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Abstract Sensory systems constantly compare external sensory information with internally

generated predictions. While neural hallmarks of prediction errors have been found throughout the

brain, the circuit-level mechanisms that underlie their computation are still largely unknown. Here,

we show that a well-orchestrated interplay of three interneuron types shapes the development and

refinement of negative prediction-error neurons in a computational model of mouse primary visual

cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent

inhibitory plasticity can generate different variants of prediction-error circuits, which can be

distinguished by simulated optogenetic experiments. The experience-dependence of the model

circuit is consistent with that of negative prediction-error circuits in layer 2/3 of mouse primary

visual cortex. Our model makes a range of testable predictions that may shed light on the circuitry

underlying the neural computation of prediction errors.

Introduction
Changes in sensory inputs can arise from changes in our environment, but also from our own move-

ments. When you walk through a room full of people, your perspective changes over time, and you

will experience a global visual flow. Superimposed on this global change are local changes gener-

ated by the movements of the people around you. An essential task of sensory perception is to dis-

entangle these different origins of sensory inputs, because the appropriate behavioral responses to

environmental and to self-generated changes are often different. Am I approaching a person or is

she approaching me?

A common assumption is that perceptual systems subtract from the sensory data an internal pre-

diction (Bell, 1981; Rao and Ballard, 1999; Friston, 2005; Spratling, 2010; Franklin and Wolpert,

2011; den Ouden et al., 2012; Kennedy et al., 2014; Keller and Mrsic-Flogel, 2018), which is cal-

culated from an efference copy of the motor signals our brain has issued. Changes in the external

world then take the form of mismatches – or prediction errors – between internal predictions and

sensory data (Wolpert et al., 1995). This comparison requires an accurate prediction system that

adapts to ongoing changes in the environment or in behavior. An efficient way to ensure a flexible

adaptation is to render the prediction circuits experience-dependent by minimizing prediction errors

(Wolpert et al., 2011).

Neural hallmarks of prediction errors are found throughout the brain. Dopaminergic neurons in

the basal ganglia and the striatum (Schultz and Dickinson, 2000) encode a reward prediction error

(mismatch between expected and received reward), and subsets of neurons in visual cortex

(Keller et al., 2012; Zmarz and Keller, 2016; Attinger et al., 2017), auditory cortex (Eliades and

Wang, 2008; Keller and Hahnloser, 2009) and barrel cortex (Ayaz et al., 2019) code for a mis-

match between feedback and feedforward information.

While neural correlates of prediction errors have been found broadly, the circuit level mechanisms

that underlie their computation are poorly understood. Given that prediction errors involve a
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subtraction of expectations from sensory data (for an alternative implementation employing divisive

inhibition, see Spratling, 2008; Spratling, 2017; Spratling, 2019), the relevant circuits likely involve

both excitatory and inhibitory pathways (Attinger et al., 2017). Negative prediction-error (nPE) neu-

rons, which are activated only when sensory signals are weaker than predicted, are likely to receive

excitatory predictions counterbalanced by inhibitory sensory signals. Conversely, positive prediction-

error (pPE) neurons, which respond only when sensory signals exceed the internal prediction, may

receive excitatory sensory signals counterbalanced by inhibitory predictions (Rao and Ballard, 1999;

Keller and Mrsic-Flogel, 2018). How the complex inhibitory circuits of the cortex (Markram et al.,

2004; Rudy et al., 2011; Pfeffer et al., 2013; Jiang et al., 2015; Tremblay et al., 2016;

Wamsley and Fishell, 2017) support the computations of these prediction errors is not resolved

and neither are the activity-dependent forms of plasticity that would allow these circuits to refine the

prediction machine.

For prediction-error neurons, fully predicted sensory signals should cancel with the internal pre-

diction and hence trigger no response. We therefore hypothesized that an experience-dependent

formation and refinement of prediction-error circuits can be achieved by balancing excitation and

inhibition in an activity-dependent manner. Using a computational model comprised of excitatory

pyramidal cells and three types of inhibitory interneurons, we show that nPE neurons can be learned

by inhibitory synaptic plasticity rules that balance excitation and inhibition in principal cells. We find

that the circuit shows a similar experience dependence as observed in V1 (Attinger et al., 2017).

Depending on which interneuron classes receive motor predictions and which receive sensory sig-

nals, the plasticity rules shape different, fully functional variants of the prediction circuit. Using simu-

lated optogenetic experiments, we show that these variants have identifiable fingerprints in their

reaction to optogenetic activation or inactivation of different interneuron classes. Finally, we demon-

strate that the inhibitory prediction circuits can be learned by biologically plausible forms of homeo-

static inhibitory synaptic plasticity, which only rely on local information available at the synapses.

Results
We studied a rate-based network model of layer 2/3 of rodent V1 to investigate how prediction-

error (PE) neurons develop. In the following, we will focus primarily on negative prediction-error

(nPE) neurons. In V1, nPE neurons have been studied more extensively, which allows us to compare

our results with experimental findings. However, the same approaches and principles derived for

nPE neurons can also be applied to positive prediction-error (pPE) neurons (see Appendix 2—fig-

ures 1 and 2). The network model includes excitatory pyramidal cells (PCs) as well as inhibitory par-

valbumin-expressing (PV), somatostatin-expressing (SOM) and vasoactive intestinal peptide-

expressing (VIP) interneurons (Figure 1a). The relative abundance of the four cell types and the

probability of the respective synaptic connections are chosen in line with electrophysiological studies

(see Materials and methods). While all inhibitory neurons are modeled as point neurons (Wilson and

Cowan, 1972), we used a two-compartment model for PCs with a rectifying active dendritic process

that allowed nonlinear dynamics akin to dendritic calcium spikes (Murayama et al., 2009) (see Mate-

rials and methods and Appendix 1).

A subset of inhibitory synapses – chosen based on a mathematical analysis (see Materials and

methods, or Appendix 1) – are subject to experience-dependent plasticity, which aims at minimizing

deviations of the PC firing rate from a baseline rate. These deviations can be interpreted as predic-

tion errors. Learning hence strives to adapt the inhibitory circuit such as to reduce these errors.

While the synapses onto both the somatic and dendritic compartments of PCs follow an inhibitory

plasticity rule akin to Vogels et al., 2011, the inhibitory synapses onto PV neurons follow an approxi-

mated backpropagation of error rule akin to Rumelhart et al., 1986. Specifically, the former rule

changes the synapses onto PCs in proportion to the presynaptic interneuron activity and the devia-

tion of PC activity from a baseline rate (see Materials and methods, Equation 14). The latter rule

changes the synapses onto PV neurons in proportion to the presynaptic interneuron activity and the

averaged deviation of the postsynaptic PCs from their baseline rate (see Materials and methods,

Equation 16). Earlier work has shown that such forms of plasticity establish a balance of excitation

and inhibition (Vogels et al., 2011; Mackwood et al., 2020).

All neurons in the model receive excitatory background input that ensures reasonable baseline

activities in the absence of visual input and motor-related internal predictions (‘baseline’). In
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Figure 1. Balancing excitation and inhibition gives rise to negative prediction-error neurons. (a) Network model

with excitatory PCs and inhibitory PV, SOM and VIP neurons. Connections from PCs not shown for the sake of

clarity. Somatic compartment of PCs, SOM and PV neurons receive visual input, apical dendrites of PCs and VIP

neurons receive a motor-related prediction thereof. Connections marked with an asterisk undergo experience-

dependent plasticity. (b) During plasticity, the network is exposed to a sequence of feedback (coupled

sensorimotor experience) and playback phases (black square, visual input not predicted by motor commands).

Stimuli last for 1 s and are alternated with baseline phases (absence of visual input and motor predictions). (c) Left:

Before plasticity, somatic excitation (light red) and inhibition (light blue) in PCs are not balanced. Excitatory and

inhibitory currents shifted by ±20 pA for visualization. The varying net excitatory current (gray) causes the PC

population rate to deviate from baseline. Right: Response relative to baseline (DR=R) of all PCs in feedback (FB),

mismatch (MM) and playback (PB) phase, sorted by amplitude of mismatch response. None of the PCs are

classified as nPE neurons (indicated by gray shading to the right). (d) Same as in (c) after plasticity. Somatic

excitation and inhibition are balanced. PC population rate remains at baseline. All PCs classified as nPE neurons

(also indicated by black shading to the right). (e) Left: Mismatch response increases with the difference between

visual and motor input. Right: nPE neuron response during playback does not change with the difference between

visual and motor input but remains at baseline.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Learning prediction-error circuits with different forms of homeostatic plasticity.

Figure supplement 2. VIP!PV synapses are not required for the formation of nPE neurons.

Figure 1 continued on next page
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addition, we stimulated the network with time-varying external inputs representing actual and pre-

dicted visual stimuli (Figure 1a,b). We reasoned that during natural conditions, movements lead to

sensory inputs that are fully predicted by internal motor commands (‘feedback phase’,

Attinger et al., 2017), while unexpected external changes in the environment should generate

unpredicted sensory signals (‘playback phase’, Attinger et al., 2017). Situations in which internal

motor commands are not accompanied by corresponding sensory signals should be rare (‘feedback

mismatch phase’, Attinger et al., 2017). During plasticity, we therefore stimulated the circuit with a

sequence consisting of feedback and playback phases (‘quasi-natural training’, Figure 1b).

Figure 1 continued

Figure supplement 3. Balancing excitation, somatic and dendritic inhibition gives rise to nPE neurons in a model

in which an excess of dendritic inhibition is forwarded to the soma.
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Figure 2. Multi-pathway balance of excitation and inhibition in different nPE neuron circuits. (a) Excitatory,

inhibitory, disinhibitory and dis-disinhibitory pathways onto PCs that need to be balanced in nPE neuron circuits.

Input to the soma of PCs and PV neurons is varied (c–f). SOM neurons receive visual input, VIP neurons receive a

motor-related prediction. (b) Test stimuli: Feedback (FB), mismatch (MM) and playback (PB) phases of 1 s each. (c)

PCs and PV neurons receive visual input (left, top). When all visual (V) and motor (M) pathways are balanced (left,

bottom), PCs act as nPE neurons (right). PV neuron activity increases in both feedback and playback phases.

