metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Bis(*u*-benzenethiolato- κ^2 S:S)bis[chlorido(triphenylphosphane-*κP*)palladium(II)] chloroform disolvate

Alcives Avila-Sorrosa,^a* Alicia Reves-Arellano,^a Juan Manuel Germán-Acacio,^b Reyna Reyes-Martínez^c and David Morales-Morales^c

^aDepartamento de Química Orgánica, IPN, Escuela Nacional de Ciencias Biológicas, Caprio y Plan de Ayala S/N, Colonia Santo Tomás, 11340 México, DF, Mexico, ^bCiencias Básicas e Ingeniería, Recursos de la Tierra, Universidad Autónoma Metropolitana, Avenida Hidalgo Poniente, La Estación Lerma, Lerma de Villada, 52006 Estado de México, CP, Mexico, and ^cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, DF 04510, Mexico

Correspondence e-mail: alcivesorrosa@gmail.com

Received 18 June 2013; accepted 17 July 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in solvent or counterion; R factor = 0.039; wR factor = 0.088; data-toparameter ratio = 15.3.

The title compound, $[Pd_2Cl_2(C_6H_5S)_2(C_{18}H_{15}P)_2]\cdot 2CHCl_3$, contains a centrosymmetric dinuclear palladium complex with the Pd^{II} cation in a slightly distorted square-planar coordination environment. The Pd^{II} cations are bridged by the S atoms of two benzenethiolate ligands with different Pd-S distances [2.2970 (11) and 2.3676 (11) Å]. The coordination of the metal atom is completed by a chloride anion [2.3383 (11) Å] and a triphenylphosphane ligand [2.2787 (11) Å]. Weak $C-H\cdots Cl$ interactions are present between complex molecules and the CHCl₃ solvent molecule. The latter is disordered over two positions in a 0.792 (8):0.208 (8) ratio. The crystal under investigation was found to be twinned by nonmerohedry, with a fraction of 73.4 (1)% for the major twin component.

Related literature

For related complexes in catalysis reactions, see: Yin & Liebscher (2007); Frisch & Beller (2005); Knochel & Singer (1993); Surry & Buchwald (2008). For bond lengths in a related complex, see: Estudiante-Negrete et al. (2007).

102.095 (2)°

96 restraints

 $\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

2622.8 (5) Å³

 $K\alpha$ radiation

 \times 0.19 \times 0.10 mm

4876 measured reflections

4876 independent reflections

4577 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 1.27 mm^{-1}

Experimental

Crystal data

$Pd_2Cl_2(C_6H_5S)_2(C_{18}H_{15}P)_2]$	$\beta = 102.09$
2CHCl ₃	V = 2622.8
$M_r = 1265.29$	Z = 2
Monoclinic, $P2_1/n$	Mo Kα ra
u = 10.8343 (11) Å	$\mu = 1.27 \text{ m}$
b = 14.2291 (15) Å	T = 298 K
c = 17.3994 (18) Å	0.36×0.1

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (TWINABS; Bruker, 2007) $T_{\rm min}=0.707,\;T_{\rm max}=0.878$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	
$wR(F^2) = 0.088$	
S = 1.08	
4876 reflections	
318 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
C25-H25···Cl1 ⁱ	0.98	2.79	3.744 (6)	164
C15-H15···Cl1 ⁱⁱ	0.93	2.93	3.650 (5)	135

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009).

Financial support of this research by CONACYT (grant No. CB2010-154732) and PAPIIT (grant No. IN201711-3) is gratefully acknowledged. RRM and DMM thank Dr Ruben A. Toscano for technical assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2753).

References

- Bruker (2007). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin USA
- Estudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651-1660.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frisch, A. C. & Beller, M. (2005). Angew. Chem. Int. Ed. 44, 674-688.
- Knochel, P. & Singer, R. D. (1993). Chem. Rev. 93, 2117-2188.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Surry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338-6361.
- Yin, L. & Liebscher, J. (2007). Chem. Rev. 107, 133-173.

supplementary materials

Acta Cryst. (2013). E69, m472 [doi:10.1107/S1600536813019806]

trans-Bis(μ -benzenethiolato- $\kappa^2 S$:S)bis[chlorido(triphenylphosphane- κP)palladium(II)] chloroform disolvate

