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Abstract: Various adverse events and complications have been attributed to COVID-19 (coronavirus
disease 2019) vaccinations, which can affect the cardiovascular system, with conditions such as myocarditis,
thrombosis, and ischemia. The aim of this study was to combine noninvasive pulse measurements and fre-
quency domain analysis to determine if the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) vaccination
and its accompanying cardiovascular side effects will induce changes in arterial pulse transmission
and waveform. Radial blood pressure waveform and photoplethysmography signals were measured
noninvasively for 1 min in 112 subjects who visited Shuang-Ho Hospital for a BNT162b2 vacci-
nation. Based on side effects, each subject was assigned to Group N (no side effects), Group CV
(cardiac or vascular side effects), Group C (cardiac side effects only), or Group V (vascular side effects
only). Two classification methods were used: (1) machine-learning (ML) analysis using 40 harmonic
pulse indices (amplitude proportions, phase angles, and their variability indices) as features, and
(2) a pulse-variability score analysis developed in the present study. Significant effects on the pulse
harmonic indices were noted in Group V following vaccination. ML and pulse-variability score
analyses provided acceptable AUCs (0.67 and 0.80, respectively) and hence can aid discriminations
among subjects with cardiovascular side effects. When excluding ambiguous data points, the AUC of
the score analysis further improved to 0.94 (with an adopted proportion of around 64.1%) for vascular
side effects. The present findings may help to facilitate a time-saving and easy-to-use method for
detecting changes in the vascular properties associated with the cardiovascular side effects following
BNT162b2 vaccination.

Keywords: COVID-19 vaccine; side effects; pulse; spectral analysis; machine learning; cardiovascular
variability
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1. Introduction

The cardiovascular system may have a bidirectional relationship with COVID-19
(coronavirus disease 2019) infections and may be severely impaired by COVID-19 infection
and its secondary consequences [1,2]. Cardiovascular complications are a significant risk
factor for COVID-19-associated mortality [3,4]. Patients with preexisting comorbidities
such as hypertension, diabetes mellitus, and cardiovascular diseases (CVDs) have been
found to be more susceptible to COVID-19 infection and its complications [5].

COVID-19 infection has been suggested to have pathogenic implications for the car-
diovascular system and has been found to be associated with the worsening of underlying
CVD [6,7]. Myocardial injury significantly increases the amount of serum cardiac troponin
in patients with COVID-19. COVID-19 may accelerate cardiac aging, which leads to pul-
monary vascular endothelialitis, microangiopathy, diffuse thrombosis, and myocarditis [3].
The protein angiotensin-converting enzyme 2 (ACE2), which is an important cardiovascular
regulator, can be involved in the mechanisms of cardiovascular damage [5,8]. Markers of
coagulation and inflammatory cytokines have been found to be elevated in patients with
COVID-19 [7,9,10].

Elderly patients have the greatest risk of severe COVID-19 and its cardiovascular
complications, and so diagnostics and monitoring of severe and critically ill patients
constitute the main challenges [3]. Technologies utilizing artificial intelligence (AI) and
mobile-health devices may offer new strategies for addressing COVID-19. AI has already
been used to predict the spread of the virus, and in the early detection, monitoring, social
distancing, and training of healthcare workers during the COVID-19 pandemic. Mobile
health apps may improve user-friendliness and therefore strongly support pandemic
prevention and control [11].

Various adverse events and complications that reportedly originate from COVID-19
vaccinations can affect the nervous and cardiovascular systems. Some may even be life-
threatening, such as acute myocardial infarction, pulmonary embolism, and stroke [12].
Myocarditis, tachycardia, and impaired left ventricular ejection fraction have been noted
after receiving the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) vaccination [12]. Mon-
itoring the physiological signs within 7 days of mRNA vaccination is recommended by
the Centers for Disease Control and Prevention. Commonly used tools include cardiac
magnetic resonance imaging (for which patients need to go to the hospital), ECG signs (for
which expert justification is necessary), and inflammation markers (e.g., C-reactive protein
and troponin, which requires drawing blood) [13].

