,
the most significant sequence divergence occurred in the N-terminal region (Figure 1),
such as in soybean [29], raspberry [30], and watermelon [18]. Except for StPAL3 and
StPAL7, the active site GTITASGDLV(I)PLSYIAG of PAL was detected in all other PAL
genes, which contained a highly conserved MIO electrophilic group composed of Ala-
Ser-Gly. These proteins also contain two conserved residues in the core domain (Tyr358
and Gly501, numbered according to AtPAL1) that have been reported to be critical for

http://solanaceae.plantbiology.msu.edu/dm_v6_1_download.shtml
http://solanaceae.plantbiology.msu.edu/dm_v6_1_download.shtml
https://web.expasy.org/protparam/
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PAL enzymatic activity [9]. However, among the fourteen PAL genes, only StPAL7 was
abnormal, and nonpolar Ala residues replaced its polar Gly residues. In the shielding
domain, a post-translational phosphorylation site (Thr556, numbered according to AtPAL1),
which researchers detected in the bean [29], cucumber [17], and alfalfa [16] PAL sequences,
was also present in most of the StPAL proteins. The exceptions occurred in one AtPAL
(AtPAL3) and two StPALs (StPAL7 and StPAL8). In AtPAL, the polar Thr residue is replaced
by the nonpolar residue Ala, and in StPAL8, Thr is replaced by Ile. Neither Val nor Ala
could be phosphorylated. No amino acids were detected in StPAL7, and neither StPAL3
nor StPAL7 has the MIO domain. Therefore, it is speculated that these two genes may have
different physiological functions and may be redundant or unused PAL.

To evaluate the evolutionary relationship between potato PAL proteins, we constructed
a neighbor-joining tree (NJ) with MEGA 11.0 software and performed a phylogenetic anal-
ysis. In addition to the PAL proteins of potato, the phylogenetic tree includes PAL proteins
of model dicots (Arabidopsis thaliana, Nicotiana tabacum L., Vitis vinifera L., and Manihot
esculenta Crantz) and monocots (Oryza sativa L., Zea mays L., and Dioscorea oppositifolia L.), as
well as PALs of gymnosperm (Pinus pinaster) protein (Table A1). As shown in Figure 2, the
tree was divided into the following three groups: dicots, monocots, and gymnosperms. As
expected, potato PALs were grouped into dicotyledonous groups, with nine PALs forming a
potato subgroup. Three StPALs genes (StPAL14, StPAL8, StPAL7) belong to dicotyledonous
plants but are not in the potato subgroup. Among them, StPAL8 and StPAL7 clustered
with Arabidopsis and grape PALs, indicating that StPAL8 and StPAL7 may perform different
functions from other PAL genes in potato. Among all tuber PALs, some potato PALs
aggregated with each other into a triple. In total, we found three such potato PAL triples.
At the same time, it was also found that all potato PALs clustered in the same branch with
tobacco, indicating that the relationship between potato and tobacco PAL gene family is
relatively close.

2.3. Chromosomal Location and Tandem Duplication Genes of Potato PAL Gene Family

Chromosomal mapping results showed that 14 potato PAL genes were randomly and
unevenly distributed on chromosomes 3, 5, 9, and 10. There are six PAL genes on chro-
mosome 3, four PAL genes on chromosome 9, and two PAL genes on chromosomes 5 and
10, respectively (Figure 3a). There are various mechanisms for gene family amplification,
including polyploidy, fragment duplication, tandem duplication, transposable elements,
etc. [31]. To study the genome duplication event of the potato PAL gene, we identified
two tandem repeats (STPAL5/6) on chromosome 3 and three tandem repeats (StPAL9 and
StPAL10, StPAL10 and StPAL11, StPAL11 and StPAL12) on chromosome 9, according to
defined criteria.

From the perspective of the StPAL gene structure, the number of exons of StPAL gene
family members is between two and five. Indeed, StPAL3, StPAL4, and StPAL6 contain
five, four, and three exons, respectively, while other PAL gene family members have only
two. Compared with exons, introns of StPAL gene family members were more stable.
The StPAL4, StPAL6, StPAL7, and StPAL12 do not contain introns, StPAL5 has only one
intron, and other members of this family all contain two introns (Figure 3b). Therefore, the
structural differences among members of the StPAL gene family are insignificant, and only
a few members have differentiated, indicating that the original structure of the StPAL gene
is not complicated. The complexity is the gene after mutation evolution, so the PAL gene’s
evolution process needs more meticulous research.
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Arabidopsis PAL proteins. The alignment was performed using MAFFT with defaults, followed by 

shading with conservation. The darker the color of the region, the more conservative it is. A box 

Figure 1. Multiple sequence alignment of the fourteen potato PAL protein sequences and Arabidopsis
PAL proteins. The alignment was performed using MAFFT with defaults, followed by shading with
conservation. The darker the color of the region, the more conservative it is. A box circles the active
sites of PAL. The conserved enzymatic active site Ala-Ser-Gly is marked with black asterisks (***).
The gaps are indicated as dashes.
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Figure 3. Chromosomal location and gene structure for PAL proteins. (a) Chromosomal distribution
of potato PAL genes. The red box indicates tandem duplicate genes. (b) Green color bars represent
the exon, lines represent the intron, and yellow color bars indicate the untranslated region (UTR)
both at 50 and 30.