Alcives Avila-Sorrosa, Alicia Reyes-Arellano, Juan Manuel Germán-Acacio, Reyna Reyes-Martínez and David Morales-Morales

Comment

Palladium is a transition metal well known for synthetic chemists. Thus, palladium complexes have been extensively studied and have had important applications as catalysts in a plethora of organic transformations, biological applications, material science *etc*. As catalysts, palladium complexes have shown high efficiency in different protocols of cross-coupling reactions for the construction of C—C bonds, *e.g.* through Heck reaction (Yin & Liebscher, 2007), Suzuki–Miyaura coupling (Frisch & Beller, 2005), Negishi reaction (Knochel & Singer, 1993), as well as for the formation of C-heteroatom highlighted *via* Buchwal–Hartwig reaction (Surry & Buchwald, 2008). In this context we report here the structure of the title compound, *trans*-[PdCl(C_6H_5S)($C_{18}H_{15}P$)]₂.2CHCl₃, (I).

The structure of (I) contains a centrosymmetric dimeric Pd^{II} complex with the Pd^{II} atom within a slightly distorted square-planar coordination environment (Fig. 1). The two Pd^{II} atoms are bridged by two $-SC_6H_5$ ligands, and the coordination environment is completed by one Cl^- and one PPh_3 ligand. The asymmetric unit is composed of half of the complex and one disordered CHCl₃ solvent molecule; the full molecule is completed by application of inversion symmetry.

The two bridging $-SC_6H_5$ ligands exhibit different Pd1—S1 bond lengths, 2.2970 (11) and 2.3676 (11) Å; these distances are comparable to those found in the structure of the related compound $[Pd(PPh_3)(SC_6F_5)(\mu-SC_6F_5)]_2$ (Estudiante-Negrete *et al.*, 2007). The Pd1—P1 and Pd1—C11 bonds lengths are 2.2787 (11) and 2.3383 (11) Å, respectively. The Cl⁻ and the PPh₃ ligands are arranged in a mutually *trans* conformation.

The complex molecules are packed in rows parallel to [010]. The structure is stabilized by weak C—H···Cl hydrogenbonding interactions between complex molecules and interstitial solvent molecules (Fig. 2).

Experimental

To a suspension of PdCl₂ (0.078 g, 0.442 mmol) and Na₂CO₃ (0.050 g, 0.047 mmol) in 15 ml of toluene a solution of 1ethenyl-[(phenylsulfanyl)methyl]-benzene (isomeric mix 60:40), 1-ethenyl-3-[(phenylsulfanyl)methyl]-benzene and 1ethenyl-4-[(phenylsulfanyl)methyl]-benzene) (0.100 g, 0.442 mmol) in 5 ml of toluene was added. The resulting mixture was set to reflux for 4 h. After this time the reaction mixture was allowed to cool down to room temperature and filtered. The solid residue was further washed twice with CHCl₃ (5 ml) attaining a yellow solid. This solid was further treated with PPh₃ (0.232 g, 0.884 mmol) in 15 ml of CHCl₃. The reaction mixture was stirred until all solid was dissolved and the resulting solution was filtered through a short plug of Celite. The filtrate was left to evaporate at room temperature yielding yellow crystals of (I) suitable for X-ray diffraction analysis.

Refinement

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H) and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}$ of the carrier atoms. In the refinement five reflections, (1 16 4), (-11 4 5), (-2 15 8), (8 11 5) and (-9 12 5), were considered as disagreeable and were omitted. The CHCl₃ solvent is disordered over two sets of sites in a 0.792 (8):0.208 (8) ratio. Twinning by non-merohedy was detected in the cell determination and two orientation matrices were determined. The data were then processed and corrected for absorption effects with the *TWINABS* program (Bruker, 2007). The refinement of the *BASF* parameter was 26.6 (1)%, indicating a fraction of 73.4 (1)% for the major twin component.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXL2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing the displacement parameters of atoms at the 30% probability level. Only the major component of the disordered solvent molecule is displayed.

