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Abstract

Background: The analysis of gene expression levels is used in many clinical studies to know how patients evolve or
to find new genetic biomarkers that could help in clinical decision making. However, the techniques and software
available for these analyses are not intended for physicians, but for geneticists. However, enabling physicians to make
initial discoveries on these data would benefit in the clinical assay development.

Results: Melanoma is a highly immunogenic tumor. Therefore, in recent years physicians have incorporated immune
system altering drugs into their therapeutic arsenal against this disease, revolutionizing the treatment of patients with
an advanced stage of the cancer. This has led us to explore and deepen our knowledge of the immunology
surrounding melanoma, in order to optimize the approach. Within this project we have developed a database for
collecting relevant clinical information for melanoma patients, including the storage of patient gene expression levels
obtained from the NanoString platform (several samples are taken from each patient). The Immune Profiling Panel is
used in this case. This database is being exploited through the analysis of the different expression profiles of the
patients. This analysis is being done with Python, and a parallel version of the algorithms is available with Apache
Spark to provide scalability as needed.

Conclusions: VIGLA-M, the visual analysis tool for gene expression levels in melanoma patients is available at
http://khaos.uma.es/melanoma/. The platform with real clinical data can be accessed with a demo user account,
physician, using password physician_test_7634 (if you encounter any problems, contact us at this email address:
mailto: khaos@lcc.uma.es). The initial results of the analysis of gene expression levels using these tools are providing
first insights into the patients’ evolution. These results are promising, but larger scale tests must be developed once
new patients have been sequenced, to discover new genetic biomarkers.
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Background
The analysis of the gene expression changes and their cor-
relation with clinical changes can be developed using the
tools provided by those companies that currently provide
gene expression platforms, such as NanoString. The anal-
ysis of gene expression levels is a very important problem
when studying how patients evolve, and looking for a way
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to find new genetic biomarkers helping in clinical deci-
sion making. Current solutions are based on desktop tools
designed for use by geneticists. However, it is the clini-
cians who are in direct contact with the patients, so their
ability to access such data in prior analyses could prove
highly beneficial.

NanoStringDiff [1] is an R package for differential
expression analysis of NanoString nCounter data, whose
main function for differential analysis is glm.LRT. The
use of this tool requires knowledge of R programming
language.
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NanoStringNorm [2] provides R functions for prepro-
cessing methods proposed by NanoString in addition to
an extensible plug and play framework to incorporate
other methods. This tool also requires R knowledge from
its users.

nCounter [3] is the advanced analytical tool provided by
NanoString Technologies, Inc. This tool provides differ-
ent analytical tools for gene expression data. It gives high
quality results, but it has been designed for use by geneti-
cists and so, it has a steep learning curve for physicians
and clinical researchers. These users hope to make ini-
tial discoveries based on the experimental results, which
normally requires help of an experienced nCounter user.

nSolver [4] is the simplest analytical tool provided by
NanoString Technologies, Inc. This tool provides a desk-
top user interface where users can import reporter code
count (RCC) files for different analyses. Each RCC file
contains results of a single flow cell of the cartridge. Each
RCC file contains the number of counts for each target
mRNA molecule (measured within one sample). A sepa-
rate RCC file is created for each flow cell (or sample) in the
cartridge. Although easier to use than nCounter, the tool
still requires some learning effort, even for simple data
analyses. In addition, the lack of some parametrization
options makes it difficult to extract relevant informa-
tion. As an example, a simple heat map analysis does
not provide a way of filtering out those genes with lower
variability.

NanoStriDE [5] allowed biologists to take raw data pro-
duced by a NanoString nCounter analysis system and
easily interpret differential expression analysis of this data
represented through a heatmap. However, the system was
not easy to use, and in some cases clinicians required
biostatisticians to help them with these tasks.

The analysis of gene expression levels is a complex
problem that is being studied from different perspec-
tives. Thus, [6] presents an approach to parallelize the
TriCluster algorithm to be used in this context. In [7],
another parallelization approach is proposed for efficient
large-scale transcriptome data analysis.

The gene expression platform used in this work
is NanoString, which provides nCounter. However,
nCounter has some limitations as the type of analysis is
restricted to a predefined set, and the introduction of
clinical features is a complex task. This project presents
an approach to collect the clinical information using a
structured database and a web user interface to introduce
this information, including the results of the gene expres-
sion measurements, as a move a step closer towards the
clinicians, in comparison to the nCounter tool.

