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Parkinson’s disease (PD) is the second most common neurodegenerative disease after

Alzheimer’s disease, with typical motor symptoms as the main clinical manifestations. At

present, there are about 10 million patients with PD in the world, and its comorbidities

and complications are numerous and incurable. Therefore, it is particularly important

to explore the pathogenesis of PD and find possible therapeutic targets. Because the

etiology of PD is complex, involving genes, environment, and aging, finding common

factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural

environment and disease states, and it is considered to be closely related to the etiology

of PD. Despite research showing that hypoxia increases the expression and aggregation

of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack

of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis.

Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may

be a co-participant in many aspects of the PD pathologic process. In this review, we

describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing

PD pathology by these risk factors. Furthermore, we attribute the pathological changes

caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus

emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn

pathology and PD pathogenesis. Our study provides novel insight for exploring the

pathogenesis and therapeutic targets of PD.

Keywords: alpha-synuclein, hypoxia, oxygen intake, oxygen utilization, Parkinson’s disease

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease of the central
nervous system (Tolosa et al., 2021). The typical pathological characteristics of PD are the
progressive degeneration and loss of dopaminergic neurons in the substantia nigra, resulting in
dopamine deficiency and the formation of Lewy bodies (LBs) in the remaining neurons, the main
component of which is alpha-synuclein (α-syn) (Dunn et al., 2019). Epidemiological studies show
that the current incidence of PD is about 1% to 2% in people over the age of 65 years. It is roughly
estimated that there are 7–10 million patients with PD worldwide (Aarsland et al., 2021). Over the
last 30 years, the number of patients has increased 2.5 times. Meanwhile, its prevalence is expected
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to double over the next 30 years as the population ages (Dorsey
et al., 2018b). In addition, with the rapid development of
modern industry and inevitable environmental pollution and
other factors, PD may even usher as a new pandemic and bring a
heavier social burden (Bloem et al., 2021).

Unfortunately, the etiology of PD is complex, the pathogenesis
is unknown, and there is no effective treatment. As for the
etiology, genes, environment, aging, traumatic brain injury (TBI),
and poisoning are recognized as major risk factors (Klein and
Westenberger, 2012; Dunn et al., 2019). From the perspective
of the pathological mechanism, PD is inseparable from
mitochondrial dysfunction (Bose and Beal, 2016), autophagy-
lysosome disorder (Lu et al., 2020), vesicular transport disorder
(Nguyen et al., 2019), and neuroinflammation (Marogianni et al.,
2020). α-syn is themajor component of LBs, playing a central role
in PD induced by various risk factors, and SNCA encoding this
protein is the first PD risk gene to be discovered (Polymeropoulos
et al., 1997). α-syn is a protein widely expressed in the brain,
with strong physiological functions. There are several important
stages in the transformation of α-syn, from playing physiological
functions to promoting pathology, such as phosphorylation
modification, aggregation (Tu et al., 2021), and propagation
(Garcia et al., 2022), thus promoting the development of PD. Due
to the complex risk factors and pathogenesis mentioned above,
PD intervention is challenging. We sought to find common
ground among themany risk factors and intricate pathogenesis of
PD. We were surprised to find that oxygen intake and utilization
disorders seem to link the pathogenesis and pathology of PD.
Whether the source is environmental hypoxia or tissue hypoxia,
we can collectively refer to this key link as hypoxia.

This review summarizes the risk factors of PD, including
genes, environment, aging, and TBI. Further, we discuss
the relationship between oxygen intake disorder, oxygen
utilization disorder, and the above risk factors. We describe the
transformation process of α-syn in PD pathogenesis, including
phosphorylation modification, aggregation, and propagation,
and highlight the important role of hypoxia in promoting α-syn
pathology. This review aims to interpret the role of hypoxia in
the development of PD from a new perspective, so as to find a
creative breakthrough for the defense and treatment of PD.

RISK FACTORS FOR PARKINSON’S
DISEASE

The etiology of PD is unknown. It is not a single-factor disease
but rather one characterized by a combination of factors (Elbaz
et al., 2016). Specifically, the main risk factors for PD include
genes (Blauwendraat et al., 2020), environment (Murata et al.,
2022), aging (Pang et al., 2019), and TBI (Cruz-Haces et al., 2017).
In what follows, we summarize these risk factors in order to find
the possible common links among them.

Genes
So far, more than 20 genes have been found to have risk variants
associated with PD, including rare genetic variants and common
genetic variants. Seven of the most widely studied genes are

SNCA, LRRK2, PINK1, PARK2, DJ-1, VPS35, and ATP13A2
(Dunn et al., 2019; Blauwendraat et al., 2020). SNCA was the
first reported PD-related pathogenic gene (Polymeropoulos et al.,
1997). PD can be induced by missense mutations and genomic
multiplications in SNCA (Pihlstrøm and Toft, 2011). In the same
year, α-syn encoded by SNCA was reported to be the main
component of LBs (Spillantini et al., 1997, 1998). A series of
subsequent studies established the stable core position of α-syn
in the PD process. Considering the important role of α-syn in the
pathogenesis of PD, α-syn pathology is introduced and discussed
in detail in the third part of this review.

Environmental Risk Factors
According to epidemiological reports, the prevalence of PD
is biased by region and race, suggesting the importance of
environmental factors to some extent (Pringsheim et al., 2014).
The incidence of PD is directly proportional to the urbanization
process and the speed of industrial development. This may
be because economic growth represents more environmental
pollution, such as air pollution, heavy metals, pesticides, and
neurotoxic chemicals (Dorsey et al., 2018a,b; Bloem et al., 2021).