Figure 2

Packing of the molecular entities in the structure of (I). C—H…Cl interactions are shown by dashed lines.

trans-Bis(µ-benzenethiolato- $\kappa^2 S$:S)bis[chlorido(triphenylphosphane- κP)palladium(II)] chloroform disolvate

Crystal data [Pd₂Cl₂(C₆H₅S)₂(C₁₈H₁₅P)₂]·2CHCl₃ $M_r = 1265.29$ Monoclinic, $P2_1/n$ a = 10.8343 (11) Å b = 14.2291 (15) Å c = 17.3994 (18) Å $\beta = 102.095$ (2)°

Data collection

Z = 2

 $V = 2622.8 (5) \text{ Å}^3$

Bruker SMART APEX CCD area-detector4876 measurediffractometer4876 independenceDetector resolution: 0.83 pixels mm⁻¹4577 reflection ω scans $\theta_{max} = 25.4^{\circ}$, $\theta_{max} = 25.4^{\circ}$, $h = -13 \rightarrow 12^{\circ}$ (TWINABS; Bruker, 2007) $k = 0 \rightarrow 17^{\circ}$ $T_{min} = 0.707, T_{max} = 0.878$ $l = 0 \rightarrow 20^{\circ}$

F(000) = 1264 $D_x = 1.602 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9960 reflections $\theta = 2.4-25.3^{\circ}$ $\mu = 1.27 \text{ mm}^{-1}$ T = 298 KPrism, yellow $0.36 \times 0.19 \times 0.10 \text{ mm}$