This paper presents VIGLA-M, an analytics tool to
provide clinical researchers with early insights into the
gene expression samples of a patient (discovering changes
in their gene expression levels) or sets of patients

(discovering patient clusters with a possible clinical cor-
relation). Once the physicians or clinical researchers find
relevant information in these data, geneticists can build
on the preliminary analysis using, for instance, nCounter.

The tool proposed in this paper has been tested on a
small set of patients of metastatic melanoma patients, but
it is intended to support similar cases in other diseases
where gene expression variation analysis would help in
discovering new biomarkers.

At present, immunotherapy for metastatic melanoma is
based on stimulating an individual’s own immune system,
in most cases through the use of specific monoclonal anti-
bodies. The use of immunotherapy has meant that many
patients with melanoma have survived and, therefore, it
constitutes a promising present and future treatment in
this field [8–12].

At the same time, drugs have been developed target-
ing specific mutations, i.e. BRAF (BRAF is a human gene
that encodes a protein called B-Raf), resulting in signifi-
cant responses in tumor regression (set up in this clinical
study for 18 months), as well as a higher percentage of
long-term survivors [13–16]. These significant responses
are triggered by a massive process of antigens creation,
that is needed to reignite a state of immunocompetence
in the patient. It also leads to the activation of biomarkers
that could guide response prediction.

Unfortunately, the recent interest in developing drugs
against melanoma has not been accompanied by the iden-
tification of biomarkers that are predictive of response or
toxicity to them. Although preliminary data determined
immunohistochemistry was useful in the tumor expres-
sion of the PDL-1 protein, subsequent work has failed to
validate its predictive usefulness. In fact, one of the main
problems in the study of the immune system is its plas-
ticity and adaptive nature. Tumor infiltrating lymphocytes
(TIL), another possible postulated and non-predictive
marker, validated that PDL-1 expression can fluctuate
within short time frames and its expression changes when
biopsies are performed serially over time on the same
tumor [17]. Therefore, more biomarkers are needed to
optimize the sequences of treatments against melanoma.
For these reasons, our work aims to combine both con-
cepts: the use of therapy directed against the BRAF muta-
tion and the reactivation of acquired immunity against
melanoma.

Therefore, it would be useful to look for these changes
in blood biomarkers in relation to immunological mech-
anisms to identify predictive markers of response to new
treatments, in order to identify long-term survivors with
targeted therapy. Unfortunately, many patients will not
benefit from these treatments, as they are difficult to fund
in terms of human and economic expenditure. However,
this project seems to be an essential first step and the
finding of these biomarkers is yet to be explored.
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Additionally, we have pursued a first approach to paral-
lelize the algorithms using Big Data technologies (Apache
Spark), to support large scale clinical assays. At this
stage, VIGLA-M has been tested for a clinical assay with
metastatic melanoma patients.

Implementation
In this section we present the three main functionalities
that have been developed in the VIGLA-M project: clin-
ical data collection, gene expression data collection and
gene expression level data analysis and visualization.

To collect the required data, we have developed a struc-
tured database (using Oracle 11g Express Edition) to store
clinical and gene expression data. Figure 1 shows part of
the database schema, which is designed to store: a minimal
set of personal patient data (gender, date of birth, medical
records, medication, diagnosis date, metastasis diagno-
sis date, etc.); the response to the treatment; the cancer’s
progress, including the different visits to the hospital and
the blood test values at each visit; the BRAF mutation; pri-
mary location of the cancer, and the files associated with
the gene expression analysis.

The clinical information is collected by the patient’s
physician (previously registered and accepted in the clin-
ical assay by the clinical project coordinator). Thus, the
effort of collecting the data is shared by all the physicians
participating in the project (clinical assay).

The files obtained from the gene expression assays
are loaded by the biologists (previously registered in the

system). These files are obtained from the NanoString
platform. The NanoString platform can analyze 12 sam-
ples in each cartridge. As a result, we obtain 12 RCC files
with the gene counts for each of the gene panels. Each file
is associated with the gene expression of a patient at a spe-
cific stage of treatment. These files are locally stored with
a patient code, in addition to being annotated with the
patient code from the project database, the sample collec-
tion date and the Nanostring experiment date. Then, the
biologist uploads the files attached to the patient profile,
along with other metadata.

We have used the Immune Profiling Panel
NanostringTM (770 genes), as it has been specifically
designed for cancer projects where immune aspects
are studied. This panel includes 24 different immune
cell types, common checkpoint inhibitors, CT antigens,
and genes covering both, adaptive and innate, immune
responses.