Arterial pulses generated by the heartbeat transmit along the artery and propel the
blood into the tissues in the microcirculation. Changes in heartbeat, vascular elasticity, or
blood supply perfusion conditions may change the coupling relationships between the
heart, artery, and vascular beds, and hence change the pulse waveform. The measurement
and analysis of pulse waveforms could therefore aid in circulatory system monitoring.
Pulse measurement also has application advantages, such as being noninvasive, fast, user-
friendly, and objective. Previous studies have analyzed pulse waveforms in the time
domain [14–17] and frequency domain to capture the information buried in the waveform
changes induced by CVDs, such as hypertension, stroke, coronary artery disease, vascular
aging, and metabolic syndrome, or applying various types of simulation [18–22].

The present study aimed to combine noninvasive pulse measurements and frequency
domain analyses to determine if the BNT162b2 vaccination and its accompanying cardiovas-
cular side effects induce changes in pulse waveforms. Since the subjects with cardiovascular
side effects constituted only a small proportion of the sample, we developed a scoring
system to provide an alternative way to classify subjects. Another aim was to determine
if using machine-learning (ML) analysis and the self-developed pulse variability scoring
system could help to discriminate vaccinated subjects with cardiovascular side effects.
The analysis of pulse waveforms (which helps to monitor the changes induced by vascu-
lar elasticity and pulse transmission conditions) in subjects who received vaccination for
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COVID-19 may offer relevant information and facilitate a noninvasive and easy-to-use
method of evaluating its possible impact on the cardiovascular system.

2. Methods
2.1. Measurement

Details of the present experimental setup and the signal processing methods are
available elsewhere [20–23] and in the Supplemental Materials. Blood pressure waveform
(BPW) signals of the subjects were measured noninvasively (typical waveforms are shown
in Figure 1).
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The subjects were recruited by Shuang-Ho Hospital. Informed consent was obtained
from the study participants or their legally designated person (approved by the Review
Board of Taipei Medical University; TMU-JIRB N202112027). All experiments were per-
formed in accordance with the relevant guidelines and regulations. The demographic
assessments, BPW and photoplethysmography (PPG) measurements, laboratory exami-
nations (urine and blood), 12-lead ECG, and chest X-rays were performed on the subjects
before (M0) and 7 days (±3 days) after (M1) BNT162b2 vaccination. Side effects from the
vaccines were assessed 7 days (±3 days) after vaccination (schedule and details are listed
in Tables S1–S5 in Supplemental Materials).

Measurements were performed on 112 volunteers; details of the subjects are listed in
Table 1. The subjects were divided into the following groups: Group N, no side effects;
Group CV, with cardiac or vascular side effects; Group C, with cardiac side effects only;
and Group V, with vascular side effects only. Cardiac and vascular side effects associated
with COVID-19 vaccination are defined in Table 2. A subject was assigned as “with side
effect” if they had any one of the listed items.

Table 1. Characteristics of the study subjects in Groups N, CV, V, and C.

(a) BPW
Group N Group CV Group V Group C

Male Female Male Female Male Female Male Female

Subject number
17 11 29 10 7 4 25 9

28 39 11 34

Age
48.6 ± 11.7 40.6 ± 13.2 39.8 ± 17.7 31.6 ± 12.4 41.0 ± 16.0 35.0 ± 11.1 41.0 ± 4.2 31.3 ± 4.0

45.5 ± 12.9 37.7 ± 16.9 38.8 ± 14.7 38.4 ± 4.2

BMI
23.2 ± 3.7 24.2 ± 3.5 22.6 ± 4.1 24.3 ± 3.9 22.8 ± 2.9 24.4 ± 3.6 22.6 ± 4.2 24.6 ± 4.0

23.6 ± 3.6 23.0 ± 4.1 23.4 ± 3.3 23.2 ± 4.2

Hypertension
1 2 3 2 0 1 3 2

3 5 1 5

Hyperlipidemia
9 4 10 2 3 2 9 2

13 12 5 11

Hyperglycemia
1 0 2 3 0 2 2 2

1 5 2 4

(b) PPG
Group N Group CV Group V Group C

Male Female Male Female Male Female Male Female

Subject number
9 4 15 2 5 2 13 1

13 17 7 14

Age
45.7 ± 16.4 40.8 ± 13.2 45.1 ± 16.4 28.5 ± 5.5 51.4 ± 6.2 28.5 ± 5.5 44.8 ± 17.6 23.0

