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A B S T R A C T

Coronavirus disease 2019 (COVID-19) first emerged in late 2019 in China. At the time of writing, its causative
agent SARS-CoV-2 has spread worldwide infecting over 9 million individuals and causing more than 460,000
deaths. In the absence of vaccines, we are facing the dramatic challenge of controlling COVID-19 pandemic.
Among currently available drugs, type I Interferons (IFN-I) – mainly IFN-α and β –represent ideal candidates
given their direct and immune-mediated antiviral effects and the long record of clinical use. However, the best
modalities of using these cytokines in SARS-CoV-2 infected patients is a matter of debate. Here, we discuss how
we can exploit the current knowledge on IFN-I system to tailor the most promising dosing, timing and route of
administration of IFN-I to the disease stage, with the final aim of making these cytokines a valuable therapeutic
strategy in today's fight against COVID-19 pandemic.

1. Introduction

The rapid and devastating outbreak of Coronavirus disease 2019
(COVID-19) pandemic and the lack of approved treatments for any
human coronavirus (CoV) infection highlight the urgent need to de-
velop strategies to prevent infection, control virus spreading and dis-
ease exacerbation. Several options can be envisaged, ranging from
prophylactic vaccine to targeted antiviral drugs. However, new inter-
ventions are likely to require months to years to be readily-available,
thus priority is being given to the repurposing of existing antiviral
agents [1].

Since COVID-19 outbreak, more than 2000 clinical trials have been
authorized to identify the drugs or drug combinations capable of at-
tenuating the virulence of the disease [2]. Some of these trials include
the use of Interferons (IFN) alone or in combination with other com-
pounds. IFN are a cytokine family linking innate and adaptive immune
responses, with an important role in the inhibition of viral replication,
through different receptor molecules and effector proteins [3]. There
are three types of IFN, Type I (IFN-α/β), Type II (IFN-γ), and Type III
(IFN-λ). Although all three are likely involved in protection against CoV
infection, Type I IFN (IFN-I) and IFN-λ are the most studied in this area
[4]. Interestingly, although IFN-α and β share the same receptor and

exhibit similar biological activities [5], their diverse receptor affinity
may be responsible for some differential effects [5]. Some studies point
to IFN-β1b and IFN-β1a as the most potent subtypes for SARS-CoV in-
hibition and likely even more for SARS-CoV-2 [6–8].

IFN-I were first discovered more than 60 years ago as antiviral
substances produced by influenza virus-infected cells, capable of
markedly inhibiting viral replication in target cells [9]. These cytokines
were the firsts to be cloned and have been extensively used in patients
with some viral diseases [10] and cancer (IFN-α) [11], and in the
treatment of relapsing-remitting multiple sclerosis (MS) (IFN-β, [12]).
Indeed, IFN-I are pleiotropic factors endowed with multiple activities,
including both a broad-spectrum antiviral activity [9,10] and a re-
markable antiproliferative and immunoregulatory function [13].

The antiviral activity of IFN-I has been extensively exploited for the
treatment of viral chronic infections [10]. Nevertheless, as highlighted
by the long clinical records of IFN-I use, the complex nature of the IFN-I
system and the dysregulated IFN-I response in SARS-CoV-2 infection
point to the need of a fine-tuning of route, timing and dose of admin-
istration to balance clinical efficacy and side effects. In this Perspective
article, we briefly review the role of IFN-I signaling in COVID-19 pa-
thogenesis and discuss some critical issues that need to be taken into
account for optimally exploiting IFN-I in today’s fight against COVID-19
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Fig. 1. COVID-19 and IFN-I treatment.
In the majority of patients (left panels) early phase infection
results in a physiological IFN-I activation that favors the de-
velopment of anti-SARS-CoV2 antibodies and virus-specific T
cells in addition to the paracrine direct antiviral effect. This
immune activation leads to a resolution of the infection
without any need of treatment. Instead, approximately 15–20
% of infected patients (middle panels), because of reduced
early IFN-I activation show a dysfunctional immune response
with higher viral spread. This situation is then followed by an
excessive granulocyte and macrophage infiltration, secreting
high amounts of inflammatory cytokines that lead to severe
forms of COVID-19. This group of patients would strongly
benefit of an IFN-I treatment at the early phase of infection
(right panels) as it would re-establish a functional immune
response that would then lead to resolution of the infection.
At bottom, diagrams summarizing the variation over time of
infection levels and immune response for each scenario. This
figure was created using Servier Medical Art templates.