Responses normalized between �1 and 1 such that baseline is zero. (d) Same as in (c) but PV neurons receive

motor predictions. (e) Same as in (c) but PCs receive no visual input. PV neurons remain at baseline in the absence

of visual input to the soma of PCs. (f) Same as in (c) but PCs receive no visual input and PV neurons receive motor

predictions. PV neurons remain at baseline in the absence of visual input to the soma of PCs.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Multi-pathway balance of excitation and inhibition in different nPE neuron circuits with both

visual and motor input onto PV neurons.
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Negative prediction-error neurons emerge by balancing excitation and
inhibition
Before the onset of plasticity, synaptic connections were randomly initialized, leading to PCs receiv-

ing unbalanced excitation and inhibition. Therefore, all PCs change their firing rate in response to

both feedback and playback stimuli, indicating the absence of nPE neurons (Figure 1c). During

quasi-natural sensorimotor experience, inhibitory plasticity strengthens or weakens inhibitory synap-

ses to diminish the firing rate deviations of PCs from their baseline firing rate (Figure 1—figure sup-

plement 1). At the same time, dendritic inhibition mediated by SOM interneurons was sufficiently

strengthened to suppress the motor prediction arriving at the apical dendrite. After synaptic plastic-

ity, somatic excitation and inhibition are balanced on a stimulus-by-stimulus basis (Figure 1d–e). PCs

merely show small and transient onset/offset responses to feedback and playback stimuli. In con-

trast, all PCs show an increase in activity for feedback mismatch stimuli (Figure 1d), which scales

with the size of the difference between actual and predicted visual input (Figure 1e). Hence, inhibi-

tory synaptic plasticity generates nPE neurons by balancing excitation and inhibition in PCs for

quasi-natural conditions.

Balance of excitation, inhibition and disinhibition in different functional
prediction circuits
The circuit we studied so far was motivated by the widely accepted view that PCs and SOM and PV

interneurons show visual responses (Ko et al., 2011; Yang et al., 2013; Larkum, 2013a; Xue et al.,

2014; Harris and Shepherd, 2015; Lee et al., 2016; Attinger et al., 2017), while long-range

(motor) predictions arrive in the superficial layers of V1 and target VIP neurons (Fu et al., 2014;

Harris and Shepherd, 2015; Tremblay et al., 2016; Attinger et al., 2017) and the apical and distal

compartments of PCs (Larkum, 2013a; Leinweber et al., 2017; Attinger et al., 2017). Because this

view is not uncontested (Fu et al., 2014) and it has been shown that interneuron types can receive

both feedforward and feedback inputs (Wall et al., 2016), we systematically varied the inputs to the

different neuron classes. We first studied circuit variations in which PCs and PV neurons receive visual

and/or motor signals (Figure 2, see also Figure 2—figure supplement 1).

We found that inhibitory plasticity establishes nPE neurons independent of the input configura-

tion onto PCs and PV neurons (Figure 2c–f, right). The emerging connectivity of the interneuron cir-

cuits varied, however. For PCs not to respond above baseline in feedback and playback phase,

various excitatory, inhibitory, disinhibitory and dis-disinhibitory pathways need to be balanced. An

informative example is the input configuration in which PCs receive visual input and PV neurons

receive motor predictions (Figure 2d). In this case, visual inputs arrive at the PCs as direct excitation,

as disinhibition through the SOM-PV pathway, and as dis-disinhibition via the SOM-VIP-PV pathway

(Figure 2a). To keep the PCs at their baseline during the playback phase, these three pathways

need to be balanced (Figure 2d, left). Similarly, motor signals arrive at the PCs as inhibition from PV

neurons, dis-inhibition via the VIP-PV pathway, dis-dis-inhibition via the VIP-SOM-PV pathway and as

direct excitation to the dendrite that is canceled by SOM-mediated inhibition. Again, all these path-

ways need to be balanced to keep the PCs at their baseline for fully predicted visual stimuli

(Figure 2d, left). Analog balancing arguments hold for other input configurations (Figure 2c–f, left).

Note that this multi-pathway balance applies primarily to somatic inputs to PCs. During feedback

and playback phases, this provides a complete picture, because the dendrites are deactivated by

inhibition. During mismatch phases, this dendritic inhibition is withdrawn and the dendrites provide

additional excitatory input to the soma that can drive mismatch responses.

While the flow of visual and motor information in the learned inhibitory microcircuit is different

for different input configurations, the neural responses of the different interneuron classes provide

limited information about the input configuration. PV neuron activity reflects whether PCs receive

visual input: If PCs receive visual input, PV responses increase during feedback and playback phases

to balance the sensory input at the soma of PCs (Figure 2c–d, right). If PCs receive no visual input,

PV neurons remain at their baseline firing rate (Figure 2e–f, right), which is in contradiction to the

experimentally observed increase of PV neurons during feedback (see Attinger et al., 2017). The

activity of SOM and VIP neurons varies between playback, feedback and mismatch phases (in line

with experimental results, see Attinger et al., 2017), but is independent of the input configuration

for PCs and PV interneurons (Figure 2c–f, right).
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In summary, inhibitory plasticity can establish functional nPE circuits irrespective of the inputs

onto the soma of PCs and PV neurons. Although the underlying circuits vary substantially in the spe-

cific balance of pathways, the neural activity patterns only weakly reflect the underlying information

flow.

Simulated optogenetic manipulations disambiguate prediction-error
circuits
We hypothesized that the need to simultaneously balance several pathways offers a way to disam-

biguate the different prediction-error circuits by optogenetic manipulations. To test this, we system-

atically suppressed or activated PV, SOM and VIP interneurons in each input configuration after

inhibitory plasticity had established the respective nPE circuit.

We found that in our model, such simulated optogenetic experiments are highly informative

about the underlying input configuration (Figure 3). For example, PV neuron inactivation changes

the response of nPE neurons during feedback, playback and mismatch phases if and only if the PCs

receive visual inputs. VIP inactivation renders nPE neurons silent unless PV neurons receive motor

predictions, in which case they are transformed into positive prediction-error (pPE) neurons. Since

Figure 3. Simulated optogenetic manipulations of PV, SOM and VIP neurons disambiguate prediction-error

circuits. (a) Left: nPE neuron circuit in which PCs and PV neurons receive visual input. Inactivation (middle) or

activation (right) of PV (first row), SOM (second row) or VIP neurons (third row). Optogenetic manipulations change

responses of nPE neurons (Ctrl) in feedback, mismatch and playback phases. Responses normalized between �1

and 1 such that baseline is zero. Inactivation input is -8 s�1. Activation input is 5 s�1. (b) Same as in (a) but PV

neurons receive motor-related prediction. (c) Same as in (a) but PCs receive no visual input. (d) Same as in (a) but

PCs receive no visual input and PV neurons receive a motor-related prediction.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Net currents in PCs after in/activation of PV, SOM or VIP neurons elucidate prediction-error

circuits.

Hertäg and Sprekeler. eLife 2020;9:e57541. DOI: https://doi.org/10.7554/eLife.57541 6 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.57541


SOM and VIP neurons are mutually inhibiting (see e.g. Pfeffer et al., 2013), the same information

can be gained by an over-activation of SOM neurons that effectively silences VIP neurons.

Changes in neuronal activity due to optogenetic manipulations depend on a variety of factors

such as baseline firing rates and saturation effects (Phillips and Hasenstaub, 2016). For instance,

while an excess of inhibition is not observable when PCs exhibit vanishingly small baseline activity, it

leads to a firing rate decrease otherwise. Moreover, in/activation of interneuron types within a recur-

rent network may also have ambiguous consequences contingent on potential saturation effects in

other cell types. These ambiguities can be partially resolved by measuring currents rather than firing

rates, during baseline, feedback, mismatch and playback phases. Indeed, we found that the net cur-

rents in PCs after in/activation of PV, SOM or VIP neurons are highly informative about the underly-

ing input configuration (Figure 3—figure supplement 1).

When we compared our results with optogenetic experiments in which SOM or VIP neurons are

either inactivated or activated during mismatch or running (Attinger et al., 2017), it shows that a

homogeneous input configuration in which all PCs receive visual input while all PV neurons receive a

motor-related prediction thereof is unlikely (Figure 3b). All other variants of nPE circuits exhibit mis-

match responses during SOM/VIP neuron manipulation that are in line with the ones observed

experimentally. However, the responses observed in the feedback phase (when compared with ‘dur-

ing running’, see Attinger et al., 2017) deviate from all the conditions we simulated, indicating that

the interneurons do not receive exclusively sensory or motor inputs, but rather a combination of

actual and predicted visual input.

In summary, our model predicts that optogenetic experiments may unveil a unique fingerprint for

nPE circuits that differ in their inputs onto PCs and PV neurons.

Fraction of nPE neurons is modulated by inputs to SOM and VIP
interneurons
In the model considered so far, all PCs developed into nPE neurons during learning, irrespective of

the inputs to PCs and PV interneurons. However, nPE neurons represent only a small fraction of neu-

rons in mouse V1 (Keller et al., 2012; Saleem et al., 2013; Zmarz and Keller, 2016;

Attinger et al., 2017). Given that in our model, motor predictions arriving at the apical dendrites

are canceled by SOM neuron-mediated inhibition, we hypothesized that the fraction of PCs that

develop into nPE neurons depends on the distribution of visual and motor input onto SOM and VIP

neurons.

To test this, we allow neurons of both SOM and VIP populations to receive either visual input or a

motor prediction thereof. A fraction f of SOM neurons and a fraction ð1� f Þ of VIP neurons receive
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Figure 4. Fraction of nPE neurons depends on SOM and VIP neuron inputs. (a) Network model with excitatory PCs

and inhibitory PV, SOM and VIP neurons. Connections from PCs not shown for the sake of clarity. Somatic

compartment of PCs, PV neurons, a fraction f of SOM neurons and a fraction ð1� f Þ of VIP neurons receive visual

input. The remaining SOM and VIP neurons receive motor predictions. (b) Response relative to baseline (DR=R) of

all PCs in feedback, mismatch and playback phases, sorted by amplitude of mismatch response. The fraction of

nPE neurons that develop during learning decreases with f (also indicated by black and gray shading to the right).