Air Pollution

Exposure to air pollution increases the risk of PD (Murata et al.,
2022). Air pollution includes common atmospheric particulates
and toxic gases. The former mainly comes from industrial
combustion and exhaust from vehicles powered by diesel fuel
(Costa et al., 2020), such as PM2.5. The latter mainly come from
industrial boilers andmotor vehicles, including carbonmonoxide
(CO) and nitrogen dioxide (NO2). Many studies have proved that
air pollution has a negative impact on the central nervous system,
which is related to oxidative stress, neuroinflammation, and
neurodegeneration (Babadjouni et al., 2017; Thomson, 2019).
Exposure to PM2.5 and PM10 was positively associated with PD
(Palacios, 2017). For PM10, the risk of PD to those exposed to
more than 65 µg/m3 was more than 1.35 times higher than those
exposed to <54 µg/m3 (Chen et al., 2017). Exposure to higher
NO2 concentrations was associated with a 1.41-fold increased
risk of PD relative to the lowest quartile concentration (Jo et al.,
2021). In one clinical report, 242 patients with CO poisoning
admitted to the hospital were followed up over a 10-year period.
Up to 9.5% of them suffered from PD, and most developed
PD quickly, with an average age of 45.8 years (Choi, 2002). A
systematic review using meta-analysis reported that long-term
exposure to CO and nitrogen oxides was positively associated
with an increased risk of PD. The prevalence of PD after CO
exposure can be as high as 1.65 times (Hu et al., 2019). In
addition, PD mainly affects people over the age of 65 years, and
the aging brain is very sensitive to air pollution (Costa et al.,
2020), which further illustrates the importance of air pollution
in the pathogenesis of PD.

Pesticides Exposure

Epidemiological studies have shown that people working in
agriculture have a higher prevalence of PD, and the results
are consistent in rural areas with increased pesticide exposure.
There is growing evidence that exposure to pesticides or
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solvents is a risk factor for PD (Pezzoli and Cereda, 2013;
Pouchieu et al., 2018; Tomenson and Campbell, 2021). Pesticides
include insecticides and herbicides. Insecticides are divided into
organophosphates and organochlorine pesticides. The former is
represented by rotenone, while the latter most commonly include
dieldrin. The most common herbicide is paraquat (Ball et al.,
2019). Neurotoxicity induced by dieldrin is associated with PD
(Kanthasamy et al., 2005). Back in 1985, rotenone was used to
mimic PD and was shown to cause fatal damage to dopaminergic
neurons (Heikkila et al., 1985). Paraquat has a striking similarity
in composition to a toxic metabolite of a nerve agent named 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In 1983, a
study in the journal Science reported a correlation betweenMPTP
and PD (Langston et al., 1983). Currently, MPTP is recognized as
the classical PD modeling method (Langston, 2017).

Heavy Metals

Exposure to heavy metals has attracted ample attention in PD
studies. Heavy metals are also considered neurotoxins, causing
oxidative stress that can lead to neuronal death (Wei et al.,
2020). Common heavy metals include iron (Fe), copper (Cu),
manganese (Mn), lead (Pb), and mercury (Hg). Studies have
shown increased Fe concentrations in the substantia nigra in
patients with PD (Dexter et al., 1987; Wypijewska et al., 2010). It
is associated with the progressive degeneration of dopaminergic
neurons in the substantia nigra in patients with PD (Devos et al.,
2020). Infants who consumed milk powder with a higher iron
content had an increased risk of neurodegeneration later in life
(Hare et al., 2015). Occupational exposure to Cu increases the
risk of PD by more than 2-fold (Gorell et al., 1997, 1999). Long-
term inhalation of Mn particles in industrial production, mining,
welding, and other activities can cause serious damage to the
nervous system and amplify the risk of PD (Caudle et al., 2012;
Ullah et al., 2021). Occupational exposure to Pb increases the
concentration of Pb in the body and increases the risk of PD by
more than 2 times (Coon et al., 2006;Weisskopf et al., 2010). Hg is
a neurotoxin that causes neuronal death and can causemovement
disorders (Fernandes Azevedo et al., 2012). The report, which
focuses on developing countries, found that Hg poisoning can
increase the incidence of PD by more than eight times (Ullah
et al., 2021).

Aging
PD tends to occur in the elderly. Epidemiological surveys
show that the incidence of PD is low before the age of 50
years, and the average age of PD is about 60 years old.
After 65 years of age, the prevalence of the disease increases
dramatically, and can even increase 5 to 10 times (Poewe
et al., 2017). This undoubtedly establishes the important position
of aging in PD pathogenesis (Wyss-Coray, 2016; Hou et al.,
2019). With aging, various organs of the body functionally
decline, sometimes to the point of dysfunction. An article
published in 2013 reviewed nine markers of aging, which were
grouped into three broad categories: primary, antagonistic,
and integrative hallmarks (López-Otín et al., 2013). Genomic
instability, epigenetic alterations, loss of proteostasis, and
telomere attrition are primary hallmarks that help cause body

damage. As the name suggests, antagonistic hallmarks help
combat aging damage, including cellular senescence, deregulated
nutrient sensing, and mitochondrial dysfunction. Moreover,
altered intercellular communication and stem-cell exhaustion are
integrative hallmarks. Integrative hallmarks lead to the ultimate
senescence phenotype, with serious consequences, such as organ
decline (Aunan et al., 2016; Farr and Almeida, 2018). Notably,
almost all hallmarks have been reported to affect the pathologic
progression of PD (Hou et al., 2019).

Traumatic Brain Injury
TBI affects a large number of people, with more than 42 million
people suffering from mild TBI each year (Gardner and Yaffe,
2015; James et al., 2019). TBI has been shown to be associated
with serious consequences, including neurodegenerative disease
and psychiatric sequelae (Wilson et al., 2017). Repeated traumatic
injuries can lead to chronic traumatic encephalopathy. According
to the study, the increased incidence of PD in retired boxers
was positively correlated with their number of professional fights
(Bhidayasiri et al., 2012). Boxers and professional football players
who receive repeated blows to the head are more likely to suffer
motor and behavioral impairments (Yi et al., 2013). In order
to eliminate as much interference as possible from lifestyle and
experience, twins were included in a study on the association
between TBI and PD. It turned out that TBI increased the risk
of PD decades later (Goldman et al., 2006). A retrospective
cohort of 12 years of follow-up showed that prior TBI increases
the risk of PD, and the risk was positively correlated with the
degree of injury (Gardner et al., 2018). TBI leads to direct focal
lesions such as intracerebral hemorrhage, and diffuse injuries
such as hypoxic-ischemic brain injury and vascular injury. The
biggest characteristic of TBI is ischemia and hypoxia, as well as
obvious inflammatory responses accompanied by oxidative stress
and neuron death (Gaetz, 2004; Burda et al., 2016; Yu et al.,
2021). This may be the main reason why secondary brain injury
increases the risk of PD.