Data normalization
Using the gene expression files, a set of analytic func-
tionalities has been developed to discover patterns in the
change of the gene expression levels. However, these files
need to be preprocessed, as NanoString returns the flat
counts of the gene expression levels. The pre-processing is
done to normalize the counts according to a set of control
measures. The preprocessing is described in NanoString
guidelines [18], and it can be summarized with the follow-
ing steps:

Fig. 1 Extract of the database. This figure has been produced using SQL Developer Data Modeler (Oracle Database Design Tool). Users are connected
with one or more profiles (user types), meanwhile profiles can also be connected with several users. Samples cannot exist without a user, and a user
can have several samples. Patients are linked to a user with a profile of type “physician”
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• Step 1. Generation of quality control flags (binding
density, positive control linearity, limit of detection).

• Step 2. Background correction using the negative
control samples.

• Step 3. Calculation of lane-specific scaling factors,
based on the housekeeping gene set.

• Step 4. Adjusting the flat counts with the
lane-specific scaling factor.

Step 1 is to ensure that the end user is informed about
the quality of the samples. The binding density is included
in the NanoString output, therefore it is simply read
from the sample file. Positive control linearity is the pro-
cess of evaluating whether the flat counts obtained for
synthetic-positive-control samples maintain the expected
linear relationship resulting from their known amounts.
Therefore, linearity is calculated as the r2 value between
the NanoString values and known values. The limit of
detection is evaluated by comparing one of the positive
controls and its distance from the background. The flags
are directly passed on to the visualization module, so that
the end user gets notified of any possible quality problems.

Step 2 is done through background thresholding – set-
ting the values of flat counts that fall below a certain
threshold value to this threshold value. The threshold
value is calculated as a two standard deviations of the neg-
ative control sample values over the geometric mean of
negative control sample values.

Step 3 is carried out along the same lines as those pre-
sented in [19]. A subset of at least 3 most stably-expressed
housekeepers is found and then used to calculate the
scaling factors.

Step 4 is done simply by multiplying the flat counts
with the scaling factors calculated in Step 3. The method
for finding the most stable genes is illustrated with the
following pseudocode snippet:

Code Snippet 1 Skeleton of a jMetalSP application

//expression_values is a genes x samples matrix;
//number_of_genes_to_find is an integer

findStableGenes(expression_values,
number_of_genes_to_find):

totalGenes=expression_values.rows

V=matrix(size:totalGenes,totalGenes)
M=vector(size:totalGenes)

for i in [0 to totalGenes]:
for j in [0 to totalGenes]:

if i!=j:
val=[]
for column in expression_values:

val.append(log2(colVect[i]/colVect[j]))
V[i,j]=std_dev(val)

M[i]=np.mean(V[i,:])

return get_indexes_of_lowest_K_values(M,
K=number_of_genes_to_find)

Subsequently, the lane-specific normalization factors
are calculated as the inverse of the geometric mean of
the in-lane housekeeper counts multiplied by the average
value of these geometric means (across all lanes).

Gene filtering
The Immune Profiling Panel NanostringTM contains 770
genes, so any visualization including all these genes would
be difficult to explore for the end-users. For this reason,
the developed tool includes a filtering module able to filter
out those genes that do not change (or change less than
the rest) over the analyzed samples.

The filter is also based on the geNorm method. Specif-
ically, geNorm postulates finding n (>3) most stable
housekeeping genes. For filtering, we use the same model
to find k (parameter specified by the user, e.g. 100) least
stable genes, i.e., the ones that display most variation (see
the code snippet).

Results
To enable users to exploit the processed data we
have developed VIGLA-M, a web service for access-
ing and analyzing these data. Registered users can
log on to the tool and browse through the data of
their patients. The tool available at http://khaos.uma.es/
melanoma has a demo user with demo patients with
real gene-expression data. User and password for demo
access are: physician and physician_test_7634
respectively. Physicians can only access their patients’
data, biologists can only access gene expression data
that they have uploaded, and clinical assay administra-
tors can access all the data (see Fig. 2 for the demo
user).

Users can select different gene expression samples from
one or more patients to start the gene expression analysis
(see Fig. 3 for the demo user).