2.4. Cis-Acting Elements Analysis and Conserved Motif Identification

To further study the conservation of potato PAL protein sequences and the difference
in motif composition among potato proteins, the conserved motifs of potato PAL protein
sequences were further analyzed using MEME. The results showed that the structures of
the potato PAL family genes were not wholly consistent. Except for PAL7, other PALs
contained eight conserved structures, while PAL7 had only seven conserved structures and
did not contain Motif8. All conserved structures were 50 amino acids in length (Figure 4a,
Table 2). According to the conserved structure and sequence alignment results, Motif1
contains a conserved residue (Tyr358) located in the core domain, and Motif7 contains
another conserved residue (Gly501) situated in the core domain. These two residues
are critical for PAL enzymatic activity [9,14]. Since PAL3 and PAL7 do not contain MIO
conserved domains, none of the motifs have the MIO domain, so the program did not
predict them. The protein numbers of the eight motifs are all PF00221. Except for Motif7,
the other 7 are distributed in 14 StPAL proteins, indicating that the sequence of StPAL
proteins is conserved.
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Table 2. List of the conserved motifs of StPAL proteins.

Motif Length Amino Acid Sequence

Motif1 50 QKPKQDRYALRTSPQWLGPQIEVIRAATKMIEREINSVNDNPLIDVSRNK
Motif2 50 DYGFKGAEIAMASYCSELQFLANPVTNHVQSAEQHNQDVNSLGLISARKT
Motif3 50 SDWVMDSMSKGTDSYGVTTGFGATSHRRTKNGGALQKELIRFLNAGVFGN
Motif4 50 VMNGKPEFTDYLTHKLKHHPGQIEAAAIMEHILDGSSYVKAAQKLHEMDP
Motif5 50 HTLPHSATRAAMLVRINTLLQGYSGIRFEILEAITKLINSNITPCLPLRG
Motif6 50 ELHPARFCEKELLRVVDREYLFAYADDPCSSNYPLMQKLRQVLVDHAMKN
Motif7 50 NRITECRSYPLYRLVRZELGTELLTGEKVRSPGEEIDKVFTAMCNGQIID
Motif8 50 VSGGFFELQPKEGLALVNGTAVGSGMASIVLFESNILAVMSEVLSAIFAE

To further study the regulation mechanism of the StPAL gene under abiotic stress,
according to the different functions of different cis-acting elements, 13 cis-acting elements
related to growth and development, hormone, and stress response were outlined. The
promoter of the StPAL gene contains many homeopathic regulatory elements. The most
StPAL4 has 15 cis-acting elements, and the least StPAL3 has 6 cis-acting elements. There
are five stress response elements, as follows: anaerobic induction (ARE), light response
(I-box), low temperature response (LTR), drought-responsive (MBS), mechanical damage
(WUN-motif), and six hormone response elements, namely stress reaction (TC-rich repeats),
abscisic acid (ABRE), methyl jasmonate (CGTCA-motif), salicylic acid (TCA-element), auxin
(TGA-element), and ethylene (ERE). The two growth and developmental response elements
are meristem expression regulation (CAT-box) and circadian rhythm regulation (Figure 4b).
Among the StPAL genes, abscisic acid (ABRE), ethylene (ERE), and anaerobic induction
(ARE) have the most significant number of three action elements, as they have 33, 49, and
19, respectively. Except for StPAL12, these three elements are randomly distributed among
other genes, indicating that these genes are involved in plant responses to oxygen and
hormones, such as abscisic acid and ethylene. Cis-element analysis showed that the StPAL
gene was closely related to plants’ abiotic stress, growth, and hormone secretion.

2.5. Potato PAL Protein Interaction Analysis

Figure 5 shows a partially predicted PAL gene regulatory network and protein– pro-
tein interaction network of potato. Only one subnet was identified using the STRING
database to predict the interconnected genes in the network map of potato PAL protein
functional relationships and (species model selection Arabidopsis thaliana) protein inter-
actions. The top three associations with PAL1 and PAL2 are Cinnamate 4-hydroxylase
(C4H), 4-Coumarate: Coenzyme A Ligase (4CL1, 4CL2, 4CL3), and HISN6B. The C4H
and 4CL (1, 2, 3) are the key enzymes in the plant phenylpropane synthesis pathway. The
protein activity and transcriptional abundance of CH4 directly affect plants’ biosynthesis of
flavonoids and aromatic compounds [32]. On the other hand, 4CL can catalyze the forma-
tion of cinnamoyl-CoA from 4-coumaric acid, which plays a vital role in the regulation of
phenylpropanoid metabolic pathways, such as flavonoids, lignin, coumarin, sporopollenin,
and chlorogenic acid [3]. The study shows that the potato PAL gene family is also involved
in the phenylpropane metabolism pathway and may be the key enzyme in the synthesis of
flavonoids. The role of HISN6B is to encode a protein that, to a certain extent, compensates
for the loss of HISN6A (AT5G10330) and functions as a histidine-phosphate transami-
nase in histidine biosynthesis. Therefore, PAL may also be involved in the synthesis of
phosphate compounds.
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2.6. Collinear Analysis of PAL Genes in Potato and Arabidopsis

The gene collinearity study showed that potato and Arabidopsis shared three pairs
of homologous PAL genes, including two potato PAL genes and two Arabidopsis PAL
genes (Figure 6), indicating that the potato and Arabidopsis PAL genes families have some
kind of homologous evolutionary relationship. Among them, StPAL9 is collinear with at
least two AtPAL genes, and one of the two Arabidopsis genes collinear with it is collinear
with StPAL10, indicating that these four genes may have similar functions in potato and
Arabidopsis, and that they play an important role in the evolution of the PAL gene family.
The results showed that there was no collinear relationship between StPAL1, StPAL2,
StPAL3, StPAL4, StPAL5, StPAL6, StPAL7, StPAL8, StPAL11, StPAL12, StPAL13, StPAL14,
and AtPAL genes, indicating that these genes may be specific genes in potato evolution.
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2.7. Tissue Expression of Potato PAL Gene and Expression Analysis of Stress Treatment

To study the role of potato PAL genes in growth and development, we obtained tran-
scriptome data from the potato genome database, found RNA-seq data of PAL genes in
different tissues and under various stresses, and drew heatmaps (Tables A2 and A3). We
studied the expression levels of StPAL genes in leaves, roots, shoots, callus, stolons, tubers,
flowers, petioles, petals, stamens, carpels, and other tissues (Figure 7a), as well as the ex-
pression levels under stresses, such as salt, mannitol, heat, P. infestans, β-aminobutyric acid
(BABA), benzothiadiazole (BTH), abscisic acid (ABA), auxin (IAA), gibberellin glutathione
(GA3) and 6-benzylaminopurine (BAP) (Figure 7b).

