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Abstract

Nearly all cell types in mammals contain cilia, small rod-like or more elaborate structures

that extend from the cell surface. Cilia house signaling proteins that allow the cell to sample

their environment and respond appropriately. Mutations in ciliary genes alter the functions of

a broad range of cell and tissue types, including sensory and central neurons, and underlie

a collection of heterogeneous human disorders called ciliopathies. Here, I highlight the criti-

cal contributions of nearly three centuries of research in diverse organisms to our current

knowledge of cilia function in sensory signaling and human disease.

In the late 17th century, the tradesman and amateur microscopist Antonie van Leeuwenhoek

described motile “thin little feet, or little legs” on what he referred to as “animalcules.” We now

know that he was looking at cilia on what were likely ciliated protozoa (see [1] for an excellent

historical account; Fig 1). Little did van Leeuwenhoek know that cilia in unicellular organisms

would hold the key to our understanding of the mechanisms underlying a plethora of debilitat-

ing human disorders—a connection scientists would make nearly three centuries later. In one

of many examples of our inability to foresee the ultimate importance of seemingly esoteric

lines of inquiry, it took the work of scientists studying the motile flagella of an alga to link the

work of Leeuwenhoek with that of modern developmental and cell biologists, neuroscientists,

and clinicians to uncover the critical roles of cilia in regulating metazoan physiology.

In 1993, Keith Kozminski, Joel Rosenbaum, and colleagues studying flagellar motility in the

green alga Chlamydomonas (Fig 1) described a protein transport process that they termed

intraflagellar transport (IFT) [2]. Rosenbaum and colleagues went on to show that IFT is medi-

ated by a large protein complex and identified many of the proteins that make up this complex

[3]. The majority of these proteins are essential for transporting structural and signaling mole-

cules within the flagella; mutations in IFT protein genes disrupted flagella and rendered these

algae immobile. Remarkably, it was found that IFT genes are extremely well conserved across

eukaryotes, including in humans, suggesting that these genes were present in the last common

eukaryotic ancestor.

One of the first indications that IFT genes can be linked with disease in mammals came

from Greg Pazour and colleagues, who showed that mice carrying mutations in one of
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the homologs of the Chlamydomonas IFT genes exhibited polycystic kidney disease [4].

How can the homolog of a protein required to build Chlamydomonas flagella regulate

mouse and human kidney function? Interestingly, the answer to this question had also been

intimated over a century ago. In 1876, in a series of beautiful drawings, Paul Langerhans

had described cilia-like structures on multiple cell types of the primitive chordate Amphi-
oxus [1]. In 1898, Karl Wilhelm Zimmermann noted similar structures on mammalian

cells, including kidney cells, and made the prescient observation that these structures likely

transmit sensory information to the cell [1]. Indeed, we now know that disruption of these

structures on kidney cells leads to renal disease. Although these studies were largely forgot-

ten for a period of time, advances in transmission electron microscopy led to the realization

that cilia, with some structural diversifications, are present on nearly every cell type in

vertebrates.

Fig 1. Cilia are sensory organelles that are found in multiple species and are present on nearly all cell types in mammals. Schematics of cilia/

flagella (green) in the ciliated protozoa Tetrahymena (A), the alga Chlamydomonas (B), the Caenorhabditis elegans sensory neuron ADL (C), a

mammalian rod photoreceptor (D), a mammalian hypothalamic neuron (E), and a mammalian airway epithelial cell (F). Drawings are not to scale. Drawing

by Julian Eskin.

https://doi.org/10.1371/journal.pbio.2002240.g001
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Cilia can be categorized into two general classes: motile and immotile. Motile cilia are

found on cells such as those lining the airways in humans (Fig 1), but the majority of cells con-

tain immotile cilia, which are now referred to as primary cilia. Both motile and primary cilia

are built via similar IFT-based mechanisms. (Flagella present on Chlamydomonas and human

sperm are essentially motile cilia, and the terms cilia and flagella are now used interchange-

ably). As postulated by Zimmermann, cilia have been established to be sensory organelles [5]

and are responsible for sensing and transducing environmental signals to maintain cellular

homeostasis. The finding that cilia dysfunction affects multiple tissue types in humans in turn

led to the characterization of the molecular mechanisms underlying a genetically and pheno-

typically heterogeneous set of diseases in humans, collectively termed ciliopathies [6]. In fact,

nearly all genes implicated in ciliopathies have been shown to regulate the structure and func-

tion of cilia across species.