Stroke
Stroke is one of the leading causes of disability and death
worldwide, with ischemic stroke accounting for more than
80% of all patients having stroke (Li W. et al., 2018). As
with PD, the elder is at high risk for stroke, with more
than 70% of patients over age 60 (Campbell, 2017; Maida
et al., 2020). Ischemic stroke leads to a cascade of harmful
events, resulting in a lack of nutrients and oxygen in the
brain tissue and rapid inflammatory response in the damaged
area (Kuczynski et al., 2019). Oxidative stress, mitochondrial
dysfunction, autophagy imbalance, abnormal activation of pro-
inflammatory factors, and other mechanisms cause neuronal
death and neurological dysfunction (Al-Kuraishy et al., 2020;
Pluta et al., 2021). Interestingly, oxidative stress and other
molecular mechanisms also play a key role in the pathologic
process of PD. The abnormal inflammatory response can lead
to secondary PD in stroke patients (Rodriguez-Grande et al.,
2013). Epidemiological studies have shown that ischemic stroke
increases the risk of PD (Lohmann et al., 2022). A prospective
cohort of 503,497 volunteers with a mean follow-up of 9 years
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was used to analyze the association between stroke and PD risk.
After accounting for confounding factors such as gender and
region, the study reported a 2-fold increase in the risk of PD
among those who had previously had a stroke (Kizza et al.,
2019). There was a study showed that cerebral ischemia can
aggravate PD (Zambito Marsala et al., 2016). Even asymptomatic
stroke can worsen the clinical presentation of patients with PD
(Nanhoe-Mahabier et al., 2009). It has been demonstrated in
animal experiments that after middle cerebral artery occlusion,
an asymptomatic stroke occurs in animals, followed by ischemia
and neuronal damage in the substantia nigra region, leading to
PD (Rodriguez-Grande et al., 2013). It is worth noting that the
cellular environment after stroke is dominated by inflammatory
activation and oxidative stress, which provides better conditions
for abnormal accumulation of protein α -syn. α -syn, as a key
pathological protein of PD, is also expressed at a high level in
stroke patients, and its ability to form oligomers is enhanced to
play a harmful role (Zhao et al., 2016). Parkin and PINK1, which
are closely related to PD, are also involved in neuronal death after
ischemic stroke injury (Kim and Vemuganti, 2017).

Others
PD is considered a complex multifactorial disease. In addition to
the above factors, vitaminD deficiency (Newmark andNewmark,
2007), high dietary fat intake (Qu et al., 2019), dairy intake
(Hughes et al., 2017), gender (Lubomski et al., 2014), race
(WrightWillis et al., 2010), drug abuse (Mursaleen and Stamford,
2016), infection (Kline et al., 2021), and other factors may
increase the risk of PD. In addition to single-level factor analyses,
multifactor interactions should be noted.

RELATIONSHIP BETWEEN HYPOXIA AND
PD RISK FACTORS

Genes, environment, aging, and TBI have currently been
recognized as PD risk factors, and even multifactor interactions
exist in the vast majority of patients. Interestingly, we found that
oxygen intake and oxygen utilization disorders were prevalent
among the above factors. Damage associated with risk genes
often induces mitochondrial dysfunction, resulting in oxygen
utilization disorders. Environmental pollution can affect oxygen
intake through inadequate ventilation. CO poisoning results
in competitive hemoglobin binding and, consequently, oxygen
utilization disorders in cells. Aging is accompanied by decreased
oxygen utilization in multiple organs. TBI can cause local
ischemia and hypoxia in tissues. Therefore, in the following, we
discuss the relationship between hypoxia and PD risk factors
from the perspectives of insufficient oxygen intake and oxygen
utilization disorders.

Hypoxia and Hypoxia Response
Hypoxia occurs when oxygen levels in local or systemic tissues
decrease and are insufficient to maintain normal metabolism,
sometimes even making it difficult to survive (Yeo, 2019).
Hypoxia is one of the most common stressors, whether from
environmental hypoxia or body hypoxia. Environmental hypoxia
is common in the plateau, diving, and aviation. For example,

most people’s hemoglobin oxygen saturation drops at altitudes
above 2,500 meters, where more than 140 million people now
live (Bigham and Lee, 2014). Hypoxia can be seen in a variety
of diseases, including ischemic/hypoxic disease, pulmonary
hypertension, atherosclerosis, and cardiovascular diseases such
as heart failure (Semenza et al., 2000; Liu et al., 2020). It is worth
mentioning that with the increased age, the body and tissues also
suffer from a certain degree of hypoxia, especially in the brain,
an organ with high oxygen consumption, so it is more urgent
to explore the relationship between hypoxia and neurological
diseases (Correia et al., 2013).

Heart, lung, and skeletal muscle are the main organs for
oxygen delivery and utilization (Strasser and Burtscher, 2018),
aging is associated with a decrease in maximum oxygen
utilization (Betik and Hepple, 2008). The organ we care most
about is the brain, which accounts for only about 2% of our
body weight but consumes a fifth of our oxygen. The ability of
nerve tissue to use oxygen decreases in an age-dependentmanner,
and brain tissue requires more oxygen to meet its actual needs
(Catchlove et al., 2018). The cerebral metabolic rate of oxygen
(CMRO2), a measure of brain energy homeostasis, is reduced in
the elderly (Zhang et al., 2010). At the same time, the baseline of
cerebral blood flow (CBF) decreases in age dependence, and the
imbalance between supply and demand also makes it difficult to
maintain normal oxygen balance in the brain (Ances et al., 2009).

