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Abstract: RNA nanotechnology is attracting a great deal of attention recently. As the multiple
roles that RNA plays in molecular biology and physiological regulation become clearer, there
are many opportunities for engineering RNA-Nanoparticle Complexes (RNA-NPCs). The high
“engineerability” of RNA-NPCs comes from the ability to modify the RNA and NP chemistry.
For example, the NP can be derived from materials with anticancer activity and the RNA delivered by
it, designed to target cell signaling pathways that contribute to the molecular basis of these diseases.
Despite this rapid advancement and the availability of new quantification and characterization
techniques, a key challenge is to develop a better understanding of the RNA-nanobio interface; that
is, the interactions of RNA with NP (RNA-nanobio interface) and how that impacts the structure,
function, delivery, and activity of the RNA. Here, we attempt to summarize the state-of-the-art in this
new and exciting field, and to lay out potential directions for bioengineering research on RNA-NPCs.
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1. Introduction

Nanotechnology has emerged at the forefront of science in the past decade with many applications
in engineering. In parallel, with advancements in genomics and proteomics, much of the early
biomolecular nanotechnology work was done on DNA or protein-based Nanoparticles (NPs). However,
with the advancement of our understanding of RNA, RNA nanotechnology has recently exploded
onto the scene (Figure 1).
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Figure 1. Literature search on the number of RNA-NP manuscripts published (on PubMed) using the 
keyword “RNA Nanoparticle” (or “RNA-NP”, “RNA-Nanoparticle” variations). The number of 
actual articles with RNA-NP content is substantially lower than the number from the general 
published (of RNA-NP) article search. 

2. Engineering the RNA-Nanobio Interface 

RNA is more than just a source code and genetic information [1,2]. While proteins have been 
classically thought of as the engineers within cells and tissues, or more specifically enzymes, RNA 
can also catalyze biochemical reactions [2,3]. Using structural motifs, RNA has been developed with 
specific functions: Riboswitches, Aptamers, Splice-Switching Oligonucleotides (SSO) etc. [2,3]. Also, 
similar to proteins, RNA has the ability to fold into two- and three-dimensional nano-structures  
[4–6], capable of self-assembly [7,8]. The significant advancements made in understanding RNA 
chemistry have made RNA therapeutics a highly sought after field.  

Conventionally, RNA-NPs are defined as nanostructures primarily composed of RNA [7,9], with 
some composed in combination with DNA [5]. The most common example of the latter being  
pRNA-3WJ, has been extensively researched and characterized [8–14]. Here, we primarily consider 
RNA-molecules interacting with core NP (RNA-NPC, RNA-Nanoparticle Complexes) made of 
organic or inorganic NPs.  

RNA-NPCs have been used successfully as bio sensors [15–17]—to detect cancerous cells, as 
antibacterial-[18,19], and anti-cancer [20] agents. NPs have also been used extensively as  
vector-systems for delivery of RNA to cells and tissues [20–31], even as early as 1998 [32]. Addition 
of RNA substantially alters the surface properties and physical behavior of NP. A variety of 
approaches have been used to modify the NP surface before or after RNA interaction [33,34].  

The engineerability of the RNA-nanobio interface arises in large part from the ability to specify 
the interactions between the RNA molecule and the NP surface. This is achieved through chemical 
manipulations of the RNA molecule or through chemical modifications on the surface of the NP. In 
the case of RNA, a variety of chemistries are available which modify either the backbone or the base. 
Additionally, the 5’ or 3’ termini of the RNA molecules can be synthesized with various derivatives 
which impart desirable properties on them such as fluorescence or stability (Figure 2).  

As shown in Figure 2, a wide variety of modifications are available today for RNA in the 
backbone or linkage, nucleotide base and sugar. Only a few are shown but it is important to point 
out that these were primarily developed for increased stability and resistance to nuclease  
digestion—important for therapeutic applications. Thus, the impact of these chemistries on NP 
interaction and nanobio activity is almost totally unknown.  

Figure 1. Literature search on the number of RNA-NP manuscripts published (on PubMed) using
the keyword “RNA Nanoparticle” (or “RNA-NP”, “RNA-Nanoparticle” variations). The number of
actual articles with RNA-NP content is substantially lower than the number from the general published
(of RNA-NP) article search.
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As shown in Figure 1, there has been an exponential increase in RNA nanotechnology publications
in the last 5–6 years. RNA presents some interesting opportunities in comparison to proteins, where
its chemistry is much less complicated, and there is a rich pipeline of modifications to explore in
conjunction with NPs. So too, there are new nanomaterials now available from virtually every element
within Mendeleev’s periodic chart with a myriad of potential applications. The intent of this review is
to summarize the current status of the field, and to identify some of the limitations in nanobio research.