As sensory neuroscientists, members of my lab and I have focused for the past two decades

on identifying and describing the molecular and neuronal mechanisms by which animals

sense and respond reliably, yet flexibly, to environmental signals. Primary cilia play a critical

role in brain development [7], although the functions of these organelles in the mature brain

remain to be fully elucidated. Nonetheless, anatomists and neuroscientists have long been

aware that cilia are essential for the functions of sensory neurons, such as olfactory neurons

and photoreceptors present in the olfactory epithelia of the nose and in the eye, respectively

(Fig 1). These neurons contain specialized cilia at their dendritic endings that house signal

transduction molecules required to sense and respond to environmental cues such as chemi-

cals or photons. Indeed, ciliary localization of these molecules in part underlies the remarkable

sensitivity and broad dynamic response range of these neurons. The crucial role of cilia in reg-

ulating sensory neuron function is highlighted by the fact that many ciliopathies are character-

ized by sensory disorders, including retinal degeneration, loss of the ability to smell (anosmia),

and deafness [6].

Our experimental system is the nematode Caenorhabditis elegans, an animal that not only

exhibits extremely robust and complex sensory behaviors that can be quantified at high resolu-

tion but also offers a powerful array of experimental tools for manipulating gene and neuronal

functions. The basic principles of sensory signal transduction apply across modalities and spe-

cies, even if individual molecules (such as olfactory receptors) may have evolved in a species-

and niche-specific manner [8]. As in mammals, sensory signaling molecules in C. elegans are

concentrated in specialized cilia at the dendritic endings of sensory neurons (Fig 1). However,

unlike in mammals, only sensory neurons are ciliated in this organism, and worms can survive

in the laboratory without cilia. This is a major experimental advantage because complete loss

of cilia in mammals results in embryonic lethality, partly due to the loss of cilia-dependent sig-

naling by Sonic hedgehog (Shh), a major developmental morphogen [9]. As a consequence, we

have been able to address questions related to cilia biology in this organism that are more chal-

lenging to address in mammals.

Using this model organism, we are identifying genetic pathways that regulate the develop-

ment and maintenance of elaborate sensory neuron-specific ciliary architectures, describing

mechanisms that localize sensory signaling proteins to specific subdomains of these cilia,

exploring how signaling protein organization in cilia contributes to neuronal properties, and

dissecting the intricate feedforward and feedback signaling between sensory signaling and cilia

structure [10–13]. Many of the molecules and signaling principles identified in C. elegans are

conserved and have been implicated in regulating sensory neuron and cilia function in verte-

brates. By combining behavioral neurogenetics with cilia cell biology, we expect to be able to

provide a more nuanced and complete description of sensory signal transduction mechanisms,

which will help us elucidate how disruption of sensory signaling and cilia function affects
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animal development and behavior. Our hope is that the work of my lab and that of my col-

leagues studying cilia biology in multiple cellular contexts in organisms as diverse as Chlamy-
domonas, Tetrahymena, Paramecium, Drosophila, C. elegans, zebrafish, frogs, mice, and of

course human cells [14, 15] will not only allow us to satisfy our general curiosity as to “how

things work” in these different organisms but also enable us to eventually derive strategies for

targeting ciliopathies.

Making the connection between Leeuwenhoek’s little legs on protists with primary cilia on

metazoan cells took nearly three centuries of seemingly disparate research avenues in organ-

isms residing on far-flung branches of the eukaryotic tree. Science is rife with many similar

examples of once obscure observations providing the foundation for major scientific break-

throughs. While basic research may not be our only hope (with apologies to Princess Leia),

with some patience, it is perhaps our best hope for understanding the basis for many human

diseases.
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