When faced with hypoxic stress, the body and cells adopt
a series of response mechanisms. For the body, increased
erythropoiesis, hemoglobin content, and new blood-vessel
formation are important measures of hypoxia response (Catrina
and Zheng, 2021). The discovery that hypoxia-inducible factors
(HIFs) mediate the response to intracellular hypoxia is currently
recognized as the most critical link. This discovery was awarded
the 2019 Nobel Prize in Physiology or Medicine. HIFs are
heterodimeric transcription factors composed of alpha-subunits
and beta-subunits. There are three α-subunits—HIF-1α, HIF-
2α, and HIF-3α–and two β-subunits, named HIIF-β and
ARNT2. The regulation of α-subunits is oxygen-dependent. To
ensure normal bodily homeostasis, HIF is strictly controlled
by oxygen sensors. Under normoxic conditions, the body does
not need the accumulation of HIFs in the body, and the α-
subunits are targeted for degradation (Li et al., 2020). However,
under hypoxia conditions, α-subunits are stable and bind to
constitutive β-subunits, forming a basic helix-loop-helix-PAS
domain transcription factor, named HIF. HIF helps activate a
series of target genes that regulate cell movement, angiogenesis,
red blood cells, hemoglobin, and energy metabolism, helping
the body adapt to hypoxia (Corrado and Fontana, 2020). HIF-
1α plays an important role in PD. Downstream target genes of
HIF-1α, such as EPO and VEGF, have been proved to protect
neurons from injury in PD (Zhang et al., 2011). HIF-1α activates
a variety of transcriptional processes and targets oxidative stress,
such as autophagy, mitochondrial function, and other pathways,
which affect PD development. Therefore, HIF-1α has become a
potential drug intervention target for PD (Lestón Pinilla et al.,
2021).

HIF-1α is a major transcription factor in response to hypoxia.
Current studies suggest that HIF-1α plays an important role in
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the complex pathogenesis of PD. Under normal physiological
conditions, prolyl hydroxylases (PHD) contribute to HIF-
1α degradation to maintain homeostasis. Currently, PHD
inhibitors are believed to increase HIF-1α expression and play
a neuroprotective role (Lee et al., 2009). FG-4592 is a PHD
inhibitor that effectively reverses MPP+ induced cytotoxicity and
apoptosis. Meanwhile, FG-4592 treatment 5 days in advance
alleviated the damage of dopaminergic neurons in MPTP-PD
mice, thus alleviating behavioral disorders (Li X. et al., 2018).
The cellular model of PD was established by exposing SH-
SY5Y cells to 6-hydroxydopamine (6-OHDA), and Hydralazine
preconditioning upregulated HIF-1α, improved TH protein
expression, and rescued cell damage (Mehrabani et al., 2020).
In the rotenone-induced in vitro PD model, agmatine treatment
upregulated HIF-1α and effectively alleviated cell damage.
However, the presence of HIF-1α inhibitor methyl 3-[[2-[4-(2-
adamantyl) phenoxy] acetyl] amino]-4-hydroxybenzoate blocks
this protective effect (Ferlazzo et al., 2020). As mentioned above,
both activation and inhibition of HIF-1α affect PD, and more
importantly, HIF-1α upregulation is negatively associated with
neuronal injury in PD. As a key hypoxic response molecule, the
above conclusion concerning HIF-1α seems to be inconsistent
with the involvement of hypoxia in inducing PD abnormal
pathology. However, hypoxia is complex, causing multiple
damages and maybe insufficient HIF response ability. The role
of HIF-1α in PD is not equivalent to the relationship between
hypoxia and PD, which needs to be further explored.

Risk Factors and Insufficient Oxygen
Intake
From the point of view of pathophysiology, hypoxia includes
hypoxic hypoxia, hemic hypoxia, and circulatory hypoxia.
Decreasing oxygen partial pressure in inhaled gas, pulmonary
ventilation dysfunction, and venous blood shunt into the
artery leading to hypoxic hypoxia. Abnormal hemoglobin
content, structure, and function can cause hemic hypoxia.
Circulatory hypoxia is mainly caused by local or systemic
circulatory dysfunction.

Air pollution can cause endothelial dysfunction,
vasoconstriction, and diseases of the respiratory and
cardiovascular systems, resulting in circulatory hypoxia
caused by blood supply disorders and hypoxic hypoxia caused
by a deficiency in ventilation (Wauters et al., 2015). Particulate
air pollution and harmful gases such as sulfur dioxide (SO2), in
addition to increasing the risk of respiratory and cardiovascular
diseases, have also been linked to hypoxic hypoxia caused by
reduced oxygen saturation (Luttmann-Gibson et al., 2014).
Studies have found that exposure to automobile exhaust
pollution triggers the HIF-1 response pathway and ultimately
leads to disease. HIF-1 is the key factor in hypoxia response,
which also adds supplementary evidence for the relationship
between air pollution and hypoxia (Liang et al., 2021; Wu et al.,
2021). Some studies used 10% O2 hypoxia exposure as a positive
control to trigger disease phenotype, and automobile exhaust,
one of the main sources of urban air pollution, as a trigger
factor in mouse models. The results were consistent with 10%

O2 hypoxia exposure. This also proves the connection between
air pollution and hypoxia in a certain sense (Liu et al., 2018).
Compared with oxygen, CO is more likely to bind to hemoglobin
and convert oxyhemoglobin to carboxyhemoglobin, so its main
toxic mechanism is hypoxia (Horner, 2000; Lacerda et al., 2005).
CO causes hemic hypoxia and can even induce hypoxia in
fetuses in utero (Ion and Bernal, 2015). Intrauterine hypoxia
from air pollution is directly or indirectly linked to future brain
development and function (Fajersztajn and Veras, 2017).

The aging process is accompanied by vascular damage
and vascular aging, so heart failure and other cardiovascular
diseases occur easily (Katsuumi et al., 2018). The typical
pathophysiological process of heart failure, coronary heart
disease, ischemic stroke, and other diseases that the elderly are
prone to suffer from is ischemia and hypoxia (Meng et al.,
2017). Aging individuals are at increased risk of cardiac ischemia
and are more prone to ischemia-reperfusion injury than adults
(Ham and Raju, 2017). The above belongs to circulatory hypoxia.
Respiratory diseases frequently occurring in the elderly, such
as chronic obstructive pulmonary disease (COPD), are mostly
related to systemic or local hypoxia (Bradley et al., 2021), which
belongs to hypoxic hypoxia.