E. Aricò, et al. Cytokine and Growth Factor Reviews 54 (2020) 43–50

44



pandemic.

2. SARS-CoV-2: one virus, multiple battlefronts

Differently from the 2002 severe acute respiratory syndrome
(SARS)-CoV, SARS-CoV-2 has a lower virulence with a large number of
asymptomatic infections and mild upper respiratory tract illness
[14,15]. This is a determinant factor for its increased transmissibility,
considering that asymptomatic or presymptomatic carriers might con-
tribute to viral transmission, especially in high-risk populations [16].
Even though upper respiratory infections are often spontaneously re-
solved, some of these eventually progress in more severe viral pneu-
monia. Severe COVID-19 patients are characterized by a strong immune
activation (reviewed in [17]) resulting in lung infiltration by proin-
flammatory macrophages and granulocytes [18], development of acute
respiratory distress syndrome, respiratory failure and subsequent
fatality (Fig. 1). Age, sex and comorbidities are main factors affecting
the risk of developing severe COVID-19 [19,20]. Ageing is indeed
characterized by the gradual development of a chronic subclinical
systemic inflammation and by acquired immune impairment, particu-
larly in the male population [21]. In particular, recent studies have
shown that ageing affects B lymphocyte-driven acquired immunity
[22], attenuates the upregulation of co-stimulatory molecules for T cell
priming and reduces IFN-I production by alveolar phagocytes in re-
sponse to viral infection [19].

Thus, due to the different pathogenic mechanisms intervening in
early stage versus late stage of SARS-CoV-2 infection (reviewed in [17])
and to the role of comorbidities in disease exacerbation, interventions
should be carefully tailored to the stage of the disease and to the target
population with the aim of avoiding the progression to severe clinical
manifestations.

3. CoV and the hijack of IFN-I

Although our knowledge on SARS-CoV-2 biology is still limited, the
overall genomic similarity of SARS-CoV-2 with SARS- and MERS-CoV,
as well as the immunologic changes observed during infection [23]
point to a dysregulated IFN-I response in COVID-19 pathogenesis and
disease outcome [24]. Diminished levels of IFN-I were already detected
during the course of SARS and MERS infections. In particular, SARS
patients revealed no expression of IFN-I or IFN-stimulated genes (ISG)
in peripheral blood mononuclear cells, suggesting a viral-induced in-
hibition of their expression [18,25]. Furthermore, a downregulated
expression of IFN-α and of some ISG (RIG-I, MDA5 and IRF3/7) was
associated with the severity of disease and fatal outcomes in MERS
patients [26]. Likewise, SARS-CoV-2 infection (either in cell lines, pri-
mary cell cultures, ferrets, and COVID-19 patients) drives a lower an-
tiviral transcriptional response that is marked by low IFN-I and IFN-III
levels and elevated chemokine expression, which could explain the
proinflammatory disease state associated with COVID-19. In patients
with severe COVID-19, an impaired IFN-I signalling associated with
persistent blood viral load and an exacerbated inflammatory response
was recently reported [27]. Along these lines, IFN immune profiling in
critically ill COVID-19 patients revealed a peak in IFN α2 production
8–10 days after symptoms onset. A small group of patients had sup-
pressed IFN-I production, in particular, patients with no IFN-α pro-
duction presented poorer outcome and longer intensive care unit stay
[28].

Other studies suggest that rather than a complete absence, the IFN
response may be delayed. Compelling evidence indicated that human
bronchial epithelial cells are capable of promoting active, but delayed
IFN-related antiviral responses to SARS-CoV and MERS-CoV infection
[29,30]. These results are in line with data on mouse model of SARS-
CoV infection, where a robust viral replication associated with delayed
IFN-I signaling was reported to orchestrate the inflammatory responses,
leading to accumulation of pathogenic monocytes-macrophages

promoting lung immunopathology, vascular leakage and suboptimal T
cell response with decreased survival [31]. Notably, while early exo-
genous administration of IFN-β completely protected mice from lethal
MERS-CoV infection by inhibiting virus replication and inflammatory
cytokine production, delayed IFN-β therapy caused instead a striking
increase in IFN-I, ISG, and inflammatory cytokine levels, resulting in
fatal disease [32]. In conclusion, in comparison to other respiratory
viruses, SARS-CoV-2 infection drives a lower antiviral transcriptional
response that is marked by low IFN-I and IFN-III levels and elevated
chemokine expression, which could explain the proinflammatory dis-
ease state associated with COVID-19 [33]. Overall, these observations
outline the critical role of IFN-I in both protective and pathogenic
events during CoV infections, thus strengthening the need of fine tuning
the IFN-I signaling with respect to the kinetics of CoV replication for an
optimal protective response.