4876 measured reflections 4876 independent reflections 4577 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $h = -13 \rightarrow 12$ $k = 0 \rightarrow 17$ $l = 0 \rightarrow 20$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.088$ S = 1.08 4876 reflections 318 parameters	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 2.3327P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta \rho_{max} = 0.55$ e Å ⁻³
318 parameters	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
96 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.42887 (3)	0.39507 (2)	0.46354 (2)	0.03549 (10)	
S1	0.38706 (10)	0.55845 (7)	0.45393 (6)	0.0405 (2)	
P1	0.46454 (10)	0.23806 (7)	0.48206 (6)	0.0366 (2)	
Cl1	0.24145 (11)	0.36353 (8)	0.37296 (7)	0.0532 (3)	
C1	0.2753 (4)	0.5666 (3)	0.5147 (3)	0.0471 (11)	
C2	0.1625 (5)	0.6099 (4)	0.4860 (4)	0.0754 (17)	
H2	0.1468	0.6365	0.4361	0.090*	
C3	0.0705 (6)	0.6143 (5)	0.5317 (6)	0.108 (3)	
H3	-0.0064	0.6434	0.5117	0.129*	
C4	0.0927 (7)	0.5769 (5)	0.6043 (6)	0.100 (3)	
H4	0.0312	0.5804	0.6344	0.120*	
C5	0.2049 (8)	0.5339 (5)	0.6339 (5)	0.101 (2)	
H5	0.2205	0.5086	0.6843	0.121*	
C6	0.2949 (5)	0.5280 (5)	0.5889 (4)	0.0769 (17)	
H6	0.3706	0.4974	0.6090	0.092*	
C7	0.4562 (4)	0.1762 (3)	0.3897 (3)	0.0456 (10)	
C8	0.5280 (5)	0.2094 (4)	0.3396 (3)	0.0633 (14)	
H8	0.5778	0.2625	0.3532	0.076*	
C9	0.5273 (7)	0.1650 (5)	0.2693 (3)	0.0813 (18)	
H9	0.5761	0.1882	0.2355	0.098*	
C10	0.4542 (8)	0.0859 (5)	0.2490 (4)	0.087 (2)	
H10	0.4540	0.0553	0.2018	0.104*	
C11	0.3825 (7)	0.0528 (4)	0.2986 (4)	0.0807 (19)	
H11	0.3327	-0.0003	0.2847	0.097*	
C12	0.3829 (5)	0.0970 (3)	0.3692 (3)	0.0595 (13)	
H12	0.3340	0.0737	0.4028	0.071*	
C13	0.6143 (4)	0.2023 (3)	0.5438 (3)	0.0389 (9)	
C14	0.6401 (4)	0.2303 (3)	0.6217 (3)	0.0473 (10)	
H14	0.5818	0.2671	0.6404	0.057*	
C15	0.7505 (5)	0.2047 (4)	0.6720 (3)	0.0587 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H15	0.7665	0.2239	0.7243	0.070*	
C16	0.8373 (5)	0.1505 (4)	0.6446 (4)	0.0659 (15)	
H16	0.9120	0.1329	0.6784	0.079*	
C17	0.8141 (5)	0.1224 (4)	0.5678 (4)	0.0681 (15)	
H17	0.8727	0.0853	0.5497	0.082*	
C18	0.7030 (4)	0.1492 (3)	0.5166 (3)	0.0519 (12)	
H18	0.6885	0.1313	0.4640	0.062*	
C19	0.3518 (4)	0.1852 (3)	0.5339 (3)	0.0406 (9)	
C20	0.3754 (5)	0.0980 (3)	0.5692 (3)	0.0585 (13)	
H20	0.4467	0.0643	0.5637	0.070*	
C21	0.2941 (6)	0.0605 (4)	0.6125 (3)	0.0665 (14)	
H21	0.3116	0.0023	0.6365	0.080*	
C22	0.1881 (5)	0.1084 (4)	0.6203 (3)	0.0677 (15)	
H22	0.1331	0.0825	0.6490	0.081*	
C23	0.1633 (5)	0.1950 (4)	0.5853 (4)	0.0721 (16)	
H23	0.0913	0.2279	0.5905	0.087*	
C24	0.2451 (5)	0.2335 (3)	0.5425 (3)	0.0564 (12)	
H24	0.2280	0.2923	0.5194	0.068*	
C25	1.0053 (6)	0.1714 (4)	0.3114 (3)	0.0997 (16)	
H25	1.0794	0.2112	0.3300	0.120*	
Cl2	1.0512 (6)	0.0769 (4)	0.2630 (3)	0.1391 (18)	0.792 (8)
C13	0.8933 (4)	0.2375 (3)	0.24836 (19)	0.1357 (15)	0.792 (8)
Cl4	0.9460 (7)	0.1371 (4)	0.3917 (2)	0.170 (2)	0.792 (8)
Cl2A	1.0404 (19)	0.0854 (12)	0.2466 (7)	0.105 (4)	0.208 (8)
Cl3A	0.8462 (10)	0.1982 (14)	0.2823 (10)	0.170 (6)	0.208 (8)
Cl4A	1.0302 (13)	0.1208 (9)	0.4047 (4)	0.101 (3)	0.208 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U ¹³	U ²³
Pd1	0.03338 (16)	0.03191 (15)	0.04120 (16)	0.00213 (13)	0.00789 (13)	0.00007 (15)
S1	0.0391 (5)	0.0340 (5)	0.0468 (6)	0.0021 (4)	0.0055 (5)	0.0027 (5)
P1	0.0345 (5)	0.0326 (5)	0.0431 (6)	0.0017 (4)	0.0086 (4)	-0.0023 (5)
Cl1	0.0462 (6)	0.0536 (6)	0.0543 (7)	0.0018 (5)	-0.0021 (5)	-0.0041 (5)
C1	0.038 (2)	0.034 (2)	0.070 (3)	-0.0019 (18)	0.014 (2)	0.000 (2)
C2	0.048 (3)	0.076 (4)	0.105 (5)	0.018 (3)	0.023 (3)	0.022 (4)
C3	0.054 (4)	0.093 (5)	0.186 (9)	0.031 (4)	0.049 (5)	0.033 (6)
C4	0.079 (5)	0.080 (4)	0.164 (8)	0.014 (4)	0.077 (5)	0.011 (5)
C5	0.098 (5)	0.123 (6)	0.096 (5)	0.011 (5)	0.053 (4)	0.014 (5)
C6	0.056 (3)	0.106 (5)	0.077 (4)	0.017 (3)	0.032 (3)	0.019 (4)
C7	0.048 (2)	0.043 (2)	0.045 (2)	0.014 (2)	0.006 (2)	-0.003 (2)
C8	0.076 (4)	0.061 (3)	0.054 (3)	0.007 (3)	0.017 (3)	0.001 (3)
С9	0.097 (5)	0.097 (5)	0.054 (3)	0.025 (4)	0.025 (3)	0.012 (3)
C10	0.118 (6)	0.081 (5)	0.056 (3)	0.033 (4)	0.004 (4)	-0.022 (3)
C11	0.090 (5)	0.061 (4)	0.081 (4)	0.007 (3)	-0.005 (4)	-0.023 (3)
C12	0.065 (3)	0.047 (3)	0.063 (3)	-0.001 (2)	0.004 (3)	-0.018 (2)
C13	0.034 (2)	0.0313 (19)	0.049 (2)	-0.0018 (16)	0.0052 (19)	0.0027 (18)
C14	0.045 (2)	0.046 (2)	0.051 (3)	0.004 (2)	0.009 (2)	0.004 (2)
C15	0.061 (3)	0.066 (3)	0.046 (3)	-0.007 (3)	0.004 (2)	0.009 (2)