The increasing fraction of non-nPE neurons comprises neurons that remain at their baseline in all three phases,

show a suppression during mismatch or develop into positive prediction-error neurons that respond only during

playback.
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visual input. The remaining SOM and VIP neurons receive a motor-related prediction (Figure 4a).

When the majority of SOM neurons receive visual inputs and the majority of VIP neurons receive

motor predictions (f » 1), all PCs develop into nPE neurons (Figure 4b, left). Reducing the proportion

of SOM neurons that receive visual input (and, equivalently, the proportion of VIP neurons that

receive the motor prediction), the fraction of nPE neurons decreases (Figure 4b, middle). Non-nPE

neurons remain at their baseline in all three phases, show a suppression during mismatch or develop

into pPE neurons that respond only during playback. pPE neurons only emerge when the inputs to

SOM and VIP neurons are reversed such that most SOM neurons receive motor predictions

(Figure 4b, right).

In summary, the fraction of nPE neurons that develop during learning depends on the distribution

of visual input and motor predictions onto both SOM and VIP neurons.

Experience-dependence of mismatch and interneuron responses
Attinger et al., 2017 showed that the number of nPE neurons and the strength of their mismatch

responses decreases when mice are trained in artificial conditions, during which a mouse was shown

the visual information of a different mouse, such that motor predictions and visual flow were uncor-

related (‘non-coupled training’). We reasoned that this training paradigm should include baseline

phases where both animals sit still and phases, during which the speeds of the two animals differ. To

test whether the model shows the same experience-dependence, we generated a modified training

paradigm, which includes baseline phases and phases during which the visual inputs and motor-

related predictions are statistically independent (‘random gain training’, Figure 5a). We found that

the number of nPE neurons and their mismatch responses also decrease for random gain trained rel-

ative to quasi-natural trained networks (Figure 5b). This decrease is primarily due to changes in PCs

and PV neurons, while the responses of SOM and VIP neurons during the mismatch phase are largely

independent of the training paradigm (Figure 5c). Hence, the experience-dependence of the model

circuit is in line with that of nPE neurons in rodent V1 (Attinger et al., 2017).

During learning, we exposed the network to sensory inputs and motor-related predictions

designed to reflect coupled sensorimotor experience. To account for changes in the external world

that do not arise from the animal’s own movements, we included ‘playback’ phases in which the

visual input is stronger than predicted by the motor-related input. Consistent with the experimental

setup of Attinger et al., 2017, we deliberately excluded feedback mismatch phases. In the model,

the stimuli experienced during learning have a strong impact on the response structure of the PCs,

because the learning rules aim to keep the PCs at a given baseline rate at all times. The inclusion of

feedback and playback phases during learning therefore leads to neurons that remain at their base-

line during those phases, in line with nPE neurons. In mouse V1, nPE neurons exhibit an average rate

decrease during playback when the animals were only exposed to perfectly coupled sensorimotor

experience (Attinger et al., 2017). When our network was trained in the same way, we also

observed that PCs reduced their firing rate during playback phases (Figure 5d and Figure 5—figure

supplement 1). This can be a result of an excess of somatic inhibition, dendritic inhibition or both.

The model hence predicts that the rate reduction during playback phases observed by

Attinger et al., 2017 vanishes when playback phases are included during training.

nPE circuits can also be learned by biologically plausible learning rules
In our model, nPE neurons developed through inhibitory plasticity that establishes an excitation-inhi-

bition (E/I) balance in PCs. So far, we used learning rules that approximate a backpropagation of

error (Rumelhart et al., 1986), which changed SOM!PV and VIP!PV connections such as to mini-

mize the difference between the PC firing rate and a baseline rate (see Equation 16 in Materials and

methods). The biological plausibility of such backpropagation rules, which are broadly used in artifi-

cial intelligence, is still debated, because they rely on information that is not locally available at the

synapse in question (Crick, 1989; Richards and Lillicrap, 2019). We therefore wondered whether

prediction-error circuits can also be established by biologically plausible local learning rules.

We found that nPE neurons also emerged when the backpropagation rules were replaced by a

form of plasticity that changes SOM!PV and VIP!PV synapses in proportion to the difference

between the excitatory recurrent drive onto PV neurons and a target value (see Mackwood et al.,

2020, and Equations 17 and 18 in Materials and methods). This local form of learning was also able
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to balance excitation and inhibition sufficiently (Figure 6b,c and Figure 1—figure supplement 1c)

so that all PCs developed into nPE neurons (Figure 6c).

The plasticity rules can be further simplified when PCs do not receive visual information. In this

case, PV neurons also remain at their baseline firing rate in feedback and playback phases

(Figure 2e–f, right). Hence, the strength of SOM!PV and VIP!PV synapses can be learned accord-

ing to a homeostatic rule (Vogels et al., 2011) that aims to sustain a target rate in the PV neurons

(Figure 6—figure supplement 1 and Figure 1—figure supplement 1d, Equations 19 and 20 in

Materials and methods). In summary, the backpropagation-like learning rules for the synapses onto

PV neurons can be approximated by biologically plausible rules that exploit local information avail-

able at the respective synapses.

Discussion
How the nervous system disentangles self-generated and external sensory stimuli is a long-standing

question (Bell, 1981; Franklin and Wolpert, 2011; Keller and Mrsic-Flogel, 2018). Here, we investi-

gated the circuit level mechanisms that underlie the computation of negative prediction errors and

how different types of inhibitory neurons shape these prediction circuits. We used computational

modeling to show that nPE neurons can be learned by balancing excitation and inhibition in cortical

microcircuits with three types of interneurons. We show that the required E/I balance can be

a b

c d

Figure 5. Experience-dependence of nPE and PV neurons. (a) The network is either exposed to a sequence of

baseline, feedback and playback phases (quasi-natural training, QT), to baseline phases and phases during which

the visual inputs and motor-related predictions are statistically independent (random gain training, RT) or perfectly

coupled sensorimotor experience (coupled training, CT) (b) The number of nPE neurons that develop during

learning (top) and their mismatch responses (bottom) are smaller for RT than for QT networks. 90% of SOM and

50% of VIP neurons receive visual input. (c) Population response (DR=R) of PCs, PV, SOM and VIP neurons during

mismatch phase. SOM and VIP neurons show the same mismatch response for QT and RT, PCs and PV neurons

show stronger responses in QT than in RT. 90% of SOM and 50% of VIP neurons receive visual input. (d)

Responses during mismatch (top) and playback (bottom) for QT and CT networks. CT networks can exhibit a

decrease in activity during playback phase. Connections from VIP to PV neurons are non-plastic and fixed to �0.3.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Coupled-trained networks can produce nPE neurons that decrease their activity in playback

phase.
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achieved by biologically plausible forms of synaptic plasticity. Furthermore, the experience-depen-

dence of the circuit is similar to that of nPE circuits in mouse V1 (Attinger et al., 2017).

Our model makes a number of predictions. Firstly, the multi-pathway balance of excitation and

inhibition suggests that the input configuration of the prediction circuit could be disambiguated

using cell type-specific modulations of neural activity. This could be achieved by optogenetic or

pharmacogenetic manipulations, or by exploiting the differential sensitivity of interneuron classes to

neuromodulators. The precarious nature of an exact multi-pathway balance also suggests that nPE

neurons might change their response characteristics in a context-dependent way, for example by

neuromodulatory effects.

a

b

c

(M)

(V)

M

V

V

PV

SOM VIP

MV

PC Exc
rec

Δw ~ (post - ρ0) x pre

Δw ~ (ρ0 - Exc
rec

) x pre

(M)

(V)

Figure 6. Learning nPE neurons by biologically plausible learning rules. (a) Left: Network model as in Figure 1.

Connections marked with symbols undergo experience-dependent plasticity. Connections onto PCs follow an

inhibitory plasticity rule akin to Vogels et al., 2011 (triangle). SOM!PV and VIP!PV synapses change in

proportion to the difference between the excitatory recurrent drive onto PV neurons and a target value (square).

Right: During plasticity, the network is exposed to a sequence of feedback (coupled sensorimotor experience) and

playback phases (black square, visual input not predicted by motor commands). Stimuli last for 1 s and are

alternated with baseline phases (absence of visual input and motor predictions). (b) Left: Before plasticity, somatic

excitation (light red) and inhibition (light blue) in PCs are not balanced. Excitatory and inhibitory currents shifted

by ±20 pA for visualization. The varying net excitatory current (gray) causes the PC population rate to deviate from

baseline. Right: Response relative to baseline (DR=R) of all PCs in feedback, mismatch and playback phases, sorted

by amplitude of mismatch response. None of the PCs are classified as nPE neurons (indicated by gray shading to

the right). (c) Same as in (b) after plasticity. Somatic excitation and inhibition are balanced. PC population rate

remains at baseline. All PCs classified as nPE neurons (also indicated by black shading to the right).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Learning nPE neurons by biologically plausible learning rules in networks without visual

input at the soma of PCs.
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Secondly, the central assumption of the model is that nPE neurons emerge by a self-organized E/

I balance during sensorimotor experience. It therefore predicts that (i) sensorimotor experience an

animal is habituated to should lead to balanced excitation and inhibition in PCs, (ii) E/I balance

should break for sensorimotor experience the animal has rarely encountered, for example for mis-

matches of sensory stimuli and motor predictions and (iii) during altered sensorimotor experience in

a virtual reality setting or when the excitability of specific interneuron types is altered, interneuron

circuits should gradually reconfigure to reestablish the E/I balance.

PCs in L2/3 of V1 have very low spontaneous firing rates (Polack et al., 2013; Xue et al., 2014).