4. Multifaceted aspects of IFN-I effects: not only antiviral
cytokines

The IFN response represents the major first line of defense against
viruses. Under steady state conditions, IFN-I are produced at low levels.
However, upon RNA viral recognition through the endosomal (i.e. Toll-
like receptors) or cytosolic (RIG-I-like receptors) pattern recognition
receptors, the activation of downstream signaling pathways leads to the
induction of IFN-I as well as IFN-λ, which, in turn, stimulates the
transcription of a variety of ISG, ultimately leading to a broad-spectrum
antimicrobial response [34]. The antiviral activity of IFN-I is, however,
intimately linked to its impressive capacity to regulate activation and
function of various immune cell populations. Among these activities,
the activation of antigen-presenting dendritic cells (DC) and natural
killer (NK) cells, and the localization, expansion or differentiation of
virus-specific T lymphocytes and of antibody-producing B lymphocytes
represent key aspects of the antiviral defence. In the early phases of
infection, IFN-I contribute to limit viral spread by activating NK cells
[35] and enhancing their cytotoxic activity against infected cells [9].
Concurrently, IFN-I variously inhibit or promote the differentiation of
precursors into DC (reviewed in [13]). DC exposed to IFN-I show a
peculiar ability to cross-present viral antigens to naïve CD8+ T cells
[36], promote Th1 cell differentiation, T cell memory turnover [37] and
favor the recruitment of NK, T and B cells at the site of infection [38].
Notably, the interplay IFN-I/DC is crucial for the generation of pro-
tective antibodies against reference and viral antigens [39–42]. In fact,
the stimulation of IFN signaling by exogenous IFN-I or by IFN inducers,
such as poly(I:C), strongly enhance the primary antibody response
(especially IgG2a) to reference antigens [39] or to a standard influenza
vaccine [42] in mice. Interestingly, even in the absence of a direct
antiviral effect, the continuous production of IFN-α by a recombinant γ-
herpesvirus elicits a significant antiviral immune response attenuating
the severity of the infection and protecting against subsequent viral
challenge [43]. This evidence supports the concept that IFN-I, rapidly
produced in response to viral infection, stimulate the generation of a
protective humoral immunity. Based on these premises, IFN-I were used
in pilot studies as a vaccine adjuvant in infective diseases [44]. IFN-α
local injection in close proximity of the HBV vaccine showed evidence
of clinical efficacy in the absence of any toxicity [44].

Overall, although our knowledge of the interplay between SARS-
CoV-2 and the host immune system is still limited, we believe that IFN-I
can represent not only a direct antiviral treatment restricting early viral
spread, but also a valuable tool to enhance humoral and cellular im-
munity, thus halting viral infection from progressing towards a more
severe form of disease.

5. IFN-I and CoV infection: a matter of timing?

The past experience on IFN-I in cancer and chronic viral infection
was mainly based on repeated intravenous (i.v.) or subcutaneous (s.c.)
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injections of high doses (10–20 millions) of IFN-α, often resulting in
relevant side effects and refractoriness phenomena that hampered
clinical success [45]. The peculiar scenario offered by SARS-CoV-2,
characterized by the possible rapid progression towards severe COVID-
19 pneumonia, represents a new challenge, and requires a rethinking of
the timing and modality of administration of these cytokines. The
therapeutic interventions for SARS-CoV-2 need to be tailored to virus
pathogenesis and subsequent disease: in early phases, they should
counteract virus replication and spreading to favor the development of
an effective antiviral immune response; at later time points, treatments
should, in principle, reduce the deleterious effects of virus-induced
cytokine storm on lung tissues [46].