44.2 ± 15. 7 43.1 ± 16.4 44.9 ± 11.9 43.3 ± 17.9

BMI
22.7 ± 3.9 24.7 ± 2.2 23.0 ± 4.2 21.1 ± 0.8 23.9 ± 2.6 21.1 ± 0.8 22.7 ± 4.4 20.3

23.3 ± 3.6 22.8 ± 4.0 23.1 ± 2. 6 22.6 ± 4.2

Hypertension
0 0 2 0 0 0 2 0

0 2 0 2

Hyperlipidemia
5 2 7 1 2 1 7 0

7 8 3 7

Hyperglycemia
0 0 2 0 0 0 2 0

0 2 0 2
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Table 2. Definitions of cardiac and vascular side effects accompanying COVID-19 vaccination.

Item Normal Range

Cardiac side effect

S3 (3rd heart sound) ≤5

S4 (4th heart sound) ≤5

EMAT (Electromechanical Activation Time) ≤120 (ms)

SDI (Systolic Dysfunction Index) ≤5

X-ray cardiothoracic ratio <0.5

Troponon-I 0–26.2 (pg/mL)

NT-proBNP <125 (pg/mL)

Vascular side effect
Creatinine 0.57–1.11 (mg/dL)

D-Dimer <0.5 (mg/L)

2.2. Analysis

The coefficient of variation of the heart rate (HR_CV) was calculated from the intervals
of two neighboring BPW foots to evaluate changes in heart rate (HR) variability. Frequency
domain analysis was performed to derive the following 40 BPW harmonic indices for
n = 1–10: amplitude proportion (Cn), coefficient of variation of Cn (CVn), phase angle (Pn),
and standard deviation of Pn (Pn_SD).

Two classification methods were used to discriminate between groups: (1) ML analysis
and (2) the self-developed pulse-variability scoring system. For ML analysis (details are
provided in the Supplemental Materials), eight supervised methods were used for the
binary classification of the data, which were support vector machine (SVM), multilayer
perceptron (MLP), Gaussian Naïve Bayes (GNB), decision tree (DT), random forest (RF),
logistic regression (LR), linear discriminant analysis (LDA), and K-nearest neighbor (KNN).
The features were the 40 indices for each pulse (n = 1–10): Cn, CVn, Pn, and Pn_SD. Threefold
cross-validation was used in the model training process.

Pulse indices were further used to understand discrimination ability by utilizing the
following self-developed pulse-variability scoring system:

� We first selected CV2 and P1_SD–P5_SD of BPW, since there were significant differ-
ences among these.

� Using average value of each selected index, the pulse-variability score for the data
point of each subject was calculated as:

[(CV2_M1)×(P1_SDM1)× . . . ×(P5_SDM1)]/[(CV2_M0)×(P1_SDM0)× . . . ×(P5_SDM0)].

� We then set threshold levels to study the discrimination ability of the scoring system.

3. Result

The general characteristics of the participants are listed in Table 1. Figure 2 compares
the harmonic indices of the pulse signals between before and after vaccination. Among the
BPW and PPG indices, there was only a significant change in C2 of BPW.

Figures 3 and 4 compare changes in the pulse indices among the four groups. The
BPW indices changed more prominently than did the PPG indices, and the subsequent
analysis therefore focused on BPW signals. Among the four groups, Group V had the most
prominent changes, especially in the Pn_SD indices (all significantly increased).
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For the BPW pulse indices in the four groups in Figure 3, we further divided them
into two subgroups (comparison results are shown in Figure 5): subGroups A (with at
least one of hypertension, hyperlipidemia, and hyperglycemia) and B (without any one of
hypertension, hyperlipidemia, and hyperglycemia). Changes in some BPW indices were
more prominent in Group A than in Group B; the most prominent differences were in the
Pn_SD indices in Groups V. However, there were only few significant changes between pre-
and post-vaccination values of the BPW indices.
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Figure 6 and Table 3 present the results of the ML analysis that discriminated between
the subjects in Groups N and CV using pulse indices as features. Among the eight methods,
LDA had the highest accuracy and AUC (area under receiver operating characteristic curve).
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The mean accuracy, specificity, sensitivity, and AUC of LDA were 69.77%, 0.54, 0.81, and 0.67,
respectively, which was close to an acceptable discrimination level.
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Table 3. Results of ML analysis (eight methods) for BPW indices in discriminating between Groups
N and CV using pulse indices as features. Accuracies are presented as percentages. Threefold
cross-validation values are listed. “*” denotes the highest average value. Among the eight methods,
LDA had the highest accuracy and AUC (area under receiver operating characteristic curve).