The PAL gene was detected in all tissues, and StPAL8, StPAL9, StPAL13, and StPAL14
were expressed to a high degree in all tested tissues. Among them, the expression level
of StPAL9 in stolon reached an overall peak. It indicated that these four genes have a
tremendous regulatory role in potato growth and development. However, StPAL7 and
StPAL12 were mainly expressed in carpels and callus. Nonetheless, the expression levels
were still low, indicating that these genes may not play a significant role in regulating plant
development. The StPAL3 was only expressed in stolons and tubers, and the expression
level was moderate. In addition, we found that, except for StPAL7 and StPAL12, the overall
expression of other PALs genes was concentrated in stolons and tubers, indicating that
PAL genes are closely related to the growth and development of stolons and tubers. Then,
we counted the expression of StPAL genes under 10 kinds of stresses. We found that
13 genes were down-regulated under β-aminobutyric acid stress, and that StPAL6 was
more sensitive to various pressures. The StPAL genes mainly responded to salt, abscisic
acid, auxin, gibberellin, and 6-benzylaminopurine treatment, expressing that five, five,
seven, five, and seven genes were significantly up-regulated, respectively.
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Figure 7. (a) Heatmap shows the expression of the StPAL gene in 12 tissues, including the leaves,
roots, shoots, callus, stolons, tubers, flowers, petioles, petals, stamens, and carpels. Red indicates high
relative gene expression, whereas blue indicates low relative gene expression. (b) Heatmap of the
expression profile of potato PAL genes under 10 different biotic or abiotic stresses. Abiotic stresses
included salt, mannitol, and heat; biotic stresses included P. infestans, β-aminobutyric acid (BABA),
benzothiadiazole (BTH), and P. infestans; other stress responses were mainly induced by the following
four plant hormones: 6-benzylaminopurine (BAP), auxin (IAA), abscisic acid (ABA), and gibberellin
glutathione (GA3). Red indicates gene upregulation, while blue indicates gene downregulation.
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2.8. Expression Analysis of StPAL Genes in Different Treatments

The presence of many environmental signal-responsive cis-elements in the promoters
of the StPAL genes (Table 2) suggests that the expression of StPALs might respond to
various abiotic stresses. To test this hypothesis, we conducted qRT-PCR analyses to quantify
the expression levels of the StPAL genes in response to stress treatments of potato roots
(Table A4). Root tissue was selected because the expression of all of the StPALs could
be detected. Potato Desiree materials were treated with high temperature, drought, and
methyl jasmonate (MeJA). Then, the expression of the StPAL gene was detected by real-time
quantitative qRT-PCR to analyze the expression of 14 StPAL genes under high temperature,
drought, and MeJA stress (Figure 8). The results showed that all three stresses altered
the expression levels of PALs in all potatoes, but the extent of the changes varied by gene
and stress.
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Figure 8. Differential expression of the StPAL gene family in response to abiotic stress and hormone
induction. (A) Relative expression level at 38 ◦C. (B) Relative expression level under drought
treatment. (C) Relative expression level under MeJa treatment. (* t-test p-value < 0.05, ** t-test
p-value < 0.01, *** t-test p-value < 0.001).

As shown in Figure 8A, potato seedlings under high temperature stress (38 ◦C) showed
an up-regulation of nine StPAL genes. The qRT-PCR results in the StPAL7 and StPAL11
were consistent with the results in the RNA-seq data. The StPAL1, StPAL2, StPAL3, StPAL4,
StPAL6, StPAL8, StPAL9, StPAL12, and StPAL13 were significantly upregulated, and
StPAL7, StPAL10, and StPAL11 were significantly downregulated, especially StPAL8 and
StPAL12, the expression of which increased 33.70- and 24.47-fold after 6 hours of treatment,
respectively. The StPAL1, StPAL4, StPAL6, and StPAL13 increased 5.92-, 7.51-, 4.21-, and
5.66-fold, respectively. The remaining three StPALs (StPAL2, StPAL3, StPAL9) showed
a slight increase, between 2.40- and 2.48-fold. The expression levels of PAL7 and PAL11
were significantly decreased by 0.47-and 0.17-fold, respectively. The StPAL10 has minimal
expression. The expression levels of StPAL5 and StPAL14 did not change much.

Drought is another common stress that plants have to cope with. Under this stress,
StPAL1, StPAL5, StPAL6, StPAL8, StPAL12, and StPAL13 were significantly upregulated,
and StPAL7, StPAL10, StPAL11, and StPAL14 were significantly downregulated. The
qRT-PCR results in the StPAL1 were consistent with the results in the RNA-seq data.
This was especially true of StPAL8, as its expression increased 22.73-fold after 6 hours of
treatment. The expression of StPAL1, StPAL5, StPAL6, StPAL12, and StPAL13 increased
3.45-, 2.09-, 2.42-, 3.98-, and 4.18-fold, respectively. The expression levels of PAL7 and
PAL14 were decreased 0.23- and 0.38-fold, respectively. The StPAL10 and PAL11 have
minimal expression. The expression levels of StPAL2, StPAL3, StPAL4, and StPAL9 did not
change much, showing a slight change of between 0.70- and 1.63-fold (Figure 8B).