Hypoxia of the brain is a common secondary injury in patients
after TBI. In patients with severe TBI, up to 45% of patients
have hypoxia (Thelin, 2016). Hypoxia leads to worse clinical
outcomes, setting off a vicious cycle (Yang et al., 2013). Hypoxia
is not necessarily ischemia, but ischemia is always accompanied
by tissue hypoxia. Traumatic bleeding can lead to systemic
ischemia. Intracranial hemorrhage often occurs in patients with
TBI, followed by increased intracranial pressure and decreased
cerebral perfusion pressure leading to ischemia. The model of
traumatic bleeding has been widely used to study ischemia and
hypoxia (Ham and Raju, 2017). This is often associated with
circulatory hypoxia.

Risk Factors and Oxygen Utilization
Disorders
Oxygen utilization disorders, also known as tissue hypoxia,
result from a decrease in the ability of cells and tissues to
use oxygen. Tissue hypoxia can be caused by mitochondrial
damage or function inhibition and decreased respiratory
enzyme synthesis. Oxidative phosphorylation is the main
pathway of ATP production, and its main substrate is O2.
Mitochondria is the main site of oxidative phosphorylation.
Therefore, any factors that affect mitochondrial respiration
or oxidative phosphorylation may cause oxygen utilization
disorders. Respiration substrates oxidize in the mitochondrial
matrix to produce NADH and FADH2. With the help of electron
and hydrogen carriers, they transfer protons and electrons to
O2 and form water. The electron transport system composed
of carriers is called the electron transport chain because the
transport chain is directly related to respiration. Thus, it is called
the mitochondrial respiratory chain. The respiratory chain is
made up of four mitochondrial complexes, and inhibition of any
link results in impaired respiratory function.
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Although there is no evidence that PD-related genes directly
cause hypoxia, induction of mitochondrial dysfunction is
the main pathway of most of the pathogenic mechanisms
involved in genes, which can directly cause oxygen utilization
disorders. Overexpression of α-syn can cause mitochondrial
rupture, mitochondrial membrane permeability change, and
mitochondrial function impairment, ultimately leading to
decreased respiratory function and neuronal death (Nakamura
et al., 2011; Shen et al., 2014). α-syn oligomers and aggregates
interact with mitochondrial outer-membrane substrates to
induce mitochondrial dysfunction. In addition, α-syn can
also impair autophagy, including mitochondrial autophagy
(mitophagy), and dysfunctional mitochondria cannot be cleared,
further exacerbating the damage. PARK2 mutation is the most
frequent recessive inheritance in PD, which can reach more
than 70% in familial early-onset PD, followed by PINK1
mutation, accounting for about 9%. PINK1 and Parkin mediate
a variety of pathways that regulate mitophagy and play an
important role in the process of mitophagy (Kilarski et al.,
2012; Klein and Westenberger, 2012). Both mutations can cause
mitophagy defects (Pryde et al., 2016; Li et al., 2017). DJ-
1 is also crucial to mitochondrial function and can act as a
redox sensor in mitochondria. Abnormal expression of DJ-
1 can lead to mitochondrial defects and increase oxidative
stress, affecting mitophagy. Heterozygous GBA1 mutation is
a common genetic risk factor for PD and can lead to
the aggregation of α-syn and participate in mitochondrial
dysfunction, increasing the risk of PD by more than 20 times
(Liu et al., 2019). VPS35 mutation can lead to mitochondrial
dysfunction, α-syn accumulation, and increased reactive oxygen
species (ROS) (Tang et al., 2015; Wang et al., 2016). It
has been confirmed in vitro and in vivo that VPS35 leads
to extensive mitochondrial rupture and inevitable functional
defects (Wang et al., 2016). There is also evidence that
LRRK2 mutations increase mitophagy and affect normal
function (Yakhine-Diop et al., 2019). Existing studies have
proposed correcting mitophagy and maintaining mitochondrial
normal function as potential PD intervention means, which
further indicates the necessity of research on mitochondria-
related hypoxia.

Toxic gases in environmental pollution, such as CO
and hydrogen sulfide (H2S), can act on mitochondrial
complex IV and prevent cytochrome oxidase reduction in
tissues, which can no longer carry out electron transfer, thus
interrupting the respiratory chain and preventing biological
oxidation. The oxidative phosphorylation process is affected
by vitamin B1 and B2 deficiency caused by malnutrition.
High temperature, radiation, and bacterial toxins damage
mitochondria. Rotenone, paraquat, and MPTP are recognized as
mitochondrial inhibitors (Millar et al., 2007). More immediately,
pesticide poisoning itself can cause tissue hypoxia (Eddleston
et al., 2002).

Mitochondrial damage is considered to be a characteristic
feature of aging, and mitochondria are major targets of hypoxia
and ischemic damage, which further contribute to the body’s
exposure to hypoxia (Ham and Raju, 2017). All these indicate the
urgency of the study of hypoxia.

α-SYN PATHOLOGY IN PD

The etiology of PD is complex and there are many risk factors,
but all of these risk factors can lead to the occurrence of α-
syn pathology. As a protein widely expressed in the brain, α-
syn has powerful physiological functions. In the disease state,
α-syn undergoes a series of important transitions, such as post-
translational modification, aggregation, and propagation, which
drive PD progression.

α-Syn
α-syn, encoded by the SCNA gene on chromosome 4, is a
highly abundant protein composed of 140 amino acids and
widely expressed in the brain (Srinivasan et al., 2021). Naturally
occurring α-syn consists of three domains: (1) N-terminal lipids
bind α-helices, (2) non-amyloid-beta component (NAC) domain,
and (3) C-terminal domain rich in acidic residues. The special
structure of the NAC region helps the protein to undergo
the transition from α-helical conformation to β-pleated sheet,
allowing it to polymerize into toxic oligomers (Zhang et al., 2018).
Under normal conditions, α-syn exists in two forms, mostly in
the form of a monomer, but it also exists in the form of a helically
folded tetramer, which maintains a dynamic balance with the
monomer (Bartels et al., 2011). Helically folded tetramer has a
lower tendency to aggregate into fibrin and helps stabilize α-syn.
Therefore, when the proportion of natural tetramers decreases
due to genetic mutations and other reasons, it can also lead
to disease.