supplementary materials

C16	0.047 (3)	0.069 (3)	0.076 (4)	0.002 (3)	-0.002 (3)	0.018 (3)
C17	0.045 (3)	0.069 (3)	0.090 (4)	0.018 (3)	0.016 (3)	0.000 (3)
C18	0.044 (3)	0.054 (3)	0.059 (3)	0.009 (2)	0.012 (2)	-0.006 (2)
C19	0.038 (2)	0.041 (2)	0.044 (2)	-0.0053 (17)	0.0111 (19)	-0.003 (2)
C20	0.063 (3)	0.040 (2)	0.077 (3)	0.003 (2)	0.026 (3)	0.005 (3)
C21	0.077 (4)	0.048 (3)	0.077 (4)	-0.006 (3)	0.023 (3)	0.011 (3)
C22	0.058 (3)	0.075 (4)	0.076 (4)	-0.009 (3)	0.029 (3)	0.013 (3)
C23	0.050 (3)	0.083 (4)	0.090 (4)	0.009 (3)	0.030 (3)	0.020 (3)
C24	0.050 (3)	0.058 (3)	0.066 (3)	0.010 (2)	0.022 (2)	0.012 (3)
C25	0.107 (4)	0.104 (4)	0.081 (3)	-0.032 (3)	0.004 (3)	0.014 (3)
Cl2	0.134 (3)	0.134 (3)	0.146 (4)	0.039 (3)	0.022 (3)	0.032 (3)
C13	0.129 (3)	0.178 (3)	0.108 (2)	0.060 (2)	0.0416 (18)	0.039 (2)
Cl4	0.248 (6)	0.182 (3)	0.086 (2)	-0.093 (4)	0.049 (3)	0.009 (2)
Cl2A	0.134 (9)	0.126 (8)	0.049 (4)	-0.018 (6)	0.009 (5)	0.012 (4)
Cl3A	0.136 (7)	0.199 (11)	0.155 (11)	0.039 (8)	-0.015 (7)	-0.009 (9)
Cl4A	0.107 (7)	0.130 (7)	0.061 (4)	-0.034 (6)	0.010 (4)	-0.018 (4)

Geometric parameters (Å, °)

Pd1—P1	2.2787 (11)	C12—H12	0.9300
Pd1—S1 ⁱ	2.2970 (11)	C13—C18	1.383 (6)
Pd1—Cl1	2.3383 (11)	C13—C14	1.384 (6)
Pd1—S1	2.3676 (11)	C14—C15	1.375 (6)
S1—C1	1.770 (5)	C14—H14	0.9300
S1—Pd1 ⁱ	2.2971 (11)	C15—C16	1.376 (8)
P1—C7	1.819 (5)	C15—H15	0.9300
P1-C13	1.821 (4)	C16—C17	1.366 (8)
P1-C19	1.825 (4)	C16—H16	0.9300
C1—C2	1.366 (7)	C17—C18	1.392 (7)
C1—C6	1.378 (8)	C17—H17	0.9300
С2—С3	1.400 (9)	C18—H18	0.9300
С2—Н2	0.9300	C19—C24	1.380 (6)
C3—C4	1.346 (11)	C19—C20	1.385 (6)
С3—Н3	0.9300	C20—C21	1.380 (7)
C4—C5	1.362 (10)	C20—H20	0.9300
C4—H4	0.9300	C21—C22	1.365 (8)
С5—С6	1.376 (9)	C21—H21	0.9300
С5—Н5	0.9300	C22—C23	1.377 (8)
С6—Н6	0.9300	C22—H22	0.9300
С7—С8	1.368 (7)	C23—C24	1.385 (7)
C7—C12	1.381 (6)	С23—Н23	0.9300
С8—С9	1.376 (8)	C24—H24	0.9300
С8—Н8	0.9300	C25—Cl2	1.715 (6)
C9—C10	1.379 (10)	C25—Cl4	1.726 (6)
С9—Н9	0.9300	C25—Cl3	1.732 (5)
C10-C11	1.359 (10)	C25—Cl3A	1.733 (7)
С10—Н10	0.9300	C25—Cl4A	1.745 (7)
C11—C12	1.379 (8)	C25—Cl2A	1.759 (7)
C11—H11	0.9300	С25—Н25	0.9800