SVM MLP GNB DT RF LR LDA KNN

Accuracy 59.40 59.71 60.29 52.41 59.33 62.66 69.77 * 57.11

AUC 0.55 0.58 0.57 0.52 0.58 0.60 0.67 * 0.55

Specificity 0.25 0.47 0.38 0.47 0.48 0.47 0.54 * 0.41

Sensitivity 0.84 * 0.69 0.76 0.56 0.68 0.73 0.81 0.68
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Table 4 lists the results of the ML analysis that discriminated between the subjects in
Groups N and CV by using 23 clinical data as features. Among the eight methods, GNB
had the highest accuracy and AUC. The mean accuracy, specificity, sensitivity, and AUC of
GNB were 59.69%, 0.80, 0.45, and 0.63, respectively. The accuracy and AUC were lower
than those in Table 3 when using pulse indices as features.

Table 4. Results of ML analysis (eight methods) for BPW indices between Groups N and CV using
clinical data (23 parameters) as features. Accuracies are presented as percentages. Threefold cross-
validation values are listed. “*” denotes the highest average value. The 23 clinical data points
included the following: uric acid, cholesterol, HDL, LDL, GOT, GPT, glucose (random), hs-CRP, WBC,
RBC, HGB, HCT, MCV, MCH, MCHC, RDW-CV, platelets, neutrophils, lymphocytes, monocytes,
eosinophils, basophils, and ESR. Among the eight methods, GNB had the highest accuracy and
AUC (area under receiver operating characteristic curve), which were lower than those in Table 2,
for which pulse indices were used as features.

SVM MLP GNB DT RF LR LDA KNN

Accuracy 59.69 * 48.18 59.69 * 55.00 48.18 53.18 43.33 40.00

AUC 0.50 0.43 0.63 * 0.51 0.44 0.46 0.41 0.37

Specificity 0.00 0.20 0.80 * 0.36 0.24 0.13 0.31 0.25

Sensitivity 1 * 0.67 0.45 0.67 0.64 0.80 0.51 0.50

Figure 7 lists the performance results of using the self-developed pulse-variability scoring
system to discriminate between the subjects in Groups N and CV. When using 40 as the
threshold score, the mean accuracy, specificity, sensitivity, and AUC of LDA were 62.68%,
0.96, 0.38, and 0.67, respectively. All but 1 of the 16 subjects with a score >40 experienced
cardiovascular side effects. When using 0.4 as the score threshold, the mean accuracy,
specificity, sensitivity, and AUC of LDA were 67.16%, 0.60, 0.71, and 0.66, respectively.
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Figure 7. Results of pulse-variability score analysis of BPW indices for discrimination between Groups
N (0; n = 28) and CV (1; n = 39). (a) Threshold = 40 produced accuracy = 62.68%, specificity = 0.96,
sensitivity = 0.38, and AUC = 0.67. All but one of the subjects with a score >40 (n = 16; right side of the
confusion matrix) experienced cardiovascular side effects. (b) Threshold = 0.4 produced accuracy = 67.16%,
specificity = 0.60, sensitivity = 0.71, and AUC = 0.66. The sensitivity of 0.71 indicates that 71% of the
subjects with cardiovascular side effects (the lower half of the confusion matrix) were accurately identified.

Figure 8 lists the performance results when using the pulse-variability score to dis-
criminate between the subjects in Groups N and V. When using 17.1 as the score threshold,
the mean accuracy, specificity, sensitivity, and AUC of LDA were 82.05%, 0.92, 0.54, and
0.73, respectively, which indicated an acceptable discrimination level. When using 0.4 as
the score threshold, the mean accuracy, specificity, sensitivity, and AUC of LDA were
71.79%, 0.60, 1.00, and 0.80, respectively. The AUC value (which indicated an excellent
discrimination level) was higher than that between Groups N and CV (Figure 7). All of the
subjects with vascular side effects were accurately identified (sensitivity = 1).
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Figure 8. Results of pulse-variability score analysis of BPW indices for discrimination between Groups
N (0; n = 28) and V (1; n = 11). (a) Threshold = 17.1 produced accuracy = 82.05%, specificity = 0.92,
sensitivity = 0.54, and AUC = 0.73. This analysis achieved a very high specificity and an acceptable
discrimination level. The AUC value was higher than that between Groups N and CV (Figure 6).
(b) Threshold = 0.4 produced accuracy = 71.79%, specificity = 0.60, sensitivity = 1, and AUC = 0.80.
The AUC of 0.80 indicates an excellent discrimination level. All of the subjects with vascular side
effects were accurately identified (sensitivity = 1.00).