2. Engineering the RNA-Nanobio Interface

RNA is more than just a source code and genetic information [1,2]. While proteins have been
classically thought of as the engineers within cells and tissues, or more specifically enzymes, RNA
can also catalyze biochemical reactions [2,3]. Using structural motifs, RNA has been developed with
specific functions: Riboswitches, Aptamers, Splice-Switching Oligonucleotides (SSO) etc. [2,3]. Also,
similar to proteins, RNA has the ability to fold into two- and three-dimensional nano-structures [4–6],
capable of self-assembly [7,8]. The significant advancements made in understanding RNA chemistry
have made RNA therapeutics a highly sought after field.

Conventionally, RNA-NPs are defined as nanostructures primarily composed of RNA [7,9],
with some composed in combination with DNA [5]. The most common example of the latter being
pRNA-3WJ, has been extensively researched and characterized [8–14]. Here, we primarily consider
RNA-molecules interacting with core NP (RNA-NPC, RNA-Nanoparticle Complexes) made of organic
or inorganic NPs.

RNA-NPCs have been used successfully as bio sensors [15–17]—to detect cancerous cells,
as antibacterial-[18,19], and anti-cancer [20] agents. NPs have also been used extensively as
vector-systems for delivery of RNA to cells and tissues [20–31], even as early as 1998 [32]. Addition of
RNA substantially alters the surface properties and physical behavior of NP. A variety of approaches
have been used to modify the NP surface before or after RNA interaction [33,34].

The engineerability of the RNA-nanobio interface arises in large part from the ability to specify
the interactions between the RNA molecule and the NP surface. This is achieved through chemical
manipulations of the RNA molecule or through chemical modifications on the surface of the NP. In the
case of RNA, a variety of chemistries are available which modify either the backbone or the base.
Additionally, the 5′ or 3′ termini of the RNA molecules can be synthesized with various derivatives
which impart desirable properties on them such as fluorescence or stability (Figure 2).

As shown in Figure 2, a wide variety of modifications are available today for RNA in the backbone
or linkage, nucleotide base and sugar. Only a few are shown but it is important to point out that these
were primarily developed for increased stability and resistance to nuclease digestion—important for
therapeutic applications. Thus, the impact of these chemistries on NP interaction and nanobio activity
is almost totally unknown.

RNA Phosphodiester backbone modifications: The phosphodiester bond between RNA is a hotspot for
stability manipulations. Some of the more common of these, that are likely to impact the RNA-nanobio
interface are the Phosphorothioate (PS) and boranophosphate [35] derivatives, which are seen to have
no additional toxicity effects [36]. Both of these provide stability to the RNA and resistance against
nuclease degradation.

RNA ribose sugar modifications: A second hotspot for modifications is on the 2′ carbon of the
ribose sugar molecule. 2′-O-Methyl and 2′-F modifications are seen to substantially improve RNAse
resistance. However, 2′-O-Me synthesized modified oligos are not recognized by other enzymes. 2′-F
oligos, are now being extensively used due to their ability to retain native RNA configurations [37].
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RNA modifications for fluorescence: RNA possesses no intrinsic fluorescence. Some RNAs such as
aptamers may need to target the cell membrane, others such as antisense and siRNA act in the cytosol,
whereas SSOs and other RNAs designed for transcription modulation require nuclear delivery. Here,
it can be helpful to visualize cytosolic localization by modifying the RNA with fluorescent moieties.
For example, carboxyfluorescein (6-FAM) and Cy5 modifications to the RNA can be used to view
the RNA location in cell imaging. Additionally, conjunction of the dyes on either end of RNA has
been used as a primitive cleavage marking system [26] in the case of ribozymes. Dye labeling has
also been extensively used in electrophoretic mobility shifts to see specific protein interactions [38].
More recently, fluorescent RNA aptamers have been generated using SELEX (Systematic Evolution of
Ligands by Exponential Enrichment) to mimic common fluorescent tags. Aptamer Spinach (mimics
GFP) has been successfully used in visualizing live cells [39]. Similarly, aptamer Mango (orange
fluorophore) has been developed with increased fluorescence [40]. Self-assembling RNA-NP nanocubes
functionalized with malachite green aptamer have been used to monitor the correct self-assembly
of 3-D nanostructures. Fluorescence is only observed with successful formation of the nanocube [5].
Fluorescent aptamers are advantageous compared to conventional dyes due to their lower toxicity
and enhanced permeability. The use of fluorescent aptamers with inorganic nanoparticles, however,
has not been studied extensively, and remains an area of potential development.Bioengineering 2017, 4, 13  3 of 13 