Therefore, using the normalized gene expression values
of the most variable genes, the proposed tool is designed
to perform two main functionalities for data analysis and
visualization:

• Heat Maps. A heat map provides a graphical
representation of data stored as a matrix. The values
included in the matrix are represented as colors. The
tool provides a sliding element to set a parameter for
extracting only the most variable gene expression
levels (as a percentage of the total number of genes).
It is worth mentioning that gene expression levels are
standardized by calculating z-scores, hence providing
balanced values before the visualization step. In
addition to this, hierarchical clustering is computed
to generate groups of both, genes and experiments.
This will provide additional information to physicians
about how samples can be organized.

http://khaos.uma.es/melanoma
http://khaos.uma.es/melanoma
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Fig. 2 List of patients for a demo user. For each patient the user can click on Sample to add one or more samples for them

• Inference of Gene Regulatory Network. Gene
Regulatory Networks (GRNs) can be reconstructed
from a time series of gene expression data. This
information is of particular clinical interest because it
can serve to detect genes that are interacting and so,
detect new pharmacological targets. The tool
provides a sliding element to set the parameter for
representing only the most relevant (n) links of the
network (as large networks will be difficult to
interpret). This filter keeps the nodes involved in the
n relationships with highest weights (see Fig. 4).

To generate the network, two well-known algorithms
[20] can be used. Both implementations are provided
in the arboretum Python package (https://arboreto.
readthedocs.io/en/latest/, namely: GRNBoost2, a
fast algorithm based on stochastic Gradient Boosting
Machine regression with early-stopping
regularization; and GENIE3, the popular classic GRN
inference algorithm based on Random Forest (RF) or
ExtraTrees (ET) regression. This choice option will
enable physicians to inspect different learning models
for inferring the underlying GRNs.

https://arboreto.readthedocs.io/en/latest/
https://arboreto.readthedocs.io/en/latest/
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Fig. 3 Sample selection from the available patient data. The user can select one or more samples from the same patient

Data analysis through heat map visualization
The use of heat maps in VIGLA-M provides a flexible way
of producing different types of analysis with respect to
the selected gene expression data and their order. Thus,
depending on these features, it is possible to produce four
different representations to help clinicians analyze the
expression results:

• Type I. Comparison of several samples for a single
patient (patient evolution). The visualization of the
expression change in a patient enables the individual

analysis of the patient data with a high degree of
detail.

• Type II. Comparison of the basal status of the
patients (classification of the patients depending on
the initial expression profile). This visualization
enables the analysis of the gene expression profiles to
allow users to analyze those patients with a specific
pattern. For example, a user could select those
patients with certain genes with a lower expression
than the rest of the patients, to later explore the
possible expression growth.
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Fig. 4 Selection slide for controlling the size of the gene regulatory network. Once the user has select one or more samples from one or more
patients, the user can select between the different analytical tools. The figure shows the two current options: Heat Maps and Gene Regulatory
Networks. The slides enable users to determine which section of the data will be included in the graphical representation of the results

• Type III. Comparison of the second sample of the
patients (classification of the patients according to
their expression after the evolution). This
visualization also allows comparisons of patients after
treatment.

• Type IV. Comparison of the patients including both
samples (profiling on the patient evolution in the
gene expression). This visualization type is the most
complete one provided by this tool. It enables the
classification and visualization of differences between
patients in the evolution of the gene expression. In
this case, the patient samples are ordered showing
first the initial sample of all the patients, and then, the
results for the second sample.

Figure 5 shows a clinical case for Type I. This case
can be replicated using the samples from Demo Patient
1. This patient suffered an allergic reaction to the treat-
ment for the melanoma cancer. The first graphical rep-
resentation is a heat map with hierarchical clustering
according to both, genes and assays. As input this
heat map only needs a set of ordered gene expression
files.

The heat map shows the most significant changes
that have occurred in the expression of some genes
of immune function, at different times of the treat-
ment for metastatic melanoma. Prior to treatment,
there was an activation of several genes, whose activ-
ity may be associated with increased tumor replication.
Thus, there are complement (C3AR1), tyrosine kinase
(FLT3 or CD135, therapeutic target of drugs such as
sorafenib or sunitinib), interleukins (IL1R2) and adhesion
molecules (CEACAM6) receptors or fibronectin (FN1),

which are usually activated in many tumors. With BRAF
inhibitors, these genes reduce their expression, show-
ing the efficacy of this treatment in the subject under
study.