A potential rate decrease during feedback and playback could hence be hard to detect. Whether

the low response of nPE neurons during feedback and playback phases are due to an E/I balance –

as suggested here – or due to an excess of inhibition may hence be difficult to decide, and could for

example be resolved by intracellular recordings (Jordan and Keller, 2020).

We used a mathematical analysis to derive constraints imposed on an interneuron circuit by the

presence of nPE neurons. In particular, the equations unveiled the relation between the strength of

a number of inhibitory synapses, describing a multi-pathway E/I balance in a network comprising PV,

SOM and VIP neurons (see Materials and methods, Equations 8, 9). However, we also performed an

extensive analysis of different subnetworks, to elucidate under which conditions nPE neurons can

emerge (see Appendix 1). By comparing nPE circuits with less cell types, a set of common principles

can be extracted (see Appendix 1 for a detailed description): (I) SOM neurons must be present to

balance feedback predictions at the dendrites of PCs. (II) SOM neurons must receive visual input

unless both PV and VIP neurons are present as well. (III) The connections onto the dendrites must

undergo experience-dependent plasticity. (IV) PV neurons must be present when PCs receive visual

input in their somatic compartment. (V) Dendritic non-linearities are necessary except for a small set

of networks, in which all interneuron types are present and specific constraints for the input configu-

ration apply. While a minimal model that allows nPE neurons to develop comprises SOM neurons

and PCs (Attinger et al., 2017), the network with three inhibitory neuron types appears the most

likely nPE circuit given what is currently known about rodent V1.

The interneuron circuit in our model is motivated by the canonical circuit found in a variety of

brain regions (Pfeffer et al., 2013; Lee et al., 2013; Jiang et al., 2015). In addition to the connec-

tions between interneuron classes that are frequently reported as strong and numerous, we included

VIP!PV synapses in the circuit, because a mathematical analysis reveals that they are required for a

perfect E/I balance during both feedback and playback phases (see Appendix 1). While VIP!PV syn-

apses have been found in visual (Pfeffer et al., 2013), auditory (Pi et al., 2013), somatosensory

(Hioki et al., 2013; Lee et al., 2013) and medial prefrontal cortex (Pi et al., 2013), as well as amyg-

dala (Krabbe et al., 2019), they are less prominent and often weaker than SOM!PV connections

(but see Krabbe et al., 2019). VIP!PV synapses can be excluded when the conditions for nPE neu-

rons during feedback and playback phases are mildly relaxed (Keller and Hahnloser, 2009;

Keller et al., 2012; Attinger et al., 2017) and when PV neurons receive visual, but not motor inputs

(Figure 1—figure supplement 2).

Cortical circuits are complex and contain a large variety of interneuron classes (Rudy et al., 2011;

Jiang et al., 2015; Tremblay et al., 2016). We restricted the model to three of these classes: PV,

SOM and VIP neurons. It is conceivable that several other interneuron types can play a pivotal role in

prediction-error circuits. The dendrites of layer 2/3 neurons reach out to layer 1, the major target for

feedback connections (Felleman and Van Essen, 1991; Cauller, 1995; Larkum, 2013a) and home

to a number of distinct interneuron types (Larkum, 2013b; Schuman et al., 2019), which may con-

tribute to associative learning (Abs et al., 2018). In particular, NDNF neurons unspecifically inhibit

apical dendrites located in the superficial layers, and at the same time receive strong inhibition from

SOM neurons (Abs et al., 2018). Hence, it is possible that these interneurons also shape the proc-

essing of feedback information, including the computation of prediction errors.

Our analysis revealed a number of synapses in the circuit that undergo experience-dependent

changes. While the synapses from PV neurons onto PCs established a baseline firing rate in the

absence of visual input and motor predictions, the synergy between the SOM!PV, VIP!PV and

SOM!PC synapses guaranteed that the baseline is retained in feedback and playback phase. The

multi-pathway balance of excitation and inhibition could also be achieved by synaptic plasticity in

other inhibitory synapses – for example the mutual inhibition between SOM and VIP neurons. How-

ever, the assumption that mainly the inhibitory synapses onto PV neurons are plastic is supported by
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the observation that PV neuron activity – in contrast to SOM and VIP neuron activity – is experience-

dependent (Attinger et al., 2017).

In our circuit, the bottom-up and top-down connections conveying actual and predicted visual

input, respectively, were non-plastic. However, this modeling choice is not a pre-requisite for the for-

mation of nPE neurons and can be relaxed. As a matter of fact, nPE neurons can also develop in a

network, in which the excitatory top-down and bottom-up connections undergo experience-depen-

dent plasticity that balances excitation and inhibition in somatic and dendritic compartments of PCs.

For instance, nPE neurons can also be learned by endowing the top-down and bottom-up connec-

tions onto PCs and PV neurons with similar plasticity rules described here. Restricting plasticity to

the excitatory connections onto PCs would, however, require all inhibitory interneurons to exclusively

receive visual input, suggesting that excitatory bottom-up/top-down connections onto interneurons

must also change in an activity-dependent manner.

In the model, the plastic inhibitory synapses onto PV neurons change according to non-local infor-

mation that might not be directly available at the synapse. These synapses therefore implement an

approximation of a backpropagation of error, the biological plausibility of which is debated

(Crick, 1989). We showed that this plasticity rule can be approximated by biologically plausible var-

iants of the plasticity rules. If PCs do not receive direct visual input (Figure 6—figure supplement

1), the backpropagation-like algorithm can be replaced by a simple homeostatic Hebbian plasticity

rule in the synapses onto the PV interneurons. Given that PCs in V1 are known to receive substantial

visual drive (Yang et al., 2013; Xue et al., 2014), this assumption is unlikely to be valid. We there-

fore propose an alternative form of plasticity that changes SOM!PV and VIP!PV synapses in pro-

portion to the difference between the excitatory recurrent drive onto PV neurons and a target value

(Mackwood et al., 2020, see Figure 6). The underlying mechanism is similar to feedback alignment

(Lillicrap et al., 2016) and requires sufficient overlap between the set of postsynaptic PCs a PV neu-

ron inhibits and the set of presynaptic PCs the same PV neuron receives excitation from. This is

likely, given the high connection probability between PCs and PV neurons (Pfeffer et al., 2013;

Pala and Petersen, 2015; Jiang et al., 2015). Given that the main goal of the present paper was to

show that PE circuits can be learned by balancing excitation and inhibition, we used the plasticity

rule implementing a backpropagation of error, to ensure maximal generality.

We modeled the apical dendrite of PCs as a single compartment that integrates excitatory and

inhibitory input currents and has the potential to produce calcium spike-like events (Yuste et al.,

1994; Larkum et al., 1999; Murayama et al., 2009; Hertäg and Sprekeler, 2019). Moreover, we

assumed that an overshoot of inhibition decouples the apical tuft of the PCs from their soma, by

including a rectifying non-linearity that precludes an excess of dendritic inhibition to influence

somatic activity. However, the presence or nature of these dendritic nonlinearities has a minor influ-

ence on the development of nPE neurons (Figure 1—figure supplement 3). When we allowed den-

dritic inhibition to influence the soma, inhibitory plasticity still established nPE neurons, although the

learned interneuron circuit differs with respect to the synaptic strengths. The additional dendritic

inhibition reduces the required amount of somatic, PV-mediated inhibition. This is primarily the case

during playback phases, when the excitatory motor input to the apical dendrite is absent. PV neu-

rons are therefore less active during the playback phase than during the feedback phase (Figure 1—

figure supplement 3), consistent with recordings in mouse V1 (Attinger et al., 2017).

By modeling the apical dendrite as a single compartment, we also neglected the possibility that

dendritic branches process distinct information. However, we expect that the suggested framework

of generating predictive signals by a compartment-specific E/I balance generalizes to more complex

dendritic configurations, in which local inhibition could contribute by gating different dendritic inputs

(Yang et al., 2016).

A hallmark of neurons in sensory areas is their pronounced feature selectivity (Cardin et al.,

2007; Niell and Stryker, 2008; Harris and Mrsic-Flogel, 2013). This selectivity is also present in

nPE neurons in layer 2/3 of rodent V1 which preferentially signal mismatches in a particular location

of the visual field (Zmarz and Keller, 2016). Here, we did not include feature selectivity, but only

modeled one-dimensional input signals representing actual or expected visual input. However, we

expect that nPE neurons can also develop in networks in which excitatory neurons are equipped

with feature selectivity and receive multi-dimensional inputs, by the same plasticity rules described

here. We conjecture that the presence of feature selectivity imposes further constraints on the net-

work, for instance, regarding feature topography or interneuron tuning properties. For future work,
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it would be interesting to study how the presence of feature-selective PE neurons constrains the fea-

ture selectivity in interneurons that tend to be more broadly tuned than excitatory neurons

(Sohya et al., 2007; Cardin et al., 2007; Kerlin et al., 2010; Atallah et al., 2012).

In our model, the excitatory recurrent connections target the apical dendrites of PCs, but given

that PCs comprise a homogeneous population, they serve no specific computational purpose in the

present context. We expect that this would change if the neurons in the circuit were endowed with

stimulus selectivity. For instance, the predictive coding model by Boerlin et al., 2013 assumes sepa-

rate recurrent loops for coding and computation (see also Denève and Machens, 2016). In this

model, the membrane potential represents a prediction error and occasional spiking serves the pur-

pose of reducing a potential mismatch by initiating fast inhibition. The excitatory neurons receive

feedforward inputs, fast feedback inhibition and slow excitatory recurrent connections. While the

fast inhibitory loop balances the excitatory feedforward and the slow feedback inputs, the slower

loop – combined with dendritic nonlinearities – allows for nonlinear computations of the delayed

represented variable (Denève and Machens, 2016). It will be interesting to study how this line of

work is related to the PE circuit model we studied here, but it would require to extend the present

model to perform richer computations, for example by endowing it with stimulus selectivity.