α-syn has powerful physiological functions: maintaining
synaptic function (Longhena et al., 2019), influencing
neurotransmitters such as dopamine release (Abeliovich
et al., 2000; Salmina et al., 2021), maintaining cell membrane
homeostasis (Fusco et al., 2018), influencing microglial
production and function (Booms and Coetzee, 2021),
participating in lysosomal and mitochondrial activities
(Tripathi and Chattopadhyay, 2019), and scavenging heavy
metals (Harischandra et al., 2015). However, compared with its
physiological function, its pathological function has attracted
more attention and has been studied more widely, mainly
because it plays an irreplaceable role in the pathogenesis of
PD. Under pathological conditions, α-syn successively forms
dimer, oligomer, fibrils, and LBs (Rosborough et al., 2017). It
is believed that the formation of α-syn aggregates is mainly
due to posttranslational modification of α-syn (Bell and
Vendruscolo, 2021). Among them, phosphorylation is the most
prominent (Anderson et al., 2006; Machiya et al., 2010), in
addition to acetylation (Barrett and Timothy Greenamyre, 2015),
ubiquitylation (Liu et al., 2021), glycosylation (Vicente Miranda
et al., 2016), and CTD truncation (Izumi et al., 2016).

α-Syn Modification and Aggregation in PD
There are many posttranslational modifications of α-syn,
including phosphorylation, ubiquitination, glycosylation,
phosphorylation, and acetylation. Among these, phosphorylation
at the Ser129 site is considered to be the main modification
that promotes α-syn aggregation and induces the α-syn
pathology (Fujiwara et al., 2002). The percentage composition
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of phosphorylated alpha-synuclein (p-α-syn) in normal brain
tissue is <4%. However, in autopsies of patients with PD, it was
found that the majority of α-syn in LBs exists in the form of
phosphorylated protein (up to 90%) (Hasegawa et al., 2002).
This conclusion was also confirmed in animal models. P-α-syn
has gradually become a protein that can indicate PD pathology
(Hasegawa et al., 2002; Scudamore and Ciossek, 2018).

Phosphorylation of α-syn makes it easier to form aggregates,
which are found in the nervous system of patients with PD,
including the central nervous system and the peripheral nervous
system (Bendor et al., 2013). In the central nervous system, α-
syn aggregates were first identified in the olfactory bulb (OB)
and dorsal motor nucleus, and subsequently in the pontine
tegmentum, amygdala, and cortex (Braak et al., 2003). In the
peripheral nervous system, α-syn aggregates were first found in
the enteric nervous system (Wakabayashi et al., 1990).

It is currently believed that the most toxic form of α-syn is a
soluble oligomer, which is associated with endoplasmic reticulum
(ER) stress, mitochondrial defects, proteasome inhibition, more
obvious inflammatory response, autophagy, and lysosome
dysfunction, membrane damage, synaptic dysfunction, and other
injury mechanisms (Winner et al., 2011; Bengoa-Vergniory et al.,
2017).

Pathological α-Syn Propagation in PD
Because of anatomical connectivity and cell-to-cell
communication, α-syn fibrils serve as seeds that propagate
in a prion-like manner between adjacent cells and anatomically
connected brain regions (Goedert et al., 2010; Mao et al.,
2016). This propagation is considered to be a key event in the
progression of PD (Braak et al., 2003; Mehra et al., 2019). There
are two views on the origin and direction of the propagation
of pathological α-syn. The traditional view is that pathological
α-syn originates in the central nervous system, spreads first
in the brain, and then spreads to other sites. Another view is
that pathological α-syn originates in the peripheral intestinal
nervous system, first appearing in the intestine and then
propagating retrograde along the vagus nerve, involving the
central nervous system.

In a clinical study, normal embryonic midbrain neurons were
transplanted into PD patients and LB deposition was found in
previously healthy neurons during follow-up. This experiment
demonstrates the importance of pathological α-syn cell-to-cell
transmission in PD pathogenesis (Li et al., 2008). Aged α-syn
transgenic mice express α-syn pathology. Brain homogenate
proteins were prepared and injected into the striatum and
neocortex of asymptomatic mice. The presence of pathological
α-syn in the nerve axis from the OB to the spinal cord in
mice was observed within 3 months of injection and accelerated
the appearance of neurodegenerative disease. α-syn preformed
fibrils (PFFs) are pathologic α-syn fibrils prepared in vitro. The
formation of LBs and the onset of neurodegenerative disease were
accelerated by the administration of PFFs into the brain (Luk
et al., 2012).

Regarding the second view, Braak’s hypothesis suggests that
α-syn pathology can spread in a fixed manner from the
gastrointestinal tract to the ventral midbrain via the vagus

nerve. It then selectively kills dopaminergic neurons in the
substantia nigra compact (SNc). Lebouvier et al. (2008) first
discovered lesions similar to those observed in the brain in
the intestines of living PD patients in 2008. Subsequent clinical
studies based on a large sample size reported that the risk of PD
diagnosis was significantly reduced in follow-up statistics after
vagus nerve trunk resection, which supported Braak’s hypothesis
to some extent (Svensson et al., 2015). Based on the brain–
gut transmission hypothesis, combined with the early intestinal
disease epidemiology of PD patients and the pathological
propagation mechanism of α-syn, pathological aggregation and
retrograde transmission of α-syn may occur in the intestinal tract
very early. It has been reported that α-syn accumulates in the
stomach, duodenum, and colon in gastrointestinal (GI) biopsies
of PD patients and healthy individuals (Shannon et al., 2012;
Sánchez-Ferro et al., 2015). In order to simulate the gut–brain
transmission of α-syn in PD proposed by Braak’s hypothesis,
Holmqvis and colleagues performed the first experimental
validation in an animal model (Holmqvist et al., 2014). They
demonstrated that pathological α-syn reached the dorsal motor
nucleus of the vagus nerve in the brainstem in a time-dependent
manner after injecting PFFs into the intestinal wall. They
provided the first experimental evidence that pathological α-syn
may first travel from the gut to the brain (Holmqvist et al., 2014),
a conclusion subsequently confirmed by several studies (Kim
et al., 2019; Ahn et al., 2020; Challis et al., 2020).