 
Figure 2. Some examples of RNA chemical modifications which can now be synthesized due to the 
availability of various synthons compatible with automated nucleic acid synthesizers. (A) 
Modifications in the phosphodiester backbone such as phosphorothioate (S=P)-or-boranophosphate 
(BH2-P); (B) Modifications (most commonly at 5’ and 3’) with fluorescence dyes (5’-Fluorescein or 6-
FAM in figure) allow for visual detection of RNA-NPCs (RNA-Nanoparticle Complexes), since RNA 
does not possess intrinsic fluorescence; (C) Modifications in the ribose such as in the 2’ position (O-
Me, -F and others or ring modified versions). 
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Figure 2. Some examples of RNA chemical modifications which can now be synthesized due to the
availability of various synthons compatible with automated nucleic acid synthesizers. (A) Modifications
in the phosphodiester backbone such as phosphorothioate (S=P)-or-boranophosphate (BH2-P);
(B) Modifications (most commonly at 5′ and 3′) with fluorescence dyes (5′-Fluorescein or 6-FAM
in figure) allow for visual detection of RNA-NPCs (RNA-Nanoparticle Complexes), since RNA does
not possess intrinsic fluorescence; (C) Modifications in the ribose such as in the 2′ position (O-Me, -F
and others or ring modified versions).

In addition to engineering the RNA, many investigators modify NP chemistry. NP (organic,
inorganic, nucleic acid or liposome) surface modifications have been used to confer beneficial properties
to NPs (Figure 3). Below are some of the most common modifications used across the board for
liposomes, polymer NPs or inorganic NPs.
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Figure 3. Examples of NP (Nanoparticle) modifications. (A) Cell-penetrating peptide-decorated
NPs enhance cellular uptake of the NP (B) Polymer modifications such as PEG (polyethyleneglycol)
(in figure) and PEI (polyethyleneimine) enhance NP stability by preventing aggregation in solution;
(C) Amino Acid modifications such as arginine or lysine improve RNA binding to NP. Certain aptamers
are synthesized with specific amino acid recognition motifs; (D) Surfactant capping modifications such
as citrate, CTAB (cetyltrimethylammonium bromide) etc., have been used to restrict NP size, prevent
aggregation, and improve stability in solution.

NP modifications with polymers: One of the prevailing types of common functionalization is
polyethyleneglycol (PEG) modification, generally thought to confer physical stability upon the NP
and prevent aggregation [41]. Polyethyleneimine (PEI) has been seen to improve binding of siRNA
with electrostatic interactions on gold NPs, enabling retention of native RNA properties [42]. Chitosan,
another polymer, has also been used to functionalize NPs to improve stability. Chitosan coated NPs
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possess high positive Z-potential, and are repelled by electrostatic forces, preventing aggregation in
solution [43].

NP modification with amino acid: NPs can be functionalized with amino acids, such as arginine,
to enhance binding of RNA. It is well known that RNA motifs can be engineered to have specificity for
certain amino groups [44–46]. Similarly, based on binding strength, aptamers have been created with
amino acid specific recognition motifs [46,47]. Amino acid decorated NPs have been used to bind to
RNA with improved efficacy, enhancing distribution and stability.

NP modification with cell-penetrating peptides (CPP): NP uptake into cell is crucial for cancer targeting.
Cell-penetrating peptide functionalized NPs have been used with some success to enhance NP uptake.
CPP modified liposomes, however, were seen to have inefficient RNA unloading post internalization;
polymer NPs, however, did not have the same effect [48,49].

NP surfactant capping: NP growth can be controlled with capping agents such as Citrate,
Cetyltrimethylammonium Bromide (CTAB), Oleic Acid (OA) etc. Capping agents enable uniform
homogenous dispersion of NPs in colloidal solutions. Additionally, capping agents act as stabilizing
agents by preventing NP aggregation. However, their distribution on the NP surface also inhibits
catalytic active sites, preventing accurate reactions [50].