Under MeJA treatment, StPAL1, StPAL2, StPAL3, StPAL4, StPAL6, and StPAL9 were
significantly upregulated, while StPAL7, StPAL8, StPAL10, and StPAL11 were significantly
downregulated. The qRT-PCR results in the StPAL2 and StPAL9 were consistent with the
results in the RNA-seq data. Among them, StPAL2 had the highest expression, reaching
73.65-fold. The expression of StPAL1, StPAL3, StPAL6, and StPAL9 increased 9.23-, 2.08-,
5.89-, and 2.16-fold, respectively. The StPAL4, StPAL5, StPAL12, StPAL13, and StPAL14
showed a slight change of between 0.75- and 1.87-fold. The expression levels of PAL7,
PAL8, PAL10, and PAL11 were decreased by 0.39-, 0.14-, 0.12-, and 0.12-fold, respectively
(Figure 8C).
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3. Discussion

In this study, we identified 14 StPAL genes from the potato genome. Joos et al. studied
the potato PAL gene in 1992 [25], but they did not explicitly analyze its gene family, so
this is the first time that the PAL gene family has been described in potatoes. The PAL
gene family exists universally in high plants. Joos et al. (1992) found that potatoes have
at least 10 PAL genes, possibly many more. In this study, we identified 14 PAL genes
in potatoes, consistent with previous predictions [25]. Furthermore, we found the core
domain of StPAL genes to be highly conserved through conservative motif analysis and
multisequence alignment (Figures 1 and 4a). The results show that the genes we screened
are correct, and all of them are valuable for research. Meanwhile, the PAL gene has a high
degree of conservation in the process of evolution. Although StPAL3 does not have the
MIO domain, it has been proved that the gene has similar biological functions to other
StPALs after experimental verification, so it is still a member of the StPAL gene family.

In our study, 14 StPALs of the potato PAL gene family were arranged on chromosomes
3, 5, 9, and 10, respectively (Figure 3a), and the sequences of all genes were highly similar
(Figure 1). This indicates the existence of one or more tandem repeats, so we analyzed the
tandem repeats of the potato PAL gene during chromosomal localization. Two tandem
repeats were found on two and four StPAL genes (Figure 3a). In addition, our analysis of the
evolutionary tree of potato PAL protein showed that several pairs of StPALs with tandem
repeats were clustered with most other StPAL proteins, and three StPALs were clustered
with other plant PAL proteins (Figure 2). This result suggests that such duplication events
occurred after the potato split from the other dicots. In the present study, there were
two exons within most of the 14 PAL members (78.6% of cases). As can be seen from
the clustering of Figure 3b, StPAL proteins with similar exon/intron structures are more
likely to cluster together, which is consistent with the results of PAL gene family analysis
in most plants, such as maize [33], pear [34] and Juglans regia [35]. Among them, the
intron/exon organization of StPAL7-StPAL14 is very similar. These StPALs are clustered
together, and all contain two exons and one intron. The intron/exon organization structure
of StPAL1-StPAL6 shows diversity, with the number of introns ranging from two to six.
These differences are caused by evolutionary continuities, which affect the number of
introns. Such differences in gene structure are likely to lead to functional differences in
genes. Asma Ayaz et al. (2021) observed a similar situation in the LACS gene family.
However, the study included a much wider variety of plants, so this difference was more
pronounced in the study [36].

Thanks to the development of high-throughput sequencing techniques, the function
of PAL genes has now been identified in many kinds of plants. This is consistent with our
protein interaction analysis results (Figure 5). There is a strong correlation between PAL
protein and enzymes involved in the synthesis pathway of phenylpropane, flavonoid, and
cinnamyl. The network interaction diagram also indicates that PAL may participate in
synthesizing phosphate compounds. Still, the specific role of PAL in the reaction remains
in need of further study. The PAL genes are widely distributed throughout the genome of
most plants. For example, in Arabidopsis thaliana, AtPAL1, AtPAL2, AtPAL3, and PAL4 are
located on chromosomes 2, 3, 5, and 3 respectively [37]. In tobacco, numerous duplicated
MEMBERS of the PAL gene family do not cluster together [38]. Phylogenetic trees show
that PAL genes can be divided into three distinct clades, as follows: monocotyledons,
dicotyledons, and gymnosperms (Figure 2). This suggests that functional differentiation
of PAL genes may have occurred when monocotyledons and dicotyledons separated
(165 million years ago, in Myanmar), which is consistent with the results of Medicago
truncatula PAL [39] and watermelon PAL [40]. In the dicot subgroup, the PAL genes from
potato were most closely related to those of tobacco, indicating that the expansion of
the StPAL gene family might have occurred before the speciation of tobacco and potato.
Meanwhile, Figure 6 also showed that only StPAL9 and StPAL14 among the 14 StPAL
genes had apparent homology with Arabidopsis thaliana. The copy number of PAL genes
also varies from plant to plant, with most being between three and nine. For example,
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there are four members in Arabidopsis thaliana [13] and tobacco [14]. However, more than
20 members have been identified in tomato, although these are mostly inactive [38]. The
same is true of the 14 potato PAL genes we studied. Indeed, StPAL7, StPAL10, StPAL11, and
StPAL14 are relatively static (Figure 8). Different plants contain different numbers of PAL
genes, and the size of the genome and gene duplication events cause these differences [41].
The LACS gene family also has other gene numbers in various plants [42]. Additionally,
there are more tandemly duplicated genes in the StPALs, which confirms this.