We then changed the score range to exclude data around the borderline to avoid the
interference of ambiguity. As shown in Figure 9, we used 0.4–40 as the threshold range
between Groups CV and N. The proportion of the adopted data outside the ambiguity
range was 65.7% (44/67); the accuracy, specificity, sensitivity, and AUC were 72.72%, 0.57,
0.94, and 0.75, respectively. When using 0.4–17.1 as the threshold range for Group V, the
proportion of the adopted data was 64.1% (25/39); the accuracy, specificity, sensitivity, and
AUC were 92.00%, 1.00, 0.89, and 0.94, respectively.
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(1; n = 11). The two thresholds were 17.1 and 0.4. The excluded proportion was around 35.90% 
(14/39). Accuracy = 92.00%, specificity = 1.00, sensitivity = 0.89, and AUC = 0.94. 
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Figure 9. Results of pulse-variability score analysis of BPW indices for discrimination by excluding
the data points located between the two thresholds. (a) Between Groups N (0; n = 28) and CV
(1; n = 39). The two thresholds were 40 and 0.4. The excluded proportion was 34.33% (23/67).
Accuracy = 72.72%, specificity = 0.57, sensitivity = 0.94, and AUC = 0.75. (b) Between Groups N
(0; n = 28) and V (1; n = 11). The two thresholds were 17.1 and 0.4. The excluded proportion was
around 35.90% (14/39). Accuracy = 92.00%, specificity = 1.00, sensitivity = 0.89, and AUC = 0.94.

Table 5 indicates that there were no significant changes in HR and HR_CV in any of
the four groups.

Table 5. No significant changes in HR (in beats/minute) and HR_CV (in %) were found in any of the
four groups.

Group N CV V C

Pre-HR 76.26 ± 9.88 82.97 ± 9.98 86.1 ± 8.08 83.09 ± 10.36

Post-HR 78.42 ± 9.95 83.71 ± 11.87 86.29 ± 8.55 83.59 ± 12.11

Pre-HR_CV 4.04 ± 1.96 4.46 ± 2.34 3.53 ± 1.66 4.48 ± 2.44

Post-HR_CV 3.89 ± 2.13 4.24 ± 2.12 3.94 ± 2.2 4.21 ± 2.16

4. Discussion

This study found prominent changes in spectral BPW indices following BNT162b2 vac-
cination, especially in the pulse-variability indices. The ML and pulse-variability score
analyses represent possible methods for discriminating between subjects with cardiovascu-
lar side effects.

4.1. Changes in the Pulse Indices

COVID-19 infection can affect different levels of the cardiovascular system [24]. Re-
garding the heart, myocardial injury is frequently observed in patients [25]. The suggested
cardiac sequelae include heart failure, cardiomyopathy, acute coronary syndrome, and ar-
rhythmia [8]. Regarding blood vessels, COVID-19 infection may result in immune-mediated
damage to the systemic vasculature [8]. The stiffness of larger arteries is higher in patients
with moderate and severe COVID-19 than in patients with mild COVID-19. The induced
mechanical fatigability of the arterial wall can lead to increased ventricular afterload and
impaired coronary perfusion [24]. COVID-19 infection is strongly associated with arterial
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and venous thrombus formation, and hence affects the vasculature impedance [8,10]. Re-
garding microcirculation, COVID-19 can infect the endothelial cells to severely alter the
microcirculation and cause endothelial inflammation [10]. Regarding blood flow, using cu-
taneous local thermal hyperemia as a stimulus, the endothelium-dependent microvascular
vasodilator response was found to be markedly decreased [9]. The mechanisms underlying
this vascular damage may include endothelialitis and vascular thrombosis [10,26]. Vasculi-
tis may contribute to thrombosis, hemodynamic instability, and autonomic dysregulation,
which may all lead to impairments of vascular integrity and tissue inflammation [26].
The adverse cardiovascular events associated with mRNA COVID-19 vaccination range
from inflammation to thrombosis and ischemia. Increased systemic reactogenicity and
immunogenicity after vaccination have been reported in Pfizer-BioNTech clinical trials [13].