NP modifications with chemical functional groups: Alternatively, water-soluble NPs are modified
with chemical functional groups such as carboxylic acids (that prevent aggregation due to electrostatic
repulsion) or thiols [34]. Thiols in particular, are seen to preserve inorganic NP core stability against
heat and aggregation [51]. This has been utilized extensively for gold NPs, since thiols have high
affinity for gold.

Miscellaneous NP modifications and targeting: Sugar molecules often decorate the surface of cells
and tissues and are conjugated to proteins to form glycoproteins. Glycosaminoglycans of various
forms and sizes are present within the extracellular matrix and form the bulk of non-proteinaceous
material present therein and are widely used as biomedical materials such as heparin and many
others. This represents an important targeting opportunity where, for example, one study used
2-deoxy-D-glucose modified polymer NPs to target intracranial tumors which were shown to better
penetrate the blood–brain barrier and accumulate in intracranial tumors [52]. Here, aptamers can be
screened and optimized for binding to these targets in order to direct the NP to these sites of disease.

3. Characterizing the RNA-Nanobio Interface

Another opportunity represents the techniques necessary to characterize the RNA-nanobio
interface. Engineering being principally mathematically driven, it is important to be able to have
quantitative parameters by which to optimize the performance of RNA-NPC. Today, a suite of
technologies has become available which can shed light on the interaction of the RNA with the
surface of the NP. For example, innovations in a variety of different microscopy approaches now
allow us to essentially glimpse the surface. Common techniques include microscopy: Atomic Force
Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM)
and others. Surface Plasmon Resonance (SPR) properties of NPs (only Noble metals-Au and Ag), based
on free electron oscillations-which are size and shape dependent [53], may be useful in characterizing
the RNA nanobio interface.

Zeta potential (ζ, ±) and Dynamic Light Scattering (DLS) are two common techniques which
reveal changes in the electrostatic potential at the surface when RNA binds or in the hydrodynamic
diameter of the particle respectively. These techniques, while semi-quantitative, tend to be difference
measurements (positive to negative, or shift in peak) and may not generate information that ultimately
correlates with bio-activity.

Techniques which can discriminate the nature of the nanobio interaction include nuclear
magnetic resonance (NMR), infra-red (IR), ultraviolet (UV) spectroscopy and others. Further, surface
functionalization characterization can be studied by 1H NMR, Raman Spectroscopy and Fourier
Transform Infrared Spectroscopy (FT-IR). Based on the functional groups present, the peaks obtained
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from the NMR and IR can be used to detect the presence and binding of groups on the NP surface.
Additionally, shifts in NMR and IR peaks can be used to detect conformational changes caused due to
NP binding. Techniques such as X-ray Photon Spectroscopy (XPS) have been used with some success
in determining the configuration of RNA on NP surfaces [54,55]. For some biomedical nanomaterials,
certain NPs are fluorescent. The unique spectral signature of NPs shifts when bound to RNA can be
used to determine qualitatively if the RNA-NP complex has been formed. This technique, developed
by our group, Two-Dimensional Fluorescence Difference Spectroscopy (2D-FDS) [56], provides another
potential quantitative parameter with which to correlate RNA-NPC engineering and design principles
with bio-activity.

Thermal characteristics of self-assembling RNA-NPs have also been used to characterize the
RNA-nanobio interface. The melting point temperature of self-assembling RNA-NPs has been used to
determine controlled release as well stability over temperature ranges [5,9,57]. Further, addition of
RNA causes changes in the melting temperature of the RNA-NP complex [57].

Table 1 is a summary of examples of RNA nanobio characterization where a variety of RNA types
such as siRNA, aptamer, microRNA (miRNA) and ribozymes have been studied.

Table 1. Characterizing the RNA-Nanobio interface.

RNA+ Modification NP+ Modification RNA-Nanobio
Characterization Biological Significance Ref.

Anti-Sense
Oligonucleotides
(ASO)

- Liposome
DOTAP:DOPE-DOC-PEI 1

1H NMR, FT-IR,
Z-potential (ζ)

Selectively target CD33 positive
Kasumi-1 cells
Greater transfection efficiency
Highest downregulation of R2
Treated mice-increased
tumor inhibition

[22]

2′-O-Met, FAM Polymer
PLGA + Chitosan

AFM (Atomic
Force Microscopy)

Increased cellular uptake by primary
lung cancer cells and fibroblasts.
Inhibition of telomerase activity
Decreased cytotoxicity

[21]

PNA
Inorganic
Mesoporous Silica (MSNP)
+ FITC + SS

SEM, TEM, FT-IR,
Z-potential,
MALDI-TOF MS 2,
UV Abs.