$P1$ — $Pd1$ — $S1^i$	95.42 (4)	C11—C12—C7	119.8 (6)
P1—Pd1—Cl1	90.27 (4)	C11—C12—H12	120.1
S1 ⁱ —Pd1—Cl1	173.83 (4)	С7—С12—Н12	120.1
P1—Pd1—S1	175.51 (4)	C18—C13—C14	118.7 (4)
S1 ⁱ —Pd1—S1	83.67 (4)	C18—C13—P1	123.2 (3)
Cl1—Pd1—S1	90.84 (4)	C14—C13—P1	118.1 (3)
C1—S1—Pd1 ⁱ	102.77 (16)	C15—C14—C13	121.2 (4)
C1—S1—Pd1	99.59 (14)	C15—C14—H14	119.4
$Pd1^{i}$ S1 $Pd1$	96.33 (4)	C13—C14—H14	119.4
C7—P1—C13	105.1 (2)	C14—C15—C16	119.6 (5)
C7—P1—C19	108.8 (2)	C14—C15—H15	120.2
C_{13} P1 C_{19}	101.47(19)	C16—C15—H15	120.2
C7 - P1 - Pd1	111.96 (15)	C17 - C16 - C15	120.2 120.3(5)
C13 - P1 - Pd1	117.46 (13)	C17 - C16 - H16	119.9
C19 - P1 - Pd1	111 26 (14)	C_{15} C_{16} H_{16}	119.9
$C_2 - C_1 - C_6$	118.2 (5)	C_{16} C_{17} C_{18}	120.2(5)
$C_2 = C_1 = S_1$	118.9(4)	C_{16} C_{17} H_{17}	110.0
$C_{2} = C_{1} = S_{1}$	122.9(4)	C18 - C17 - H17	119.9
$C_1 = C_2 = C_3$	122.9(4) 120.1(6)	$C_{13} = C_{17} = M_{17}$	119.9
$C_1 = C_2 = C_3$	120.1 (0)	$C_{13} = C_{18} = C_{17}$	120.0 (3)
$C_1 = C_2 = H_2$	119.9	$C_{13} - C_{18} - H_{18}$	120.0
$C_3 = C_2 = C_2$	119.9	$C_{1}^{2} = C_{10}^{2} = C_{10}^{2}$	120.0
C4 - C3 - C2	120.5 (0)	$C_{24} = C_{19} = C_{20}$	110.0(4)
$C_4 = C_3 = H_3$	119.8	$C_{24} = C_{19} = P_1$	120.7(3)
$C_2 = C_3 = H_3$	119.8	$C_{20} = C_{19} = P_1$	120.5 (4)
$C_3 = C_4 = C_5$	120.1 (7)	$C_{21} = C_{20} = C_{19}$	120.0 (5)
C3-C4-H4	119.9	$C_{21} = C_{20} = H_{20}$	119.7
$C_3 - C_4 - H_4$	119.9	C19 - C20 - H20	119.7
C4 - C5 - C6	119.7 (7)	$C_{22} = C_{21} = C_{20}$	120.5 (5)
C4—C5—H5	120.1	C22—C21—H21	119.7
C6—C5—H5	120.1	C20—C21—H21	119.7
C5-C6-C1	121.4 (6)	$C_{21} = C_{22} = C_{23}$	119.6 (5)
С5—С6—Н6	119.3	С21—С22—Н22	120.2
C1—C6—H6	119.3	С23—С22—Н22	120.2
C8—C7—C12	119.3 (5)	C22—C23—C24	120.2 (5)
C8—C7—P1	117.8 (4)	С22—С23—Н23	119.9
C12—C7—P1	122.9 (4)	С24—С23—Н23	119.9
C7—C8—C9	120.6 (6)	C19—C24—C23	120.5 (5)
С7—С8—Н8	119.7	C19—C24—H24	119.8
С9—С8—Н8	119.7	C23—C24—H24	119.8
C8—C9—C10	119.9 (6)	Cl2—C25—Cl4	111.8 (4)
С8—С9—Н9	120.1	Cl2—C25—Cl3	110.6 (4)
С10—С9—Н9	120.1	Cl4—C25—Cl3	109.6 (4)
C11—C10—C9	119.6 (6)	Cl3A—C25—Cl4A	108.2 (6)
C11—C10—H10	120.2	Cl3A—C25—Cl2A	107.5 (6)
С9—С10—Н10	120.2	Cl4A—C25—Cl2A	107.2 (5)
C10-C11-C12	120.7 (6)	Cl2—C25—H25	108.2
C10-C11-H11	119.6	Cl4—C25—H25	108.2
C12—C11—H11	119.6	Cl3—C25—H25	108.2