DIRECT EVIDENCE OF HYPOXIA AND
α-SYN PATHOLOGY

Above, we described the important risk factors for PD, including
genes, environment, aging, and TBI. These factors all increase
the expression or aggregation of α-syn, the key pathological
protein of PD. At the same time, among these risk factors that
can directly cause PD pathology, we found that all have oxygen
intake or utilization disorders. Recent literature has confirmed
the relationship between hypoxia and PD and reported that
hypoxia regulation may be a key therapeutic target for PD
(Burtscher et al., 2021). In the following sections, we review the
effects of hypoxia on α-syn pathology from the perspectives of
modification, aggregation, and propagation.

Hypoxia Promotes α-Syn Modification and
Aggregation
The phosphorylation and aggregation of α-syn are necessary
steps in the pathogenesis of α-syn and PD development. The
accumulation of misfolded and aggregated forms of α-syn
increased under hypoxia (Muddapu and Chakravarthy, 2021).
Clinically, patients with obstructive sleep apnea (OSA) directly
face the problem of prolonged and repeated hypoxia (Sozer et al.,
2018). Plasma levels of total α-syn and p-α-syn were significantly
elevated and positively correlated with oxygen saturation (Sun
et al., 2019). In animal model validation, α-syn expression
increased and accumulated in a time-dependent manner by
placing mice in a closed, wide-mouth bottle with limited oxygen
to simulate hypoxia (Yu et al., 2004). The model of middle
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FIGURE 1 | Hypoxia is widespread and can be divided into two categories. (A) Hypoxia is a very common phenomenon. Whether it is in the environment or in the

body, hypoxia seems to indicate a decrease in oxygen levels that makes it difficult to sustain metabolism. Environmental hypoxia is common in the plateau, diving, and

aviation. The pathological state of the body is accompanied by hypoxia, and diseases such as aging, cardiovascular and cerebrovascular diseases, pulmonary

hypertension, and atherosclerosis all have pathological changes represented by hypoxia. (B) Hypoxia can occur in two ways: inadequate oxygen intake and oxygen

utilization disorders. The former includes hypoxic hypoxia, hemic hypoxia, and circulatory hypoxia. The latter is known as tissue hypoxia, which is mainly related to

mitochondrial damage, mitochondrial function inhibition, and reduced respiratory enzyme synthesis.
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cerebral artery occlusion (MCAO) is characterized by ischemia
and hypoxia injury. The expression of total α-syn and p-α-syn
increased in rodent MCAO models (Unal-Cevik et al., 2011;
Kim et al., 2016). Hypoxic ischemia was induced by ligation of
the left common carotid artery in rats, and systemic hypoxia
was induced by direct hypoxic treatment with 7.8% oxygen for
90min. The expression of α-syn was found to be 2 times as high as
before (Hu et al., 2006). Abnormal aggregation of α-syn induced
by hypoxia and consequent neuronal apoptosis in the cerebral
cortex has been observed in rats with acute alcohol intoxication
(Li et al., 2016). In a cell model, total α-syn, p-α-syn, and their
oligomers were increased by hypoxia treatment at 0.5% O2 for
24 h or hypoxia treatment at 1% O2 for 48 h. In addition, hypoxic
treatment of cells with 1% O2 for 24 h increased α-syn expression
but did not seem to lead to oligomer formation (Chen et al., 2014,
2019). These findings suggest that hypoxia may be an important
factor in inducing the phosphorylation and aggregation of α-syn.

Hypoxia Promotes α-Syn Propagation
Following phosphorylation and aggregation (Zhang et al., 2021),
pathological α-syn can spread and propagate in a prion-
like manner and is considered to be an important stage in
the progressive pathogenesis of PD. The intestinal tract is

considered to be the origin of α-syn pathology. Compared
with other organs, the gastrointestinal tract is characterized
by a steep oxygen gradient from the anaerobic lumen to the
highly vascularized submucosa. Once intestinal inflammation
occurs, the oxygen supply from the blood is reduced, and
the resulting imbalance in oxygen consumption leads to more
oxygen deprivation in the inflamed intestinal mucosa (Van
Welden et al., 2017; Ananthakrishnan et al., 2018). Hypoxia and
the hypoxia signaling pathway play an important role in the
occurrence and development of intestinal diseases (Van Welden
et al., 2017). Multiple population-based cohort studies have
shown that patients with inflammatory bowel disease (IBD) have
a higher risk of developing PD in later life, about 20–90% higher
than the normal population. Chronic intestinal inflammation
can also promote the progression of PD (Lin et al., 2016; Park
et al., 2019; Weimers et al., 2019). In addition, pathological
findings of IBD patients also revealed α-syn aggregates in
the submucosa of the gastrointestinal tract (Prigent et al.,
2019).

As mentioned above, hypoxia (Burtscher et al., 2021) and
IBD (Park et al., 2019) have been reported to be related to PD,
respectively, and the research value of hypoxia as a therapeutic
target for PD has been confirmed. At the same time, it is clear

FIGURE 2 | Parkinson’s disease (PD) risk factors are closely related to hypoxia. Risk factors for PD associated with hypoxia can be divided into three categories.

Some factors increase the risk of PD due to inadequate oxygen intake. Polluted air brings lower oxygen saturation, which can be caused by environmental

particulates, automobile exhaust, and so on. The common pathological process of cardiovascular and cerebrovascular diseases and traumatic brain injury (TBI) is

ischemia and hypoxia. Several factors contribute to oxygen utilization disorders, including genes, pesticides, high temperature, radiation, and bacterial toxins. In

addition, aging, toxic gases, and carbon monoxide poisoning not only affect oxygen intake but also cause oxygen utilization disorders.
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that hypoxia and inflammation mutually promote each other.
Tissue hypoxia, such as organ transplantation (Krüger et al.,
2009), enlarged adipose tissue (Ye, 2009), and cancer (Semenza,
2003), leads to inflammatory changes. Inflammatory diseases
such as colitis (Lv et al., 2018) and infections with pathogens
(Devraj et al., 2017) often cause obvious tissue hypoxia. A
growing number of studies have suggested that inflammation
has been an important factor in promoting α-syn aggregation
and transmission (Campos-Acuña et al., 2019; Resnikoff et al.,
2019; La Vitola et al., 2021). There is also a lot of evidence
that targeted inflammation can reduce PD presentation and
delay its progression (Peter et al., 2018; Kishimoto et al.,
2019). However, no specific studies have shown that hypoxia
plays an important role in inflammation promoting abnormal
protein aggregation. Given the importance of environmental
stress factors to abnormal accumulation of α-syn and the
complex reinforcing relationship between inflammation and
hypoxia, hypoxia may play an important role in the formation
and transmission of α-syn (Srivastava et al., 2020). However,
further studies using more techniques, such as transgenic animal
models, are needed to determine whether hypoxia plays a
role as a promoter in various diseases such as inflammatory
bowel disease.