Here, we have mainly focused on the development of nPE neurons because those have been

studied extensively in layer 2/3 of rodent V1, which allowed us to qualitatively compare our model

with experimental findings. In contrast, to the best of our knowledge, less is known for pPE neurons

in the visual system. Moreover, as we assume that excitatory neurons aim to establish an E/I balance

for all stimuli they are regularly exposed to, and as animals experience episodes, in which the change

of visual input is only caused by external factors (playback phases), excitatory neurons are more likely

to develop into nPE than pPE neurons in the sensorimotor paradigm used here. However, it can be

assumed that under different circumstances pPE neurons do play an equally important role in the

processing of information. We expect that the same principles and approaches described here also

hold for the formation of pPE neurons. Indeed, when a network, in which SOM neurons receive

motor-related input and VIP neurons receive visual input, is exposed to baseline, feedback and mis-

match phases, pPE neurons develop (see Appendix 2—figure 2). The inhibitory plasticity establishes

pPE neurons independent of the input configuration onto PCs and PV neurons as long as various

excitatory, inhibitory, disinhibitory and dis-disinhibitory pathways can be balanced (see Appendix 2—

figure 1, Equations 50 and 51).

In the present work, we derived the constraints for separate nPE and pPE neurons and did not

study the parallel development of both in the same neural network. While the formation of nPE neu-

rons requires SOM neurons to receive visual input, the formation of pPE neurons requires SOM neu-

rons to receive a motor-related prediction thereof. Given that SOM neurons constitute a

heterogeneous population (Jiang et al., 2015; Tremblay et al., 2016; Urban-Ciecko and Barth,

2016), it is conceivable that separate sub-circuits enable the parallel existence of nPE and pPE neu-

rons. However, we expect that the presence of both PE types requires refined constraints on the

interneuron circuit and plasticity rules. For instance, the formation of nPE and pPE neurons that only

increase their activity in mismatch and playback phases, respectively, while remaining at baseline

otherwise, introduces constraints for all three phases. Hence, the network must be exposed to all

input phases during learning. In the present framework, this would most likely produce excitatory

neurons that remain at their baseline in all phases and hence do not encode prediction errors at all.

Hence, the plasticity rules must be modified such that they incorporate gating signals that restrict

learning to a subset of input phases or a subset of synapses, for example by controlling the learning

rates. It has been argued that specific neuromodulators that are linked to self-motion may guide

plasticity in prediction-error circuits (Keller and Mrsic-Flogel, 2018). For example, neuromodulators

could restrict learning to feedback phases. In this case, excitatory neurons would show deviations

from baseline during both playback and mismatch phases, that is essentially all neurons would

encode both positive and negative prediction errors. A dichotomy of nPE and pPE neurons could

result from low baseline firing rates. A thorough investigation of these scenarios for the simultaneous

development of nPE and pPE neurons is, however, beyond the scope of the present study.

Our model suggests a well-orchestrated division of labor of PV, SOM and VIP interneurons that is

shaped by experience: While PV neurons balance the sensory input at the somatic compartment of

PCs, SOM neurons cancel feedback signals at the apical dendrites. VIP neurons ensure sufficiently

large mismatch responses by amplifying small differences between feedforward and feedback inputs

Hertäg and Sprekeler. eLife 2020;9:e57541. DOI: https://doi.org/10.7554/eLife.57541 13 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.57541


(Attinger et al., 2017; Hertäg and Sprekeler, 2019). Given the relative uniformity of cortex in its

appearance, structure and cell types (Douglas et al., 1989; Mountcastle, 1997), it is conceivable

that the same principles also hold for other regions of the cortex beyond V1. Shedding light on the

mechanisms that constitute the predictive power of neuronal circuits may in the long run contribute

to an understanding of psychiatric disorders that have long been associated with a malfunction of

the brain’s prediction machinery (Fletcher and Frith, 2009; Corlett et al., 2009; Sinha et al., 2014;

Lawson et al., 2017) and specific types of interneurons (Marı́n, 2012; Hattori et al., 2017; Batista-

Brito et al., 2018).

Materials and methods

Network model
We simulated a rate-based network model of excitatory pyramidal cells (NPC = 70) and inhibitory PV,

SOM and VIP neurons (NPV ¼ NSOM ¼ NVIP = 10). All neurons are randomly connected with connec-

tion strengths and probabilities given below (see ‘Connectivity’).

The excitatory pyramidal cells are described by a two-compartment rate model that was intro-

duced by Murayama et al., 2009. The dynamics of the firing rate rE;i of the somatic compartment of

neuron i obeys

t E

drE;i

dt
¼�rE;iþ Ii�Q½ �; (1)

where t E denotes the excitatory rate time constant (t E = 60 ms), Q terms the rheobase of the neu-

ron (Q¼ 14 s�1). Firing rates are rectified to ensure positivity. Ii is the total somatic input generated

by somatic and dendritic synaptic events and potential dendritic calcium spikes:

Ii ¼ lD I
syn
D;i þ ci

h i

þ
þð1�lEÞI

syn
E;i : (2)

Here, the function ½x�þ ¼maxðx;0Þ is a rectifying nonlinearity that prohibits an excess of inhibition

at the apical dendrite to reach the soma. IsynD;i and I
syn
E;i are the total synaptic inputs into dendrite and

soma, respectively, and ci denotes a dendritic calcium event. lD and lE are the fractions of ‘currents’

leaking away from dendrites and soma, respectively (lD=0.27, lE=0.31). The synaptic input to the

soma I
syn
E;i is given by the sum of external sensory inputs xE and PV neuron-induced (P) inhibition,

I
syn
E;i ¼ xE �

X

NPV

j¼1

wEP;ij � rP;j: (3)

The dendritic input IsynD;i is the sum of motor-related predictions xD, the recurrent, excitatory con-

nections from other PCs and SOM neuron-induced (S) inhibition:

I
syn
D;i ¼ xD�

X

NSOM

j¼1

wDS;ij � rS;jþ
X

NPC

j¼1

wDE;ij � rE;j: (4)

The weight matrices wEP, wDS and wDE denote the strength of connection between PV neurons

and the soma of PCs (wEP), SOM neurons and the dendrites of PCs (wDS) and the recurrence

between PCs (wDE), respectively. The input generated by a calcium spike is given by

ci ¼ c �HðI0D;i�QcÞ; (5)

where c scales the amount of current produced (c¼ 7 s�1), H is the Heaviside step function, Qc repre-

sents a threshold that describes the minimal input needed to produce a Ca2+-spike (Qc ¼ 28 s�1) and

I0D;i denotes the total, synaptically generated input in the dendrites,

I0D;i ¼ lEI
syn
E;i þð1�lDÞI

syn
D;i : (6)

Note that we incorporated the gain factor present in Murayama et al., 2009 into the parameters
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to achieve unit consistency for all neuron types (when we compared excitatory/inhibitory currents,

the respective activities were divided by this gain factor, g¼ 0:07 (pA� s)�1).

The firing rate dynamics of each interneuron is modeled by a rectified, linear differential equation

(Wilson and Cowan, 1972),

t i

drX;i

dt
¼�rX;iþ

X

NPC

j¼1

wXE;ij � rE;j �
X

NPV

j¼1

wXP;ij � rP;j�
X

NSOM

j¼1

wXS;ij � rS;j�
X

NVIP

j¼1

wXV;ij � rV;j þ xi; (7)

where rX;i denotes the firing rate of neuron i from neuron type X (X 2 fP;S;Vg) and xi represents

external inputs. The weight matrices wXY denote the strength of connection between the presynap-

tic neuron population Y and the postsynaptic neuron population X. The rate time constant t i was

chosen to resemble a fast GABAA time constant, and set to 2 ms for all interneuron types included.

Negative prediction-error neurons
We define PCs as nPE neurons when they exclusively increase their firing rate during feedback mis-

match (visual input smaller than predicted), while remaining at their baseline during feedback and

playback phases. In a linearized, homogeneous network and under the assumption that the apical

dendrites are sufficiently inhibited during feedback and playback phase, this definition is equivalent

to two constraints on the interneuron network (see Appendix 1 for a detailed analysis and

derivation):

wPS ¼ VP þwVSMP�
ð1þwPPÞ

wEP

VE; (8)

wPV ¼MPþwSV VP �wSV

ð1þwPPÞ

wEP

VE

¼wSVwPS þð1�wSVwVSÞMP : (9)

The parameters VX ;MX 2 f0;1g indicate whether neuron type X receives visual and motor-related

inputs, respectively, and control the different input configurations. In addition to the conditions

Equations 8 and 9, the synapses from SOM neurons onto the apical dendrites must be sufficiently

strong to cancel potential excitatory inputs during feedback and playback phase.

In practice, we classify PCs as nPE neurons when DR=R is larger than 20% in the mismatch phase

and less than ±10% elsewhere (DR=R ¼ ðr � rBLÞ=rBL, rBL: baseline firing rate). Tolerating small devia-

tions in feedback and playback phase is more in line with experimental approaches. The results do

not rely on the precise thresholds used for the classification.

Connectivity
All neurons are randomly connected with connection probabilities motivated by the experimental lit-

erature (Fino and Yuste, 2011; Packer and Yuste, 2011; Pfeffer et al., 2013; Lee et al., 2013;

Pi et al., 2013; Jiang et al., 2015; Jouhanneau et al., 2015; Pala and Petersen, 2015),

p¼

pEE pEP pES pEV

pDE pDP pDS pDV

pPE pPP pPS pPV

pSE pSP pSS pSV

pVE pVP pVS pVV

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

� 0:6 � �

0:1 � 0:55 �

0:45 0:5 0:6 0:5

0:35 � � 0:5

0:1 � 0:45 �

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (10)

All cells of the same neuron type have the same number of incoming connections. The mean con-

nection strengths are given by

w¼

wEE wEP wES wEV

wDE wDP wDS wDV

wPE wPP wPS wPV

wSE wSP wSS wSV

wVE wVP wVS wVV

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

� � � �

0:42 � � �

� � � �

1 � � 0:6

1 � 0:5 �

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(11)

where the symbol * denotes weights that vary between simulations (e.g., subject to plasticity or
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computed from the Equations 8 and 9). For non-plastic networks, these synaptic strengths are given

by wEP ¼ 2:8, wDS ¼ 3:5, wPE ¼ 1:5, wPP ¼ 0:1 (if PCs receive visual input) or wPP ¼ 1:5 (if PCs receive

no visual input), wPS and wPV are computed from the Equations 8 and 9.