The PAL mainly catalyzes phenyl propyl to produce trans-cinnamate esters, which
is the first step of the whole reaction pathway, and the products are precursors of various
secondary metabolites [43]. The silencing or loss of PAL can hinder the average growth and
development of plants. For example, inhibition of PAL expression in tobacco can lead to
stunted growth, changes in leaf structure, changes in petal morphology and pigment, and
reduced pollen viability [44]. In Arabidopsis thaliana, changing the phenotype of PAL1/PAL2
double mutants leads to sterility, lignin reduction, and ultrastructural changes in secondary
cell walls [21]. In addition, Pal quadruple knockout also resulted in developmental de-
lay and sterility of mutants, and enhanced susceptibility to Pseudomonas syringae [39].
In potatoes, 11 StPAL genes were expressed in stolons and tubers but at low levels in
other tissues (Figure 7a), suggesting a redundant role of StPAL in potato development.
Meanwhile, StPAL6 and StPAL9 were highly active in jasmonic acid (Figures 4b and 7).
Studies showed that StPAL6 had one tandem replication gene, StPAL5, and StPAL9 had
three tandem replication genes, StPAL10, StPAL11, and StPAL12 (Figure 3a). These four
duplicated genes are most likely redundant, expressed at specific times. According to the
qRT-PCR results, StPAL12 had a very high expression level at high temperatures (38 ◦C)
and drought, so we speculated that StPAL12 could replace StPAL9 expression at high
temperatures. The redundancy of the PAL gene family indicates that the PAL enzyme plays
a crucial role in plant growth and development and environmental stress. Our current stud-
ies have identified many cis-acting components associated with growth and development,
hormones, and anxiety (Figure 4b), such as CGTCA-Motif, ABRE, LTR, MBS, I-box, and
circadian. The existence of these cis-acting elements all confirmed the regulation of StPAL
expression under various stresses, such as hormone, temperature, drought, and light. As
different StPAL genes contained different types, numbers, and positions of elements, this
was consistent with the result of the heat map analysis of the expression profile (Figure 7b).
The regions that produced these significant differences may have arisen after tandem gene
duplication and recombination. As Reams and Neidle (2004) [45] reviewed, this is a benefi-
cial mutation that enables the repeated candidate gene to be better expressed in the face of
a new environment. This is also why StPALs genes overlap, but their expression patterns
are different. Although the expression profiles of StPALs in potatoes are roughly similar,
there are significant qualitative and quantitative differences in their regulation in plants
(Figure 8), suggesting that a single StPAL protein may have different functions from other
StPALs. This functional difference means that PALs are a multifunctional gene family. This
phylogenetic difference was fully supported by gene structure (Figure 3b) and analysis of
cis-acting elements (Figure 4b).

Many studies have shown that the PAL gene is highly expressed under low temper-
ature stress. For example, all PALs of cucumber seedlings are up-regulated under low
temperature pressure [33]. After cold treatment, the expression of PAL in walnut gradually
increased over time and reached the highest level at 48 h [35]. There are other similar
cases of leaves of tetraploid I. indigotica under cold stress [46]. Arabidopsis thaliana mainly
regulates and enhances plant resistance to freezing by activating BR signaling through en-
zymes [47]. However, the signaling mechanism of potato for freezing and high temperature
needs to be further studied. At present, there has been no experiment on PAL with high
temperature treatment, so it is speculated that there is no element directly corresponding to
the high temperature reaction detected in its cis-acting components. In this experiment,
expression of STPALs was significantly up-regulated in 65% of potatoes after high tempera-
ture treatment. Combining our experimental results with previous research results, it can
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be found that the expression of some PAL genes will be significantly up-regulated under
low temperature or high temperature stress. The results showed that the protective barrier
formed by phenylpropanoid metabolism could resist cold and heat injury [48]. Indeed,
PAL plays a vital role in abiotic stress as a bridge between primary metabolism and natural
product synthesis. Studies have shown that, compared with drought-sensitive genotypes,
the expression levels of PAL genes in the wheat root of drought-resistant genotypes are
higher. Still, the expression levels of five PAL genes are deficient [49]. After drought
stress, 70% of CsPALs in cucumber seedlings showed a trend of increasing and decreasing,
but the overall expression level was up-regulated [33]. Under waterlogging conditions,
70% of alfalfa PAL gene expression was up-regulated [16], while wheat PAL6 expression
was inhibited [50]. We found that the expression levels of only 6 of the 14 StPAL genes
were significantly increased, and the expression levels of 4 genes were deficient in potato
roots after drought stress treatment. Experimental results of drought stress in potato were
consistent with the above experimental results of waterlogging stress, and only some genes
were up-regulated. The drought regulation mechanism of Arabidopsis is mainly through
the regulation of transcription factors by BR, which gives plants a more robust tolerance
to drought stress [47]. Compared with high temperature and MeJA treatment, drought
treatment only induced increased expression of StPAL8, while other StPALs did not change
significantly. This may be because StPAL8 is highly involved in potato root development
and regulates its lignification level [51].

We found that many kinds of cis-elements exist in potatoes, including but not limited to
abscisic acid (ABRE), methyl jasmonate (CGTCA-Motif), and salicylic acid (TCA-element),
etc. After ABA treatment, 85% of cucumber PAL transcripts increased [17], while walnut
PAL showed no significant difference [35]. The expression of PALs in all cucumbers
increased after SA treatment [33], and the presentation of PAL in walnut rose gradually
in the first 24h and then decreased slightly [35]. The same situation occurred under the
SA treatment in tobacco [52] and cilantro [53]. Methyl jasmonate and salicylic acid both
belong to the hormones that can activate defense genes in plants and induce chemical
defense in plants. In this experiment, the expression of potato PALs was induced by methyl
jasmonate, and the manifestation of 60% StPALs was significantly up-regulated. The
expression levels of StAPL1, StAPL2, and StAPL6 were significantly up-regulated. These
results suggest that these three genes may be involved in MEJA activating plant defense
mechanisms [54]. Almost all StPALs respond to defensive and abiotic stresses in response to
MeJa. This is similar to the defense and response behavior of the GhPAOs gene family to low
temperature. The conserved structures of individual StPAL genes may be located in intron
regions, resulting in a non-highly conserved situation similar to GhPAOs [55]. Experimental
results have confirmed that various stresses and plant hormones can regulate the expression
of most PAL genes, and there is a significant difference in the regulation. The simultaneous
presentation of multiple PAL genes explains that the role of StPAL in environmental
stimulus-response is overlapped. The degree of law varies with different stresses, plants,
and genes, indicating that the response of StPAL genes to high temperature, drought, and
MEJA was different. This similar expression difference also exists in the GmLACS gene, and
the GmLACS studied by Asma Ayaz et al. (2021) also showed different expression patterns
under other stress treatments [42]. This gene expression difference is also advantageous.
The introduction of various StPALs may give plants varying stress tolerance levels. The
predecessors have successfully introduced a variety of tobacco penetration genes to endow
crops with resistance to multiple levels of stress and improve the critical agronomic traits
of crops [56].