With the allergic reaction to the BRAF inhibitor other
genes were activated, which were initially not active,
such as IL3RA, CCL2, HLA-DRB4, IL8, FOS, PTGS2,
CXCL1, and which were subsequently corrected with the
use of drug sensitization with corticosteroids and grad-
ual exposure to the drugs. The activation of these genes
can improve the immune response, through the inter-
leukins (IL3 and IL8) or the better presentation of antigens
(HLADRB4), and so is able to produce a good response to
the drugs.

Finally, the heat map also shows how, over time, there
are several genes that are activated (LILRA4, IDO1,
MARCO, HLA-DQA1, MSR1, C1OB, IF27) and others
that are deactivated (EGR2 and 1, IL32, EBP, TREM1,
F2RL1, LCN2, CREB5, SLC11A1, IL1TRAP). Some of
these genes are the key to immunotherapy resistance
based on inhibitors of immunocheckpoints, so they can
also be key in the immune response induced by tar-
geted therapy against BRAF. Thus, IDO not only appears
to be a key factor in the gene interactions tree (see
Fig. 6), but it is a novel target. The inhibition of this
enzyme is promising given the results of early phase drug
development [21].

Data analysis through gene regulatory network
reconstruction
Inferring the interaction network of genes is a fundamen-
tal step towards understanding how a cell or an organism
will respond to its environment. Its use in clinical assays
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Fig. 5 Heatmap with hierarchical clustering generated for patient with allergic reaction. The X axis shows the four different samples for this patient
over a stretch of time (t1: sample before the treatment; t2: sample after the treatment with BRAF inhibitors; t3: sample just after the allergic reaction;
t4: sample after the allergic reaction disappears). The Y axis show the genes that had more changes in this time series
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Fig. 6 Gene regulatory network obtained from GRNBoost2 algorithm for patient allergic reaction. Thicker part of the lines shows the direction of the
arc (that is, the regulatory effect). For example, on the left we can see that FOS regulates LBP. The longer the line, the longer the regulatory strength

would be of interest as it provides the insight on how
different genes affect the expression of other related (or
not) genes. Following the example of the patient with an
allergic reaction, we have used the tool to reconstruct the
Gene Regulatory Network.

The resulting network is shown in Fig. 6, which visu-
alizes how activated and deactivated genes (according to
the previous analysis) take part in the regulatory graph
with strong interactions between them. In this figure,
the thicker part of the lines in edges show the direc-
tion of the arcs (in form of arrows), thus indicating the

regulatory effect. This differentiates GRN from gene co-
expression networks, in which the direction of edges is
overlooked. In Fig. 6, it can be clearly seen that genes like
MARCO, C1OB, IF27, and CREB5 act as transcription
factors that play important role in the regulation phase
of the network. Strong interactions are registered for the
following interactions: IL8→MSR1, MSR1→MARCO,
MARCO→CREB5, and IF27→CREB5. This could shed
light on the inmunotherapy response of the organism, so
the clinician is now supported with additional arguments
in adjusting the treatment process.
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Discussion
The complexity of nSolver and nCounter means that
physicians are reluctant to explore the gene expres-
sion data, and they will analyze only high qual-
ity results obtained by geneticists using these tools.
These tools are quite useful for reaching the main
goals of these clinical research projects, but at the
end of the clinical assay. In this paper, we present a
tool that gives the physicians the possibility to make
initial explorations of these data with ease, gaining
first insights that can later be corroborated by the
geneticists.

The initial evaluation shows that for small datasets
this tool is powerful enough, although the initial experi-
ments indicate that the growth in the number of samples
could make it unfeasible. For this reason, a first proto-
type using Apache Spark has been developed to prepare
this tool to scale to larger datasets. Thus, the internal
calculations can be executed in a Spark cluster with the
required size (depending on the dataset size), scaling
horizontally.

At the same time, the connection (by design) with clin-
ical variables, will enable the development of a new set of
tools for searching correlations between the gene expres-
sion analysis and the patient evolution.

Conclusions
This paper has presented VIGLA-M, a useful tool in form
of web service for use in clinical assays, to enable physi-
cians the exploration of gene expression data. This tool
is being tested in the context of a clinical assay with
metastatic melanoma patients, which are currently treated
with immunotherapy. First results obtained with the
assist of VIGLA-M have been reported in several clinical
forums [22, 23].

The use in a real scenario, where first clinical insights
are being obtained, has served to validate this service.
Even though this is not a scenario with real Big Data
features, a first prototype using Apache Spark has been
developed.

The proposed service is conceived to serve as a more
directly usable complement to nSolver and nCounter,
although it is also designed to include other clinical
variables that will be exploited in future work.
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