For plastic networks, the initial connections between neurons are drawn from uniform distribu-

tions winitial
ij 2 U 0:5 w; 1:5 wð Þ where w denotes the mean connection strengths given in (Equation 11)

and wEP ¼ 1:75, wDS ¼ 0:35, wPE ¼ 2:5 (if PCs receive visual input) or wPE ¼ 1:2 (if PCs receive no

visual input), wPP ¼ 0:5 (if PCs receive visual input) or wPP ¼ 1:5 (if PCs receive no visual input),

wPS ¼ 0:3 and wPV ¼ 0:6. Please note that the system is robust to the choice of connections

strengths. The connection strengths are merely chosen such that the solutions of Equations 8 and 9

comply with Dale’s principle.

All weights are scaled in proportion to the number of existing connections (i.e., the product of

the number of presynaptic neurons and the connection probability), so that the results are indepen-

dent of the population size.

Inputs
All neurons receive constant, external background input that ensures reasonable baseline firing rates

in the absence of visual and motor-related input. In the case of non-plastic networks, these inputs

were set such that the baseline firing rates are rE ¼ 1s�1, rP ¼ 2s�1, rS ¼ 2s�1 and rV ¼ 4s�1. In the

case of plastic networks, we set the external inputs to xE ¼ 28s�1, xD ¼ 0s�1, xP ¼ 2s�1, xS ¼ 2s�1 and

xV ¼ 2s�1 (if not stated otherwise). In addition to the external background inputs, the neurons

receive either visual input (v), a motor-related prediction thereof (m) or both.

In line with the experimental setup of Attinger et al., 2017, we distinguish between baseline

(m ¼ v ¼ 0), feedback (m ¼ v>0), feedback mismatch (m>v) and playback (m<v) phases. During train-

ing, the network is exposed to feedback and playback phases with stimuli drawn from a uniform dis-

tribution from the interval ½0; 7s�1�. After learning, the strength of stimuli is set to 7s�1 (plastic

networks) or 3:5s�1 (non-plastic networks).

Plasticity
In plastic networks, a number of connections between neurons are subject to experience-dependent

changes in order to establish an E/I balance for PCs. PV!PC and the PC!PV synapses establish the

target firing rates for PCs and PV neurons, respectively. VIP!PV and SOM!PV synapses and the

synapses from SOM neurons onto the apical dendrites of PCs ensure that PCs remain at their base-

line during feedback and playback phase. The corresponding plasticity rules are of the form

Dw/�ðpost�baselineÞ �pre (12)

Connections onto PCs
In detail, the connections from PV and SOM neurons onto the soma and the apical dendrites,

respectively, obey inhibitory Hebbian plasticity rules akin to Vogels et al., 2011

DwEP;ij / ðrpostE;i � �postE;0 Þ � r
pre
P;j ; (13)

DwDS;ij / ðApost
i � �Þ � rpreS;j : (14)

The parameter �postE;0 denotes the baseline firing rate of the postsynaptic PC, and the dendritic

activity A
post
i is given by the rectified synaptic events at the dendrites

A
post
i ¼ I

syn
D;i þ ci

h i

þ
: (15)

The small ‘correction’ term � eases the effect of strong onset responses (here, we used �¼ 0:1s�1).

Connections onto PV neurons - non-local learning
The connections from both SOM and VIP neurons onto PV neurons implement an approximation of

a backpropagation of error
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Dwij /
1

NE;i

X

k2Spost
i

ð�postE;0 � r
post
E;k Þ � r

pre
j : (16)

S
post
i denotes the set of postsynaptic PCs a particular PV neuron is connected to, and NE;i is the

number of excitatory neurons in S
post
i .

Connections onto PV neurons - local approximation to backpropagation of
error
When the connection probability between PCs and PV neurons is large, this backpropagation of

error can be replaced by a biologically plausible learning rule that only relies on local information

available in the PV neurons (Figure 6),

Dwij / DErec;i � r
pre
j ; (17)

where DErec;i denotes the difference between the excitatory recurrent drive onto PV neuron i and a

target value

DErec;i ¼
X

k2Spre
i

wPE;ik � ð�
post
E;0 � r

post
E;k Þ: (18)

S
pre
i denotes the set of presynaptic PCs a particular PV neuron receives excitation from.

Connections onto PV neurons - learning with a homeostatic firing rate for
PV neurons
When nPE neurons do not receive direct visual input, the backpropagation rules can be simplified

even further (Figure 6—figure supplement 1). The synapses onto PV neurons can be learned

according to a Hebbian inhibitory plasticity rule (Vogels et al., 2011) that aims to sustain a baseline

rate in the PV neurons

DwPX;ij / ðrpostP;i � �postP;0 Þ � r
pre
X;j (19)

with X 2 fS;Vg. This baseline rate is established by modifying the connections from PCs onto PV neu-

rons according to an anti-Hebbian plasticity rule

DwPE;ij / ð�postP;0 � r
post
P;i Þ � r

pre
E;j : (20)

Simulation and code availability
All simulations were performed in customized Python code written by LH. Differential equations

were numerically integrated using a 2nd-order Runge-Kutta method with time steps between 0.05

and 2 ms. Neurons were initialized with rið0Þ ¼ 0. Source code and data for all figures will be avail-

able after publication at Hertäg, 2020 (https://github.com/sprekelerlab/SourceCode_

Hertaeg20, copy archived at https://github.com/elifesciences-publications/SourceCode_Hertaeg20).
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Denève S, Machens CK. 2016. Efficient codes and balanced networks. Nature Neuroscience 19:375–382.
DOI: https://doi.org/10.1038/nn.4243, PMID: 26906504

Douglas RJ, Martin KAC, Whitteridge D. 1989. A canonical microcircuit for neocortex. Neural Computation 1:
480–488. DOI: https://doi.org/10.1162/neco.1989.1.4.480

Eliades SJ, Wang X. 2008. Neural substrates of vocalization feedback monitoring in primate auditory cortex.
Nature 453:1102–1106. DOI: https://doi.org/10.1038/nature06910, PMID: 18454135

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cerebral
Cortex 1:1–47. DOI: https://doi.org/10.1093/cercor/1.1.1, PMID: 1822724

Fino E, Yuste R. 2011. Dense inhibitory connectivity in neocortex. Neuron 69:1188–1203. DOI: https://doi.org/
10.1016/j.neuron.2011.02.025, PMID: 21435562

Fletcher PC, Frith CD. 2009. Perceiving is believing: a bayesian approach to explaining the positive symptoms of
schizophrenia. Nature Reviews Neuroscience 10:48–58. DOI: https://doi.org/10.1038/nrn2536, PMID: 19050712

Franklin DW, Wolpert DM. 2011. Computational mechanisms of sensorimotor control. Neuron 72:425–442.
DOI: https://doi.org/10.1016/j.neuron.2011.10.006, PMID: 22078503

Friston K. 2005. A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological
Sciences 360:815–836. DOI: https://doi.org/10.1098/rstb.2005.1622

Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP. 2014. A cortical circuit
for gain control by behavioral state. Cell 156:1139–1152. DOI: https://doi.org/10.1016/j.cell.2014.01.050,
PMID: 24630718

Harris KD, Mrsic-Flogel TD. 2013. Cortical connectivity and sensory coding. Nature 503:51–58. DOI: https://doi.
org/10.1038/nature12654, PMID: 24201278

Harris KD, Shepherd GM. 2015. The neocortical circuit: themes and variations. Nature Neuroscience 18:170–181.
DOI: https://doi.org/10.1038/nn.3917, PMID: 25622573

Hattori R, Kuchibhotla KV, Froemke RC, Komiyama T. 2017. Functions and dysfunctions of neocortical inhibitory
neuron subtypes. Nature Neuroscience 20:1199–1208. DOI: https://doi.org/10.1038/nn.4619, PMID: 28849791
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Appendix 1
We performed a mathematical analysis of a simplified model to identify the constraints that are

imposed on the interneuron circuit by the presence of nPE neurons. We first describe the assump-

tions made and the definition of nPE neurons. We then derive the constraints for a simplified net-

work with canonical interneuron connectivity including VIP-to-PV synapses. The solutions provide the

relationship for the strength of synapses between different neuron types that must be satisfied for

nPE neurons to emerge. We then show that the same network without VIP-to-PV synapses can only

produce nPE neurons under very restrictive assumptions. Finally, we will provide an exhaustive list of

networks, which differ in terms of number of interneuron types, their inputs and the nature of the

dendritic processes, and specify the conditions under which these networks can produce nPE

neurons.

Constraints for the interneuron circuit by the presence of nPE neurons
To derive the constraints for the interneuron network that are imposed by the presence of nPE neu-

rons, we performed a mathematical analysis of a simplified network model, in which the nonlinearity

of the dendritic compartment and the rectifying nonlinearities are neglected. This reduces the net-

work to an analytically tractable linear system. The simplifications rely on the following assumptions:

1. During baseline, feedback and playback phases, SOM interneuron-mediated inhibition either
equals or exceeds excitatory motor predictions arriving at the apical dendrites of PCs.

2. Any excess of inhibition in the dendrite does not affect the soma of PCs.
3. During baseline, feedback and playback phases, all neuron types have positive firing rates,

such that the rate rectification can be neglected.