Although IFN-α and -β demonstrated robust in vitro efficacy against
CoV, disappointing results were achieved when transposed to human
diseases [47–50]. Upon emergence of previous SARS- and MERS-CoV
epidemics, patients were administered off-label with recombinant IFN-
α2a, IFN-α2b and IFN-β1, either as monotherapy or in combination, but
the rate of success was limited [51]. In some cases, in line with data
emerging from animal models [32], the disappointing results obtained
with IFN-I were ascribed to the late timing of administration of the
cytokine [51], thus suggesting the need for an early therapeutic inter-
vention to fully exploit the properties of these cytokines. Since the
beginning of COVID-19 pandemic, IFN-α and -β administration at early
time points was included in several clinical studies reported by WHO
[2], with the common intent to achieve a general antiviral effect. In
fact, IFN-I was often administered together with other compounds
(Lopinavir, Ritonavir, Remdesivir, Chloroquine), even though no evi-
dence-based or mechanism-driven rationale clearly supported these
combinations. We believe that the early administration of IFN-β, by
counteracting SARS-CoV-2 immune evasion mechanisms and linking
innate and adaptive immune response, will result not only in an ef-
fective limitation of virus replication, but will also prompt the elicita-
tion of humoral and cellular immune response. The beneficial effect of
early IFN-β supplementation might be potentially higher in patients
likely experiencing an age-related impairment of IFN-I response
(Fig. 1).

Besides being less effective if given when viral replication is
reaching its peak, attention should be paid to the possible adverse ef-
fects of IFN-I administration when SARS-CoV-2 cytokine release syn-
drome is already ongoing. It is clear that cytokine accumulation ob-
served in the plasma of severe COVID-19 patients is not the result of
systemic immune activation, but it is rather caused by virus-mediated
stimulation of alveolar macrophages and lung epithelial cells [52].
Nevertheless, we cannot exclude that the immunomodulation phe-
nomena occurring upon IFN-α or β systemic treatment may concur in
the stimulation of pro-inflammatory cytokines in the lung [53], thus
causing an additive effect that can eventually exacerbate SARS-CoV-2
immunopathology. For this reason, we believe that the most appro-
priate therapeutic window for a safe and effective use of IFN-α or β
administration is limited to the first 10 days since the SARS-CoV-2 di-
agnosis. In light of the evidence available so far, the use of IFN-I for the
treatment of severe COVID-19 patients should be discouraged.

6. Mucosal delivery of IFN-I: is this strategy ready for efficiently
fighting COVID-19 pandemic?

Since the respiratory mucosa is the primary portal of entry for SARS-
CoV-2, there is increasing interest in developing mucosal treatments for
either prevention or treatment of COVID-19. The first attempts to de-
liver IFN-I to the nasal mucosa to counteract respiratory infections date
back in the 1970s [54]. Since then, intranasal administration of IFN-I
has been repeatedly explored as prophylactic measure against re-
spiratory infections with variable results that mostly depended on the
dose and on the type of patients [55]. The intranasal route has also been
explored for the delivery of IFN-I [56] or IFN-I-inducers [57] as ad-
juvants for influenza vaccines in animal models. In all these studies,

intranasal IFN-I was well tolerated and devoid of any evident toxicity.
However, concerns exist towards the possibility that the intranasal
route may unwantedly deliver compounds to the central nervous
system, thus causing toxicity [58]. Among mucosal routes, sublingual
administration is gaining interest due to the rapid bioavailability of the
applied compound and the lack of hepatic or neural toxicity. In healthy
individuals an oral low dosage IFN-α preparation proved safe and ef-
fective as prophylaxis against respiratory viral infections [59]. The data
available thus far suggest that the beneficial effects of sublingual IFN-I
may reside in the local interactions between the cytokine and specific
cell populations, including the intraepithelial γδ T cells, which enter the
circulation to mediate the antiviral effects of IFN-I [60]. In contrast to
the parenteral administration, mucosal administration of IFN-I may
have the advantage of being less toxic (if any) and easy to perform,
while retaining the capability of inducing both local and systemic ef-
fects potentially protective in the very early phases of SARS-CoV-2 in-
fection. Several clinical trials using inhaled IFN-α either as mono-
therapy or in combination with other treatments have been authorized
so far worldwide [2]. In a study recently published on MedRxiv, in-
tranasal administration of IFN-α to medical staff at risk of SARS-CoV-2
infection results in complete protection [61]. Since the beneficial effects
of mucosal IFN-I are critically dependent on the timing of administra-
tion with regard to the stage of the immune or inflammatory stimulus,
further studies are needed to confirm IFN-I efficacy against SARS-CoV-2
infection and to better characterize the biological activities, the me-
chanisms of action and the optimal modalities of mucosal administra-
tion.