4. Materials and Methods
4.1. Plant Materials Preparation

In this study, potato variety Desiree was used as experimental material. The ex-
periment was carried out at the State Key Laboratory of Crop Stress Biology in Arid
Areas, Northwest A&F University (107◦590′–108◦080′ east longitude, 34◦140′–34◦200′
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north latitude). Tissue culture seedlings were grown on a Murashige and Skoog (MS)
medium at pH 5.9 (Yang et al., 2020) containing 2% sucrose and 0.05% MES (2-morpholine-
ethanesulfonic acid). The study period was from January 2022 to February 2022. The
MS liquid medium containing tissue culture seedlings were grown for three weeks in an
incubator at 22 ◦C, 16 hours light (10,000 Lx), 8 hours dark, and 70% relative humidity,
and then the following treatments were performed: the tissue culture seedlings were
transferred to a nutrient solution containing 10 µM methyl jasmonate, a high temperature
culture environment at 38 ◦C, and a nutrient solution containing 20% polyethylene glycol
(PEG4000) for 3 hours, 6 hours, and 24 hours, respectively. The control group was untreated
seedlings. The treatment and control groups collected potato plant roots for RNA extraction.
Three biological replicates were established for each treatment condition to reduce the error
rate [57].

4.2. Identification of PAL Gene Family in Potato

Using the protein sequences of the PAL gene family identified in Arabidopsis thaliana
(https://www.arabidopsis.org/index.jsp (accessed on 15 November 2021)) genome database
as query sequences, the potato genome database was searched using local BlastP (http://
solanaceae.plantbiology.msu.edu/blast.shtml (accessed on 16 November 2021)). The se-
quence information of the potato homologous StPAL gene family members was obtained
(Table A2). The PAL gene family domain (PF00221) model file was downloaded from
the Pfam database (http://pfam.xfam.org/ (accessed on 6 December 2021)) and potato
protein sequences containing the PAL domain were screened using HMMER software.
Then, to test whether the initial identification results were correct, the PAL gene family
domain (PF00221) model file was put into SPDE2.0 software for re-screening to confirm the
correctness of the results. Using the Expasy website (https://web.expasy.org/protparam/
(accessed on 7 December 2021)) and combined with the potato genome database informa-
tion, we predicted and analyzed the physical and chemical properties of all PAL potato
protein sequences.

4.3. Multiple Sequence Alignment and Phylogenetic Tree Construction

The PAL protein sequences of potatoes and Arabidopsis were subjected to multiple se-
quence alignment using Jalview to identify the various memorable domains and conserved
residues. Using MEGA 11 software, the ClustalW algorithm was used to compare the potato
PAL family with Arabidopsis, corn, rice, tobacco, grape, cassava, yam, and pine [13,14,58,59],
and then a phylogenetic tree was constructed. Additionally, the statistical parameters used
to build a neighbor-joining (NJ) tree were as follows: 1000 bootstrap replications and the
Poisson model [60].

4.4. Chromosomal Location Analysis and Tandem Replicated Genes and Gene Structure

Gene location information was downloaded from the potato genome database (http://
solanaceae.plantbiology.msu.edu/ (accessed on 16 November 2021)) gff3 files. The chro-
mosome distribution of the potato PAL gene was analyzed and mapped using SPDEv2.0
software. The genes whose sequence similarity is more than 70%, that have agene interval
within five genes, and a distance of less than 100 kb are defined as the tandem replicated
genes [61]. The storage file of the potato PAL gene exon and intron distribution was down-
loaded from the potato genome database website, and we used TBtools software to draw
the gene structure map.

4.5. Conserved Motif Identification and Cis-Acting Elements Analysis

Using the MEME website (http://meme-suite.org/ (accessed on 4 December 2021)) to
analyze the conserved motifs of the potato PAL protein, we determined that the number of
motif inductions was eight [62]. To study the cis-acting elements in the promoter region of
the potato PAL gene, we retrieved the sequence of 2001 bp before the start codon of the
PAL gene from the potato genome database and submitted it to the PlantCARE website

https://www.arabidopsis.org/index.jsp
http://solanaceae.plantbiology.msu.edu/blast.shtml
http://solanaceae.plantbiology.msu.edu/blast.shtml
http://pfam.xfam.org/
https://web.expasy.org/protparam/
http://solanaceae.plantbiology.msu.edu/
http://solanaceae.plantbiology.msu.edu/
http://meme-suite.org/
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(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed on 21 December
2021)) to predict cis-acting elements [63]. We then used SPDE2.0 software to plot the
distribution of cis-acting components in the promoter region.

4.6. Analysis of PAL Protein Interaction in Potato

We uploaded 14 StPAL proteins of potato to the STRING website (http://cn.string-db.
org/ (accessed on 28 December 2021)), selected Arabidopsis thaliana as the model plant, and
confirmed that the 14 protein sequences corresponded to proteins in Arabidopsis. After the
results were derived, the frequency of protein nodes was calculated using Microsoft Excel,
and the protein interaction network diagram was drawn using Cytoscape software.