These assumptions allow us to omit the dendritic compartment of PCs and consequently all syn-

apses thereto. The remaining system of linear equations describes the activity of all neuron types

during baseline, feedback and playback phase. For the subsequent analysis, we furthermore con-

sider a homogeneous network, that is, all weights, neuronal properties and the number of incoming

connections for cells of the same type are the same. As a result, we can reduce the high-dimensional

system to four equations, each describing the dynamics of one representative firing rate per neuron

type:

t
dr

dt
¼�rþWrþX ; (21)

where t denotes the rate time constant, r¼ ½rE; rP; rS; rV�
T (subscripts refer to the different neuron

types; E: soma of PC, P: PV, S: SOM, V: VIP), W is the weight matrix and X denotes the external

inputs. In the steady state, the firing rates are given by

r¼�ðW� 11Þ�1
X¼W�1

X (22)

with the effective connectivity matrix W that includes the leak:

W ¼

�1 �wEP 0 0

wPE �1�wPP �wPS �wPV

wSE �wSP �1�wSS �wSV

wVE �wVP �wVS �1�wVV

0

B

B

B

@

1

C

C

C

A

: (23)

The weight parameters wXY between neuron types are strictly positive to maintain the excitatory/

inhibitory nature of the various neuron types. In our model, an excitatory neuron is classified as a

perfect nPE neuron, if

r
ðfeedbackÞ
E ¼ r

ðplaybackÞ
E ¼ r

ðbaselineÞ
E ; (24)

r
ðmismatchÞ
E >r

ðbaselineÞ
E : (25)

During feedback mismatch, the PC firing rate increases with respect to the baseline as long as

the motor-related excitatory inputs exceed the somatic inhibition mediated by PV neurons. The
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conditions according to which no change in activity occurs in either feedback or playback phase (see

Equation 24) impose constraints on the weight configuration that need to be satisfied. These can be

summarized by

0¼W�1
X

fb; (26)

0¼W�1
X

pb; (27)

where X
fb and X

pb denote the excess external inputs above baseline during feedback and playback

phase, respectively,

X
fb ¼ ½VE;VPþMP;1;1�

T � s; (28)

X
pb ¼ ½VE;VP;1;0�

T � s; (29)

with s representing a varying excitatory stimulus strength. The parameters VX ;MX 2 f0;1g indicate

whether neuron type X receives visual and motor-related inputs, respectively, and control the differ-

ent input configurations.

Interneuron connectivity with VIP-to-PV synapses
We start with the connectivity motif proposed by Pfeffer et al., 2013. We also allow for connections

from VIP to PV neurons. Although they are considered to be less prominent and weaker than con-

nections from VIP to SOM neurons and are therefore often neglected in diagrams and computational

models, those synapses have been observed in various brain regions (Pi et al., 2013; Pfeffer et al.,

2013; Hioki et al., 2013; Lee et al., 2013; Krabbe et al., 2019). To this end, the respective connec-

tivity matrix is given by

W ¼

�1 �wEP 0 0

wPE �1�wPP �wPS �wPV

wSE 0 �1 �wSV

wVE 0 �wVS �1

0

B

B

B

@

1

C

C

C

A

: (30)

The constraints (Equation 26) and (Equation 27) defining nPE neurons are then given by

0¼ð1�wSVwVSÞð1þwPPÞVE �wEPð1�wSVwVSÞðVP þMPÞ

þwEPwPSð1�wSVÞþwEPwPVð1�wVSÞ; (31)

0¼ð1�wSVwVSÞð1þwPPÞVE �wEPð1�wSVwVSÞVP þwEPðwPS�wPVwVSÞ: (32)

These two equations yield

wPS ¼ VP þwVSMP�
ð1þwPPÞ

wEP

VE; (33)

wPV ¼MPþwSV VP �wSV

ð1þwPPÞ

wEP

VE

¼wSVwPS þð1�wSVwVSÞMP: (34)

Equation 33 and 34 are the mathematical formulation of the E/I balance of multiple pathways

shown in Figure 2 and Figure 2—figure supplement 1.

For the derivation above, we have assumed that the motor-related input is switched off during

the playback phase. This assumption, however, can be relaxed. When motor predictions are merely

smaller than the actual sensory input but non-zero during playback, analogous calculations yield the

same constraints.

Interneuron connectivity without VIP-to-PV synapses
Without connections from VIP onto PV neurons, the constraints (Equation 26) and (Equation 27)

yield
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0¼ ð1�wSVwVSÞð1þwPPÞVE�wEPð1�wSVwVSÞðVPþMPÞþwEPwPSð1�wSVÞ; (35)

0¼ ð1�wSVwVSÞð1þwPPÞVE�wEPð1�wSVwVSÞVPþwEPwPS: (36)

These two equations simplify to

wPS ¼
ðwSVwVS� 1Þ

wSV

MP: (37)

As the weight wPS is strictly positive (see definition of weight matrix above), the product wSVwVS

must be larger than 1. This, however, indicates that networks with rate rectification exceed a bifurca-

tion point and run into a winner-take-all (WTA) regime, in which either VIP or SOM neurons are silent

(Hertäg and Sprekeler, 2019).

With VIP neurons being silent in all phases but during feedback mismatch phases, the constraint

on wPS can be recalculated from Equations 40 and 24 while neglecting VIP neurons:

wPS ¼ VP �
ð1þwPPÞ

wEP

VE: (38)

This equation reveals that PV neurons must receive visual input to ensure wPS>0.

In summary, this mathematical analysis shows that perfect nPE neurons can only emerge when

VIP neurons are silent during all phases but the feedback mismatch phase.

Please note that the very same results are obtained even if connections from PV to both SOM

and VIP neurons are included.

Summary of nPE circuits and their constraints
To derive the weight and input constraints on nPE circuits for networks with different complexity, we

varied the number of interneuron types and the nature of the dendritic processes. The following net-

work features were not varied, either because they are strongly constrained by what is known about

the circuit or because the number of variations would become too large:

. We require nPE neurons to remain at baseline during feedback and playback phases (perfect
nPE neurons).

. We consider a canonical microcircuit in which both VIP and SOM neurons inhibit other inter-
neuron types but not themselves and SOM neurons inhibit the apical dendrites of PCs, while
PV neurons inhibit the soma of PCs and other PV neurons.

. PCs receive a motor-related prediction of visual input at their dendrites.

. All interneurons receive either visual or motor-related input.

. During baseline, feedback and playback phases all neuron types have non-zero firing rates.

. During feedback, motor-related inputs and the excitatory recurrence at the dendrite are per-
fectly balanced by SOM neuron mediated inhibition.

In contrast to the assumption made before according to which the dendrite is rectified, we now

also consider the possibility that an excess of inhibition can be forwarded to the soma. Following the

same approaches outlined in the sections above, and taking into account the assumptions herein

before mentioned, we derive a few unifying principles that are required for nPE neurons to develop:

. SOM interneurons must be present to provide dendritic inhibition

. The synapses from SOM neurons onto the dendrites of PCs must undergo experience-depen-
dent plasticity to achieve an E/I balance at the dendrites during feedback.

. When PCs receive visual input, PV neurons must be present (to provide somatic inhibition that
can balance the inputs at the soma).

. Only when PV, SOM and VIP neurons are present, dendritic non-linearities may not be strictly
necessary

. SOM neurons must receive visual input unless PV and VIP neurons are present.

This leaves four networks with a number of constraints, detailed below.

PC-SOM

In a network comprising PCs and SOM neurons, PCs act as nPE neurons when

Hertäg and Sprekeler. eLife 2020;9:e57541. DOI: https://doi.org/10.7554/eLife.57541 24 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.57541


. the dendrites are rectified,

. SOM neurons receive visual input, while PCs do not, and

. wDS is tuned (see Equations 4 and 7)

wDS ¼
xDþ smaxþwDE�E
xSþ smaxþwSE�E

! 1 for smax !¥

where smax denotes the maximal stimulus strength and �E represents the PC baseline firing
rate.

Mismatch responses are caused by an excess of dendritic excitation that cannot be canceled by

SOM neuron mediated inhibition.

PC-SOM-VIP

In a network comprising PCs and SOM and VIP neurons, PCs act as nPE neurons when

. the dendrites are rectified,

. SOM neurons receive visual input, while PCs do not, and

. wDS is tuned (see Equations 4 and 7)

wDS ¼
ðxD þ smax þwDE�EÞ � ð1�wSVwVSÞ

xS�wSVxV þ smaxð1�wSVÞþ ðwSE�wSVwVEÞ�E
!

1�wSVwVS

1�wSV

for smax !¥

where smax denotes the maximal stimulus strength and �E represents the PC baseline firing
rate.

Mismatch responses are caused by an excess of dendritic excitation that cannot be canceled by

SOM neuron mediated inhibition.

PC-PV-SOM

In a network comprising PCs and SOM and PV neurons, PCs act as nPE neurons when

. SOM neurons receive visual input,

. wDS is tuned (see Equations 4 and 7)

wDS ¼
xDþ smaxþwDE�E
xSþ smaxþwSE�E

! 1 for smax !¥

where smax denotes the maximal stimulus strength and �E represents the PC baseline firing
rate,

. somatic excitation and disinhibition must be balanced by PV mediated inhibition (see
Equation 8)

wPS ¼ 1�
ð1þwPPÞ

wEP

VE

. and PV neurons must receive visual input (if the dendrites are rectified) or motor predictions
thereof (if the dendrites are not rectified).

Mismatch responses are either caused by an excess of dendritic excitation that cannot be canceled

by SOM neuron mediated inhibition (if the dendrites are rectified) or rely on the presence of supra-

linear processes in the dendrites – for instance calcium spikes (if the dendrites are not rectified).
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PC-PV-SOM-VIP

In a network comprising PCs and SOM, VIP and PV neurons, PCs act as nPE neurons when the fol-

lowing conditions are met:

. wDS is tuned (see Equations 4 and 7)

wDS ¼
ðxD þ smax þwDE�EÞ � ð1�wSVwVSÞ

xS �wSVxVþ smaxð1�wSVÞþ ðwSE �wSVwVEÞ�E
!

1�wSVwVS

1�wSV

where smax denotes the maximal stimulus strength and �E represents the PC baseline firing
rate.