Figure 2 compares changes in the pulse indices (of BPW and PPG) before and after
vaccination. Few significant changes were noted, illustrating that the BNT162b2 vaccination
did not induce prominent effects on the cardiovascular function of all patients in the sample.
This also implies similar effects on the pulse transmission condition both upstream (BPW)
and downstream (PPG) of the artery.

In comparisons of pulse waveform indices Cn and Pn among the side effects groups,
Figures 3 and 4 indicate the changes were more prominent for BPW indices than for PPG
indices; the subsequent discussion and ML and pulse-variability score analyses therefore
focused on BPW indices. These results indicated that the only prominent effect on the
pulse waveform indices was in the higher frequency components of Group V. Since the
pulse can distend the arterial wall and push blood through the arteriolar tissue openings,
Cn can represent the power of each frequency component within the BPW. The main
frequency components (lower frequency) that comprise a larger greater proportion of the
BPW power were more closely related to the pulse transmission in the main artery, and the
higher frequency components were more closely related to the pulse transmission in the
peripheral arteries. Based on the above conjecture, it is possible that the increased higher
frequency Cn values were related to increased peripheral arterial stiffness in subjects with
vascular side effects (Group V) following vaccination.

The main finding of the present pulse analysis was the changes in pulse-variability
indices (CVn and Pn_SD) following vaccination. Again, the most prominent changes were
in the indices of Group V, with significant increases in all Pn_SD indices. Cardiovascular
variability indices have been widely studied to determine their possible relationships with
cardiovascular regulatory function. For example, HR variability and BP variability indices
have been used for monitoring changes in the regulatory activities induced by aging and
disease [27,28]. For the vascular properties and blood flow, changes in the cardiovascular
variability indices were also found to be correlated with the responses induced by disease
or external stimulation [18,29]. For example, the pulse-variability indices were found to
be higher in subjects with metabolic syndrome than in the controls, illustrating a stronger
response to the changes in vascular stiffness and resistance induced by metabolic syndrome,
that comprise a cluster of vascular risk factors [19]. mRNA COVID-19 vaccination has been
suggested to be associated with adverse cardiovascular events such as thrombosis and
ischemia [13]. In the present Group V, changes in these vascular properties may have caused
challenges to the cardiovascular regulatory system to maintain blood supply homeostasis,
and hence increased the instability of the pulse transmission condition. This may partly
account for the increased values of pulse-variability indices noted in the present study.

The findings in Table 5 indicate that in all four groups, HR and HR_CV did not differ
before and after vaccination. HR and HR_CV were correlated with the heartbeat and its
regulatory activities; the present pulse-variability indices may be more strongly correlated
with vascular condition. The present findings illustrate that even in the absence of a
significant difference in HR and its variability index, the pulse-variability indices can still
aid in the discrimination between cardiovascular side effects following vaccination.

Figure 5 compares changes in the BPW indices following vaccination between subjects
with at least one (subGroup A) and without any one (subGroup B) of hypertension, hyper-
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lipidemia, and hyperglycemia. Although non-significant, the most prominent differences
can be noted in Pn_SD indices in Group V. It is possible that subjects in subGroup A may
have more severe vascular lesions. The arterial elastic properties may be different from
those in subGroup B, and hence changes in the BPW indices following vaccination can be
different between subGroups A and B.

4.2. ML Discrimination

The significant changes in some pulse indices hinted at using pulse indices as features
in ML analysis, which may aid in the discrimination between cardiovascular side effects
following BNT162b2 vaccination. In the ML analysis results between Groups CV and N
(listed in Table 3), LDA had the highest AUC (0.67) among the eight models. This was
higher than when using 23 clinical data as features, in which the AUC for GNB and SVM
peaked at 0.63 (Table 4). The accuracy (around 60%) was also lower than when using pulse
indices as features (around 70%). These findings illustrate the feasibility in discrimination
between the cardiovascular side effects by using pulse indices as features.