$Pd1^{i}$ —S1—C1—C2	133.2 (4)	C19—P1—C13—C18	120.9 (4)
Pd1—S1—C1—C2	-128.0(4)	Pd1—P1—C13—C18	-117.6 (4)
Pd1 ⁱ —S1—C1—C6	-49.3 (5)	C7—P1—C13—C14	-172.8(3)
Pd1—S1—C1—C6	49.5 (5)	C19—P1—C13—C14	-59.4 (4)
C6—C1—C2—C3	0.0 (9)	Pd1—P1—C13—C14	62.1 (4)
S1—C1—C2—C3	177.7 (5)	C18—C13—C14—C15	-1.3 (7)
C1—C2—C3—C4	0.6 (12)	P1-C13-C14-C15	179.0 (4)
C2—C3—C4—C5	-0.3 (13)	C13—C14—C15—C16	0.2 (7)
C3—C4—C5—C6	-0.7 (13)	C14—C15—C16—C17	0.1 (8)
C4—C5—C6—C1	1.4 (12)	C15—C16—C17—C18	0.6 (9)
C2-C1-C6-C5	-1.0 (10)	C14—C13—C18—C17	2.0 (7)
S1—C1—C6—C5	-178.6 (6)	P1-C13-C18-C17	-178.3 (4)
C13—P1—C7—C8	-76.2 (4)	C16-C17-C18-C13	-1.7 (8)
C19—P1—C7—C8	175.8 (4)	C7—P1—C19—C24	-110.5 (4)
Pd1—P1—C7—C8	52.4 (4)	C13—P1—C19—C24	139.1 (4)
C13—P1—C7—C12	102.6 (4)	Pd1—P1—C19—C24	13.4 (4)
C19—P1—C7—C12	-5.5 (4)	C7—P1—C19—C20	73.2 (4)
Pd1—P1—C7—C12	-128.9 (4)	C13—P1—C19—C20	-37.2 (4)
C12—C7—C8—C9	0.3 (8)	Pd1—P1—C19—C20	-162.9 (4)
P1-C7-C8-C9	179.1 (4)	C24—C19—C20—C21	-0.4 (8)
C7—C8—C9—C10	-0.4 (9)	P1-C19-C20-C21	176.0 (4)
C8—C9—C10—C11	0.5 (10)	C19—C20—C21—C22	0.9 (9)
C9—C10—C11—C12	-0.5 (10)	C20—C21—C22—C23	-0.7 (9)
C10—C11—C12—C7	0.4 (9)	C21—C22—C23—C24	0.0 (9)
C8—C7—C12—C11	-0.3 (7)	C20-C19-C24-C23	-0.3 (8)
P1-C7-C12-C11	-179.0 (4)	P1—C19—C24—C23	-176.7 (4)
C7—P1—C13—C18	7.5 (4)	C22—C23—C24—C19	0.5 (9)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С25—Н25…С11"	0.98	2.79	3.744 (6)	164
C15—H15…Cl1 ⁱⁱⁱ	0.93	2.93	3.650 (5)	135

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) *x*+1/2, -*y*+1/2, *z*+1/2.