. Dependent on the input onto SOM/VIP neurons and the nature of the dendritic processes:
� If both SOM and VIP neurons receive visual input and dendrites are rectified, then (see

Equation 31)

VP ¼ 1;

wPSð1�wSVÞþwPVð1�wVSÞ ¼ ð1�wSVwVSÞ 1� ð1þwPPÞ
wEP

VE

� �

:

Mismatch responses are caused by an excess of dendritic excitation that cannot be can-
celed by SOM neuron mediated inhibition.

� If both SOM and VIP neurons receive visual input and dendrites are not rectified, then
(see Equation 31 and Equations 2–4 and 7)

MP ¼ 1;

wPSð1�wSVÞþwPVð1�wVSÞ ¼ ð1�wSVwVSÞ 1� ð1þwPPÞ
wEP

VE

� �

;

wEP ¼ lD

ð1�lEÞ
� ð1þwPPÞ:

Mismatch responses are caused by an excess of dendritic excitation that cannot be can-
celed by SOM neuron mediated inhibition and over-compensates for increased somatic
inhibition.

� If SOM neurons receive visual input, while VIP neurons receive a motor-related prediction
thereof and dendrites are rectified, then (see Equations 8 and 9)

wPS ¼ VPþwVSMP �
ð1þwPPÞ

wEP
VE;

wPV ¼MP þwSV VP�wSV
ð1þwPPÞ

wEP
VE:

Mismatch responses are caused by an excess of dendritic excitation that cannot be can-
celed by SOM neuron mediated inhibition.

� If SOM neurons receive visual input, while VIP neurons receive a motor-related prediction
thereof and dendrites are not rectified, then (see Equations 8 and 9, augmented with an
inhibitory dendritic current FED that influences the soma during playback)

wPS ¼ VPþwVSMP�
ð1þwPPÞ

wEP
VE þ

ð1�wVSÞ�FED

ð1�wSVwVSÞ�wEP
;

wPV ¼MPþwSV VP �wSV
ð1þwPPÞ

wEP
VE�

FED

wEP
;

where FED is given by (Equations 2–4 and 7)

FED ¼
lD

ð1�lEÞ
�
ð1�wSVwVSÞ

ð1�wSVÞ
� ð1þwPPÞ:

Mismatch responses are caused by an excess of dendritic excitation that cannot be can-
celed by SOM neuron mediated inhibition and over-compensates for increased somatic
inhibition.
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� If SOM neurons receive motor input, while VIP neurons receive visual input (see Equa-
tions 8 and 9, augmented with an excitatory dendritic current FED that influences the
soma during playback)

wPV ¼ VPþwSV MP�
ð1þwPPÞ

wEP
VE�

ð1�wSVÞ�FED

ð1�wSVwVSÞ�wEP
;

wPS ¼wVS wPVþð1�wSVwVSÞMPþ
FED

wEP
;

where FED is given by (Equations 2–4 and 7)

FED ¼
lD

ð1�lEÞ
�
ð1�wSVwVSÞ

ð1�wSVÞ
� ð1þwPPÞ �wSV

when the dendrites are not inhibited in the baseline condition. Mismatch responses are
caused by a release from PV neuron mediated inhibition (somatic disinhibition) that is
strong enough to over-compensate for an excess of dendritic inhibition that is forwarded
to the soma (when dendrites are not rectified).
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Appendix 2
We performed a mathematical analysis of a simplified model to identify the constraints that are

imposed on the interneuron circuit by the presence of pPE neurons. We first describe the assump-

tions made and the definition of pPE neurons. We then derive the constraints for a simplified net-

work with canonical interneuron connectivity. The solutions provide the relationship for the strength

of synapses between different neuron types that must be satisfied for pPE neurons to emerge.

Constraints for the interneuron circuit by the presence of pPE neurons
To derive the constraints for the interneuron network that are imposed by the presence of pPE neu-

rons, we performed an analogous mathematical analysis of a simplified network model. In contrast

to nPE circuits, we now assume that SOM neurons receive motor-related input, while VIP neurons

receive visual input. The simplifications for the derivation rely on the following assumptions:

1. During baseline, feedback and mismatch phases, SOM interneuron-mediated inhibition
exceeds excitatory motor predictions arriving at the apical dendrites of PCs.

2. Any excess of inhibition in the dendrite does not affect the soma of PCs.
3. During baseline, feedback and mismatch phases, all neuron types have positive firing rates,

such that the rate rectification can be neglected.

These assumptions allow us to omit the dendritic compartment of PCs and consequently all synapses

thereto. The remaining system of linear equations describes the activity of all neuron types during

baseline, feedback and mismatch phase. For the subsequent analysis, we furthermore consider a

homogeneous network, that is, all weights, neuronal properties and the number of incoming connec-

tions for cells of the same type are the same. As a result, we can reduce the high-dimensional system

to four equations, each describing the dynamics of one representative firing rate per neuron type:

t
dr

dt
¼�rþWrþX ; (39)

where t denotes the rate time constant, r¼ ½rE; rP; rS; rV�
T (subscripts refer to the different neuron

types; E: soma of PC, P: PV, S: SOM, V: VIP), W is the weight matrix and X denotes the external

inputs. In the steady state, the firing rates are given by

r¼�ðW� 11Þ�1
X¼W�1

X (40)

with the effective connectivity matrix W that includes the leak:

W ¼

�1 �wEP 0 0

wPE �1�wPP �wPS �wPV

wSE 0 �1 �wSV

wVE 0 �wVS �1

0

B

B

B

@

1

C

C

C

A

: (41)

The weight parameters wXY between neuron types are strictly positive to maintain the excitatory/

inhibitory nature of the various neuron types. In our model, an excitatory neuron is classified as a

perfect pPE neuron, if

r
ðfeedbackÞ
E ¼ r

ðmismatchÞ
E ¼ r

ðbaselineÞ
E ; (42)

r
ðplaybackÞ
E >r

ðbaselineÞ
E : (43)

The conditions according to which no change in activity occurs in either feedback or mismatch

phase (see Equation 42) impose constraints on the weight configuration that need to be satisfied.

These can be summarized by

0¼W�1
X

fb; (44)

0¼W�1
X

mm; (45)
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where X
fb and X

mm denote the excess external inputs above baseline during feedback and mismatch

phase, respectively,

X
fb ¼ ½VE;VPþMP;1;1�

T � s; (46)

X
mm ¼ ½0;MP;1;0�

T � s; (47)

with s representing a varying excitatory stimulus strength. The parameters VX ;MX 2 f0;1g indicate

whether neuron type X receives visual and motor-related inputs, respectively, and control the differ-

ent input configurations.

The constraints (Equation 44) and (Equation 45) defining pPE neurons are then given by

0¼ð1�wSVwVSÞð1þwPPÞVE�wEPð1�wSVwVSÞðVPþMPÞ

þwEPwPSð1�wSVÞþwEPwPVð1�wVSÞ; (48)

0¼�ð1�wSVwVSÞMP þwPS �wVSwPV: (49)

These two equations yield

wPV ¼ VPþwSVMP�
1þwPP

wEP

VE; (50)

wPS ¼wVSwPVþð1�wSVwVSÞMP: (51)

Equation 50 and 51 are the mathematical formulation of an E/I balance of multiple pathways

shown in Appendix 2—figure 1. This balance can be learned by experience-dependent inhibitory

plasticity (Appendix 2—figure 2).
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Appendix 2—figure 1. Multi-pathway balance of excitation and inhibition in different pPE neuron

circuits. (a) Excitatory, inhibitory, disinhibitory and dis-disinhibitory pathways onto PCs that need to

be balanced in pPE neuron circuits. Input to the soma of PCs and PV neurons is varied (c–f). VIP

neurons receive visual input, SOM neurons receive a motor-related prediction thereof. (b) Test

stimuli: Feedback (FB), mismatch (MM) and playback (PB) phases of 1 s each. (c) PCs receive visual

input. PV neurons receive visual and motor inputs (left, top). When all visual (V) and motor (M)

pathways are balanced (left, bottom), PCs act as pPE neurons (right). PV neuron activity increases in
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both feedback and playback phases but remains at baseline during mismatch. Responses normalized

between �1 and 1 such that baseline is zero. (d) Same as in (c) but PV neurons receive motor

predictions only. (e) Same as in (c) but PCs receive no visual input. PV neurons remain at baseline in

the absence of visual input to the soma of PCs during feedback and mismatch. (f) Same as in (c) but

PCs receive no visual input and PV neurons receive motor predictions only. PV neurons remain at

baseline in the absence of visual input to the soma of PCs during feedback and mismatch.
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Appendix 2—figure 2. Balancing excitation and inhibition gives rise to positive prediction-error neu-

rons. (a) Network model with excitatory PCs and inhibitory PV, SOM and VIP neurons. Connections

from PCs not shown for the sake of clarity. Somatic compartment of PCs and VIP receive visual

input, apical dendrites of PCs, SOM and PV neurons receive a motor-related prediction thereof.

Connections marked with an asterisk undergo experience-dependent plasticity. (b) During plasticity,

the network is exposed to a sequence of feedback (coupled sensorimotor experience) and mismatch

phases (black square, no visual flow despite motor-related predictions). Stimuli last for 1 s and are

alternated with baseline phases (absence of visual input and motor predictions). (c) Left: Before

plasticity, somatic excitation (light red) and inhibition (light blue) in PCs are not balanced. Excitatory

and inhibitory currents shifted by ±20 pA for visualization. The varying net excitatory current (gray)

causes the PC population rate to deviate from baseline. Right: Response relative to baseline (DR=R)

of all PCs in feedback (FB), mismatch (MM) and playback (PB) phase, sorted by amplitude of

mismatch response. None of the PCs are classified as pPE neurons. (d) Same as in (c) after plasticity.

Somatic excitation and inhibition are balanced. PC population rate fluctuates around baseline. All

PCs classified as pPE neurons. Connection strength from VIP onto SOM neurons is set to 0.8.

Please note that in the present network model, the increase during playback is caused by SOM

neurons being rectified and/or a non-zero motor-related input (weaker than the visual input).

Hertäg and Sprekeler. eLife 2020;9:e57541. DOI: https://doi.org/10.7554/eLife.57541 30 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.57541