4.7. Interspecific Collinearity Analysis of PAL Gene in Potato

We downloaded the DNA files and gff3 files of the two plants from the potato genome
database (http://solanaceae.plantbiology.msu.edu/ (accessed on 15 November 2021)) and
the Arabidopsis thaliana genome database (https://www.arabidopsis.org/ (accessed on
15 November 2021)), respectively. We used the TBtools software to map the collinearity of
potato and Arabidopsis genes, and the collinearity of PAL genes was labeled.

4.8. Tissue Expression and Stress Treatment Expression Analysis of the Potato PAL Genes

According to the potato transcriptome sequencing data downloaded from the PGSC
website (http://solanaceae.plantbiology.msu.edu/dm_v6_1_download.shtml/ (accessed
on 16 November 2021)), we deleted all the PAL genes with an FPKM value of less than
1 under tissue and stress, then calculated the Log2 value, and used SPDE 2.0 software to
make a heat map [64].

4.9. RNAIsolation and qRT-PCR Analysis

The total RNA from potato was extracted using the TRIGene Total RNA Extraction
Reagent (GenStar, Shenzhen, China, P118-01), and then Evo M-MLV RT Kit with gDNA
Clean for qPCR II (Accurate Biology, Changsha, China, AG11711) was used to perform
reverse transcription, according to the manufacturer’s instructions. The design of StPAL
gene-specific primers for quantitative real-time PCR (qRT-PCR) analysis was investigated
using the Primer Premier 6 software and NCBI. The ef1α gene was used to normalize
the results (Table A4). The qRT-PCR process was performed on the Q7 Real-Time PCR
System. In qRT-PCR experiments, the following thermal cycling conditions were applied:
initial activation of 94 ◦C for 2 min, then 40 cycles of 94 ◦C for 15 s, 60 ◦C for 15 s, and
72 ◦C for 30 s. The relative expression levels were calculated using the comparative 2−∆∆CT

method [65].

5. Conclusions

This study identified 14 StPAL genes from the potato for the first time, distributed on
4 chromosomes, 13 of which had MIO domains. Although StPAL3 does not contain the
MIO domain, qRT-PCR results suggest that it is still involved in the stress response under
high temperature and MeJa stress. Phylogenetic tree analysis showed that 12 StPALs were
closely related to the tobacco PAL gene family. Analysis of cis-acting elements revealed that
most StPALs are involved in defense responses to abiotic stresses, such as hormones and
adverse environments. The qRT-PCR study showed that StPAL1, StPAL6, StPAL8, StPAL12,
and StPAL13 were involved in the response mechanism of potato to high temperature
and drought stress, while MeJa could significantly up-regulate the expression of StPAL1,
StPAL2, and StPAL6, indicating that these genes were involved in potato chemical defense
mechanism. These three stresses significantly inhibited the expression of StPAL7, StPAL10,
and StPAL11, once again proving that PAL is a multifunctional gene family, which may
give plants resistance to multiple and different stresses. Genome-wide identification of
the potato PAL gene family will allow us to gain a more comprehensive understanding
of the diversity of this family. In addition, although the protein interaction network map

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://cn.string-db.org/
http://cn.string-db.org/
http://solanaceae.plantbiology.msu.edu/
https://www.arabidopsis.org/
http://solanaceae.plantbiology.msu.edu/dm_v6_1_download.shtml/
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revealed the potential function of the StPAL protein, it still needs to be determined with
more in-depth research and analysis. This study aims to provide valuable insights for the
subsequent functional validation of these genes.
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Appendix A

Table A1. Protein sequences as used in the phylogenetic relationship analysis.

Species Gene Name Locus ID

Arabidopsis thaliana

AtPAL1 AT2G37040
AtPAL2 AT3G53260
AtPAL3 AT5G04230
AtPAL4 AT3G10340

Dioscorea cayenensis DcPAL1 XP_039137778
DcPAL2 XP_039132878

Manihot esculenta Crantz

MePAL1 XP_021620397
MePAL2 XP_021611089
MePAL3 AAK62030
MePAL4 XP_021597003
MePAL5 XP_021618700

Nicotiana tabacum

NtPAL1 M84466
NtPAL2 D17467
NtPAL3 X78269
NtPAL4 EU883669/70

Oryza sativa L.

OsPAL1 XP_015620761
OsPAL2 XP_015640196
OsPAL3 NP_001388835
OsPAL4 XP_015625125
OsPAL5 XP_015625126
OsPAL6 XP_015626729
OsPAL7 BAG94561.1
OsPAL8 XP_015633749
OsPAL9 XP_015615944

Pinus pinaster PpPAL1 AAT66434
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Table A1. Cont.

Species Gene Name Locus ID

Solanum tuberosum

StPAL1 Soltu.DM.03G004870
StPAL2 Soltu.DM.03G004900
StPAL3 Soltu.DM.03G004920
StPAL4 Soltu.DM.03G011440
StPAL5 Soltu.DM.03G011480
StPAL6 Soltu.DM.03G011490
StPAL7 Soltu.DM.05G017030
StPAL8 Soltu.DM.05G026870
StPAL9 Soltu.DM.09G005690
StPAL10 Soltu.DM.09G005700
StPAL11 Soltu.DM.09G005710
StPAL12 Soltu.DM.09G005720
StPAL13 Soltu.DM.10G005900
StPAL14 Soltu.DM.10G020990

Vitis vinifera L.

VvPAL1 XP_002267953
VvPAL2 XP_003633985
VvPAL3 XP_002268181
VvPAL4 NP_001384847
VvPAL5 XP_003633986
VvPAL6 XP_002268732
VvPAL7 RVW78684
VvPAL8 XP_010662075
VvPAL9 XP_002285277

VvPAL10 RVW84295
VvPAL11 XP_002281799
VvPAL12 RVW78687

Zea mays L.