In Table 3 (using pulse indices as features), LDA had the highest likelihood ratio of
1.76. In Table 4 (using 23 clinical parameters as features), GNB had the highest likelihood
ratio of 2.25. This illustrated that using GNB and clinical parameters as features had a
higher probability of correctly predicting disease in ratio to the probability of incorrectly
predicting disease (indicated by a higher likelihood ratio value) than using LDA and pulse
indices as features.

4.3. Pulse Variability Score Discrimination

Since only a small proportion of the present subjects had cardiovascular side effects,
the sample size may not be adequate to form a reliable basis for ML analysis, although the
application of cross-validation may have partially solved this problem. We therefore tried to
develop a scoring system based on the present comparison of pulse index changes (as shown
in Figures 3 and 4) with the aim of providing an alternative method for discriminating
between subjects with and without cardiovascular side effects. This may help to overcome
the problem of the small sample.

According to Figure 3, the most prominent changes occurred in the pulse-variability
indices of BPW, which we therefore selected as the features to construct the pulse-variability
scoring system. As stated above, the changes in the pulse-variability indices can be related
to the changes in the cardiovascular regulatory activities. Based on this method, factors
that may change the pulse-variability score can be understood more easily, which is unlike
the black-box condition implicit in an AI analysis.

Using the pulse-variability score analysis illustrated in Figure 7, when using either
40 or 0.4 as threshold, the AUCs for discriminating between Groups CV and N were close
to those in the ML analysis. It is also worth noting that in the right half of the confusion
matrix when using 40 as threshold, almost all of the subjects (15/16) with a score >40 had
cardiovascular side effects. This suggests that a pulse-variability score of >40 can aid in the
practical detection of cardiovascular side effects.

While the changes in pulse indices were the most prominent in Group V, the sample
in this group was even smaller, and we therefore tried to use the pulse-variability score
analysis to discriminate between the subjects with vascular side effects. Figure 8 indicates
that using a threshold of 0.4 can achieve an excellent discrimination level. When using a
threshold of 17.1, similar to the case in the right half of the confusion matrix when using a
threshold of 40 in Group CV, most of those subjects (6/8) with a score >17.1 had vascular
side effects. When using a threshold of 0.4, the specificity was 1.00, which indicated that
all of the subjects with vascular side effects can be accurately detected. These findings
illustrate that pulse-variability score analysis can aid in the practical detection of vascular
side effects with high specificity and AUC.

As stated above, using different thresholds in the pulse-variability score analysis may
have advantages and disadvantages, and combining two thresholds together may therefore
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enhance the discrimination advantages. Figure 9 indicates that using pulse-variability
score analysis and excluding the data points located inside the two thresholds can further
improve the AUC. The proportions that the adopted data points occupied were 65.7% and
64.1% for Groups CV and V, respectively. In practical application, these findings indicate
that the pulse-variability score analysis cannot provide suggestions for only around one-
third of subjects; for the rest (around two-thirds), the pulse-variability score analysis can
reliably predict possible cardiovascular or vascular side effects that will follow vaccination.

5. Conclusions

The present findings and the related conclusions can be summarized as follows:

� Prominent effects were noted in Group V on the pulse harmonic indices induced by
cardiovascular side effects following BNT162b2 vaccination.

� ML and pulse-variability score analyses can aid the discrimination between subjects
with cardiovascular side effects. The score analysis can also provide information to
aid the detection of the cardiovascular or vascular side effects.

� When excluding possible ambiguous data points (the adopted proportion was around
two-thirds), the AUCs of the score analysis could be further improved to 0.94 and
0.75 for vascular and cardiovascular side effects, respectively.

� The present findings illustrate that combining the present noninvasive pulse measurement,
frequency domain pulse waveform analysis, and the ML and pulse-variability score
analyses can be a time-saving and easy-to-use method for detecting the changes in vascular
properties associated with the cardiovascular side effects following BNT162b2 vaccination.

� The present results were mostly limited by the small proportion of subjects with
cardiovascular side effects. Future studies should therefore focus on accumulating
more data to reinforce the reliability of the ML and pulse-variability score analyses.
The present technique can also be applied to study the effects of other COVID-19 vac-
cinations (e.g., Moderna and AZ vaccines) on vascular properties.
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