Higher cellular uptake
Directed delivery into cytoplasm of
HeLa cells
Silencing of Bcl-2 protein expression
Low toxicity

[23]

TcDNA + PS
And B-PPMO

Nucleic Acid
Self-Forming micelle
nanoparticle

TEM, DLS (Dynamic
Light Scatter), Critical
Micelle Concentration
(CMC), Z-potential

ASOs had increased inclination to
self-assemble into nanoparticles
Fucoidin Sulfate and Dextran sulfate
competitively inhibited B-PPMO
uptake by Class A scavenger receptor
subtypes (SCARAs)

[58]

Aptamer

Apt1
(anti-CD44)+
2′-F

Liposome
DPPC:Cholesterol:DSPE+
Maleimide + PEG

Z-potential,
Gel electrophoresis

Enhanced CD44 binding
Increased cellular uptake by Lung
(A549) and Breast Cancer
(MDA-MB-231) Cell lines 3.
Constant IL-6, IL-1β, IL-8—does not
induce inflammatory response

[20]

anti-PSMA 4 Polymer
PLA-PEG-COOH Z-potential, SEM PMSA specific

Increase in efficiency and selectivity [24]

anti-PSMA A9
Inorganic
Gold+ Thiol+
hexa(ethylene glycol)

DLS, Fluorescence
Selectively labels
PSMA positive cells (LNCaP)
Stability preserved

[25]

Endo28 5

Aptamer
Nucleic Acid
pRNA-3WJ

Serum Stability with
polyacrylamide gel,
Z-potential, DLS

RNA-NP showed increased binding
to AnnexinA2 expressing cancer
cells-IGROV-1
RNA-NP w/dox specifically delivers
to AnnexinA2positive cell lines.
Enhanced AnnexinA2 tumor
selective binding

[59]
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Table 1. Cont.

RNA+ Modification NP+ Modification RNA-Nanobio
Characterization Biological Significance Ref.

microRNA

miR-122 mimic Liposome
DODMA-eggPC-chol-PEG Z-potential

Preferentially taken up by tumor
cell lines
Down-regulation miR-122 genes in
tumor tissue.
Z-potential in different
pH-colloidal stability

[30]

Anti-miR-155
PMO and PNA

Polymer
PLGA+ argCPP

BCA Assay 6,
Flow Cytometry, TEM

Inhibition of miRNA
Altered splicing to produce Mcl-1S
isoform opposed to Mcl-1L isoform

[60]

miR-145 Inorganic
Gold+ thiol oligo

Z-potential, UV
spectrophotometry

Overexpression of ectopic miR-145 in
PC3 and MCF7 cell types.
Efficient delivery system

[61]

Anti-miR-21
Nucleic Acid
pRNA-3WJ with PMSA
aptamer+ Cy5/Alexa647

Z-potential,
hydrodynamic diameter,
Temperature Gradient
Gel Electrophoresis
(TGGE)

Specific delivery of anti-miR-21 to
LNCaP-FGC (PMSA+) cells
Delivery of anti-miR-21 is achieved
through PMSA aptamer binding
Increase in Caspase III indicating
cell death
Specific targeting and accumulation
of RNA-NP to xenograft tumor
Low toxicity profiles in kidney
and liver
Increase in PTEN and PDCD4 tumor
suppressor genes

[62]

Ribozymes

Rzs Polymer
PEG-b-PLL

DLS, TEM, EtBr
Displacement Assay 5,
1H NMR,
Electrophoretic
Mobility Shift

Stable complexes formed
Stable in RNAse-rich environment [27]

MGMT 7+
Fluorescein+
5′Cy5

Inorganic
Gold SNA

Gel elec, RT-PCR,
DLS, Z-potential

Cleaved MGMT substrate
Sustained stability in harsh
enzymatic environment
Knocked down MGMT in T98G
glioma cells
Increase in Caspase-3/7 activity

[26]

siRNA

Notch1-homo-
siRNA-FAM

Liposome
DMAPA

Z-potential, TEM,
Gel electrophoresis

Protect against RNase A in serum
No SKOV3 cell cytotoxicity
Increased cellular uptake
Increased percentage of
apoptotic cells

[29]

anti-survivin
siRNA

Polymer
PA-PEI + Fe3O4
Magnetic NP

FT-IR, Z-potential,
Gel retardation assay

Increased cell uptake
Increased knockdown of
survivin gene
Increased apoptosis: 3-fold