LIMITATIONS AND PROSPECTS

A large number of patients suffer from PD, and the current
treatments only focus on the use of dopaminergic drugs to
control PD symptoms. Such treatments cannot fundamentally
solve the problem or even alleviate the huge mental and
economic burden brought by PD. Therefore, it is necessary
to explore the pathogenesis of PD in depth and to find
possible intervention targets from the early stages of PD. An
exploration of this sort will provide new ideas for slowing or
stopping the progression of the disease. However, in view of
the complex etiology of PD, the numerous influencing factors,
and the unknown pathogenesis, it is particularly important to
find common ground in the many links of PD progression.
In the pathogenesis of PD, the modification, aggregation, and
propagation of key pathological protein α-syn are closely related
to the development of PD. As noted above, multiple PD
risk factors have been shown to be associated with hypoxia
(Figures 1, 2), and several studies have confirmed that the
hypoxic stress promotes the phosphorylation and aggregation of
α-syn (Figure 3). The abnormal aggregation and accumulation
of α-syn are affected by many factors. Despite the abnormal
increased α-syn level promoting its abnormal aggregation,

FIGURE 3 | Hypoxia is involved in the pathogenesis of alpha-synuclein (α-syn) and promotes its propagation. In the natural state, the vast majority of α-syn exists in

the form of a disordered monomer, and almost no modification forms or aggregates in healthy machines. In conditions such as PD, α-syn is present in aggregates.

α-syn promotes disease progression by aggregation and propagation. In vivo, α-syn successively forms dimers, oligomers, fibrils, and aggregates, and it eventually

forms LB sediments. The oligomers act as seeds to infect healthy cells and spread the disease. Importantly, the formation of such pathological aggregates is

dependent on posttranslational modification, especially phosphorylation. Hypoxic exposure is most likely to occur when the body is in a state of disease or for external

reasons. Current studies suggest that hypoxia promotes the modification, aggregation, and transmission of α-syn, and thus promotes disease progression.
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there are also various factors in α-syn pathology. Risk genes
expression, disrupted cellular microenvironment, impaired
membrane interaction, increased polyamines, increased charged
polymers, and abnormal modifications also contribute to the
aggregation and accumulation of α-syn. As mentioned above,
hypoxia may trigger, facilitate and aggravate the abnormal
pathology of α-syn by modulating the above factors, but the
underlying mechanism is unclear.

In spite of this, we regret that there are no clear studies
showing that hypoxia has a more profound effect on PD
than other neurodegenerative diseases. Only a few studies have
reported that hypoxia may be more closely related to PD
(Burtscher et al., 2021). This conclusion of the above article
may be partly related to this reason: a search of current studies
using HIF-1α activators or inhibitors to intervene in the ultimate
pathology of the disease revealed a preponderance of PD-
related articles. Among them, most of the studies are based
on the treatment strategies for PD based on the activation of
HIF-1α, involving indirect PHD inhibitors, competitive PHD
inhibitors, and atypical HIF-1α inducers (Lestón Pinilla et al.,
2021). As for which neurodegenerative diseases are more affected
by hypoxia and its proportion in pathogenesis, more detailed
research are still needed. The association between PD and
hypoxia may also be explored through the assumption that
SNc dopaminergic neurons are more susceptible to hypoxia.
SNc dopaminergic neurons have higher energy metabolism
requirements, and their basal respiration level is about 3 times
higher than that of dopaminergic neurons in other regions
such as VTA or OB. In addition, SNc dopaminergic neurons
have lower respiratory reserve capacity, higher basal glycolysis
level, larger axonal arborization, the higher mitochondrial
density of mitochondria, and greater vulnerability to cytotoxins
(Pacelli et al., 2015). In addition, HIF-1α is associated with
the development and survival of SNc dopaminergic neurons
(Milosevic et al., 2007), and the increased expression of key
proteins such as Tyrosine hydroxylase (TH), DA transporter
(DAT) (Lim et al., 2015). The above factors may lead to the
vulnerability of SNc dopaminergic neurons and a certain degree
of hypoxia susceptibility. Meanwhile, in view of the typical
pathological characteristics of PD is the progressive loss of
dopaminergic neurons in the SNc, previous studies focused on
more vulnerable neurons. At present, more and more studies
have proved that PD-related genes such as SNCA, PARK2, and
PINK1 may be expressed in glia including microglia (Miklossy
et al., 2006) and astrocytes (Booth et al., 2017). Glial cells may
play a driving role in the pathogenesis and progression of PD

through homeostasis imbalance, dysfunction, and neurotoxicity
(Kam et al., 2020). But the exact mechanism is unclear. There is
also evidence that hypoxia modulates HIF-1α in microglia and
induces microglial autophagy (Yang et al., 2014). However, the
role of glial cells under hypoxia in PD pathology and pathogenesis
has not been determined, which is a very important research
direction and needs further exploration in the future.

Moreover, there is still a lack of adequate attention and
systematic research in this field, and there are many pending
problems: (1) the effect of hypoxia on α-syn pathological
propagation remains unclear; (2) it is unknown whether
differences in the degree, duration, and pattern of hypoxia make
a difference in outcome; and (3) it remains to be determined
whether it is possible to intervene in PD by resisting hypoxia
or improving hypoxia tolerance. To sum up, it is a promising
direction to explore the role of hypoxia in PD caused by different
inducements in an in-depth and systematic way and find its
common mechanism from a new perspective.
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