ZmPAL1 NP_001147433
ZmPAL2 NP_001151482
ZmPAL3 NP_001147922
ZmPAL4 NP_001105334
ZmPAL5 NP_001141469
ZmPAL6 XP_008645952
ZmPAL7 NP_001168086
ZmPAL8 XP_020402425

Table A2. The FPKM values of phenylalanine ammonia-lyase genes in various tissues.

Gene Leaves Roots Shoots Callus Stolons Tubers Flowers Petioles Petals Stamens Carpels

StPAL1 0.00 0.41 2.34 1.88 7.21 4.99 0.00 0.48 0.00 0.00 0.00
StPAL2 0.00 1.07 2.96 2.51 5.96 4.78 0.00 0.00 0.00 0.00 0.00
StPAL3 0.00 0.00 0.00 0.00 6.17 4.18 0.00 0.00 0.00 0.00 0.00
StPAL4 0.00 0.00 3.15 0.67 8.19 4.28 0.00 1.85 3.10 0.00 0.00
StPAL5 0.79 1.29 5.94 3.30 9.11 7.25 2.04 1.99 0.00 0.00 0.00
StPAL6 0.17 0.00 3.67 0.00 7.58 4.40 0.00 2.27 3.47 0.00 0.62
StPAL7 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 1.49
StPAL8 1.67 3.81 3.17 5.98 5.04 4.12 3.46 3.22 3.60 4.39 3.84
StPAL9 6.84 7.89 7.47 9.48 9.79 8.29 7.82 5.74 9.33 3.34 7.77
StPAL10 3.88 1.85 4.63 3.91 7.52 6.33 5.57 3.42 3.04 0.00 4.07
StPAL11 0.64 0.45 3.63 2.30 7.40 7.07 0.23 3.23 0.00 0.00 1.90
StPAL12 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.11 0.05 0.00 0.00
StPAL13 2.31 2.40 4.48 7.71 3.10 1.32 2.36 3.93 3.56 0.36 0.92
StPAL14 5.25 4.24 4.66 5.63 5.86 5.71 7.45 5.34 4.83 9.12 5.59
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Table A3. The FPKM values of phenylalanine ammonia-lyase gene in various treatments.

Gene Salt Mannitol Heat P. infestans BABA BTH ABA IAA GA3 BAP

StPAL1 −0.31 −1.01 −0.55 0.03 −3.13 0.07 0.35 0.85 0.99 1.27
StPAL2 0.79 −0.73 −0.89 −1.12 −3.23 −0.72 1.37 1.68 1.91 0.05
StPAL3 0.00 2.53 −0.34 1.24 −0.27 −0.49 −0.88 −1.09 −0.64 0.00
StPAL4 −1.83 −2.13 1.55 1.12 −1.37 −2.94 −1.52 −1.17 −2.94 0.00
StPAL5 1.49 2.01 0.87 −0.23 −0.38 −0.66 0.98 1.11 1.83 1.23
StPAL6 −1.76 1.63 0.65 −0.02 −2.69 2.14 2.94 4.09 2.35 0.00
StPAL7 0.00 0.00 −1.04 −0.42 −1.41 0.00 0.00 0.00 0.00 0.00
StPAL8 −0.42 −0.86 −0.50 1.65 −1.22 0.35 −0.12 0.74 0.10 1.29
StPAL9 0.20 −0.48 0.25 0.97 −1.12 0.21 0.20 0.52 −0.13 0.52
StPAL10 −0.32 −0.54 −0.63 0.16 −2.27 0.27 0.23 0.38 −0.25 1.40
StPAL11 0.32 0.15 −0.98 −0.45 −2.12 −0.57 1.08 0.70 0.99 1.02
StPAL12 0.00 0.29 0.74 −0.98 −0.98 0.00 0.11 0.00 0.18 0.00
StPAL13 0.24 −0.34 −1.57 0.12 −1.57 0.30 −0.10 0.26 −0.45 −1.76
StPAL14 0.04 −0.33 −1.01 −0.47 0.51 0.46 −0.26 0.37 −0.98 1.28

Table A4. The primer sequences used in qRT-PCR analyses.

Species
Sequence (in 5′ → 3′ Order)

Forward Reverse

StPAL1 TCTAATCTGACAGCAGGAAGGA CCGAGCAGTAAGAAGCCATC
StPAL2 CCTCGGGTGATCTTGTACCTT TAACACCAGCCACACGGAAA
StPAL3 GAATGGCACAGCAGTTGGT TTCCGTTCATCACTTCAGCAA
StPAL4 TGCACAAAATGGACATAAAGCCAA AGAAAGTTCCACTTTGACCCCAC
StPAL5 ATTACCCCGTGTTTGCCCCT ACCATTGGGTCCAACAGCCT
StPAL6 GCCATCTAATCTCACAGCAGGAAGG AAGTTCCGAGCAGTAAGAAGCCATC
StPAL7 GCCGGTGATCCGACTAGGTG CCGACAGCTCCACCTTCACA
StPAL8 TGCAGCCCTACAGAAAGAGC CCTCACTAGCATAGCTGCCC
StPAL9 TGCTGATGATCCCTGCAGTTCA GGGTTGCCACTTTCAAGCATAG

StPAL10 TCTTGAAAGTGGCAACCCTGT CTCCTCACCGGGAGATCGAA
StPAL11 GCTATGCTTGAGAGTGGAAACCC GTCAATCTCCTCACCGGGCG
StPAL12 CCCGTTGTCATACATTGTTGGG GCTGTGCCATTCACAAGTGC
StPAL13 TGCTGAAGAAGCGTTCCGTGTT ATGCCATACCAGAGCCAACTGC
StPAL14 GCCAGAGTCGCGTTGGAAAG CAATTCCGTCCCGAGCTCCT

ef1α GGAAAAGCTTGCCTATGTGG CTGCTCCTGGCAGTTTCAA
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