[31]

VEGF siRNA/
B-cell
lymphoma
siRNA

Inorganic
Gold+ RGD-PEG-COOH
Dendrimer

Gel retardation assay,
DLS, Z-potential

Delivered specifically to
integrin-overexpressing cells
Induce specific silencing of genes
High transfection efficiency
Down-regulation of VEGF and Bcl-2

[28]

FASE siRNA+
Bcl-xl/2
strand 8+ Cy3

Nucleic Acid
DNA Nanocube-prism+
Cy5

UV-visible melting,
UV-visible
spectrophotometry
for stability, DLS,

Controlled release of siRNA
Enhanced stability in DMEM+ serum
Increased half-life of 12 hours

[57]

1 DOC-PEI conjugate was formulated and incorporated into the liposome to facilitate endosomal release of ASO;
2 Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry; 3 Both these have been shown
to have high CD44 expression ; 4 Prostate Specific Membrane Antigen 5 Measures surface density of NP with
modifications; 6 Used to determine the stability of NPs formed. Depending on the weight ratio of NP: Rzs- low
weight ratio, there is only slight exclusion of EtBr showing low complexation of NP-RNA; 7 O6-methylguanine-DNA
methyltransferase (MGMT); 8 Fatty Acid Synthase siRNA was flanked by DNA spacers and Bcl-xl/2 RNA sequences
were added as recognition sequences.

4. RNA-NPC and the Biological Milieu

NPs possess physiological and chemical properties that are different than their parental bulk
materials. Addition of RNA and functionalization further change the NP surface properties and how
they interact with the biological milieu.

RNA-NPCs introduced into biological fluid have been seen to form Protein Coronas
(PC)—aggregations of proteins on the NP surface [63]. These PCs alter the properties of NPs and affect
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cellular uptake, half-life and distribution amongst other properties [64]. The formation of the PC on
the NP surface (in protein-NPs) has been harnessed to be advantageous, as shown in Figure 4.
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therapeutic. Interactions with proteins can cause masking of the RNA of interest, rendering the
RNA-NPC ineffective.

Intravenous injections of NP drugs necessarily requires an understanding of the interactions
between RNA-NPC and blood components-PC accumulation, some of which possess RNAse activity
and have been seen to hydrolyze RNA [65]. In cases of in vivo studies, understanding the adsorption
of blood proteins to the RNA-NPC surface is crucial. For instance, decrease in proteins adsorbed to
the NP surface allows for increased RNA loading for a variety of purposes. Moreover, decreasing the
protein adsorption can improve circulation half-life and unwanted host responses [66]. Understanding
the interactions of PC proteins with the RNA-NPC surface, additionally, is crucial to determine drug
toxicity, dosage, and interactions with off-target materials.

NP-mediated therapy holds the potential for rapid advancement in diagnosis in treatment;
however several shortcomings need to be overcome. Firstly, RNA is highly labile and chemically
unstable, rendering it extremely sensitive to RNAse degradation. This becomes of special importance
for intra-venous drug applications, as the RNA is susceptible to hydrolysis. In addition, the lack of
specificity renders it prone to off-target effects due to partial matching. There have been efforts to curb
these with structural modifications [33] or using NP as vector systems [33,35].

RNA, unlike proteins, does not possess intrinsic fluorescence. In such cases, the intrinsic
fluorescence properties of certain NPs (e.g., Quantum dots and under certain conditions, Gold and
Silver) have been used to visualize RNA-NPCs. Additionally, the RNA or NPs have been functionalized
with dyes for fluorescence [14,20,57–59]. Even with these advancements, however, fluorescence for
visualization still remains a shortcoming for numerous RNA-NPCs without intrinsic fluorescence.
Finally, characterization of the RNA-nanobio interface and its interactions with the PC remain elusive.
Even with the development of techniques such as 2D FDS, understanding the molecular interactions
at the RNA-nanobio interface still remain a mystery.
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5. Conclusions

In brief, developing a better understanding of the RNA-nanobio interface is critical to engineering
better RNA-NPCs. With the myriad of chemistries available both for RNA and NP, it is now crucial
to identify optimal RNA-NPC combinations that will ensure enhanced stability, biocompatibility,
and therapeutic effect. Advances in RNA-nanobio characterization are tied to successful RNA-NPC
engineering. These opportunities and the challenge of a complex and variable biological milieu
in which the RNA-NPC is expected to perform will be important to address for the long-term of
RNA-NPC therapeutics.
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