7. Closing remarks and perspectives

The COVID-19 outbreak has emphasized the urgent need to identify
antiviral agents immediately available to combat SARS-CoV-2 infection.
As shown in Table 1, among the many trials authorized all over the
world to test the possible effectiveness of different drug candidates,
almost 50 trials, to the best of our knowledge, imply the use of either
IFN-α, or IFN-β at different dosages and by different delivery routes,
alone as well as in combination with other drugs [2]. While such a
complex scenario testifies the current interest in the potential use of
IFN-I against COVID-19 pandemic [62], it also gives evidence of the
lack of consensus on the best formulation, dose and delivery route for
these cytokines.

In some cases, and in most of the Chinese studies, IFN-α and IFN-β
administration by either inhalation or intranasal instillation is pro-
posed, assuming that a mucosal delivery of IFN-I, besides being targeted
at the infection site, could be more compliant and less toxic than the
parental administration, especially for prophylaxis in subjects at high
risk of infection or in early phases of household management of infected
patients. However, the mechanisms of action of intranasal IFN-I are still
poorly identified. Further studies are needed to characterize the phar-
macodynamics and pharmacokinetics of mucosal IFN-I preparation,
thus defining the risks of central nervous system toxicity [especially
when IFN-β is used [63] and achieving a consensus on this strategy. By
contrast, much more is known on the pharmacodynamics and phar-
macokinetics of IFN-α and IFN-β administered by both s.c. and i.v
routes, their mechanisms of action and toxicity limitations. A con-
tinuous systemic treatment, somehow inspired by the conventional use
of these cytokines in patients with chronic hepatitis C infection and
cancer, has been suggested in some of the emerging COVID-19 clinical
studies. However, taking into account some critical aspects related to
toxicity and refractoriness recently underlined [11,45] and discussed
above, we believe this treatment schedule should be discouraged in
favor of a discontinuous treatment schedule.

In the majority of the proposed studies, IFN-α and -β are being
combined with other drugs, mainly antivirals, although in some cases
the rationale for combination is poorly defined. In a recent randomized,
phase 2 trial examining the combination of IFN-β1b, lopinavir/
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ritonavir and ribavirin compared with lopinavir/ritonavir alone, the
investigators observed significant symptoms alleviation, shortening of
the duration of viral shedding and of hospital stay only in IFN-treated
patients with mild to moderate COVID-19 [64]. Notably, due to the
absence of single treatment arms in this clinical study, it cannot be
discerned whether the specific contribution of IFN-β1a to clinical out-
come improvement was a direct antiviral or immune-mediated effect.
Thus, further studies to investigate the clinical impact of IFNβ-1b alone
in COVID-19 patients are warranted [65].

While some of the above-mentioned issues will be clarified once the
results of more preclinical and early phase clinical studies are available,
we believe that the knowledge of IFN-I biology and the past experience
of the clinical use of these cytokines should be carefully considered in
the design of new clinical studies against COVID-19. In the light of the
current information on SARS-CoV-2 pathogenesis, we speculate that
IFN-I system integrity may be, at least in part, responsible for the

spontaneous resolution of SARS-CoV-2 infection in the majority of in-
fected patients (estimated around 80 %). We assume that in the re-
maining 20 % of people a defective IFN-I system may favor SARS-CoV-2
spread, eventually causing the development of severe forms of COVID-
19 and dismal prognosis. We believe that this fraction of the popula-
tion, in which age, sex, comorbidities and genetic predisposition, may
represent determinants of IFN impairment and important cofactors in
disease outcome [19–21], could greatly benefit from a time-limited,
intermittent, systemic (s.c. or i.m.) IFN-I administration (2–4 million
per injection) at the earliest time of SARS-CoV-2 diagnosis (Fig. 1).

Further research efforts should be dedicated to understand the role
of the endogenous IFN-I signaling in the susceptibility to SARS-CoV-2
infection and in the progression to the severe forms of COVID-19, in
order to identify markers of resistance to the disease and tailor IFN
treatments to the patients with the most severe IFN-I system biological
impairments.

Table 1
Current clinical trials assessing IFN-I activity on confirmed SARS-CoV-2 patients§.

Trial ID Status IFN subtype Alone or in Combination Age Delivery
route

ChiCTR2000029638 Recruiting Supercompound Alone 18−75 mucosal
ChiCTR2000030117 Recruiting Alpha Combination (antivirals) 18−70
ChiCTR2000030013 Not Recruiting Alpha Alone n.a.‡

NCT04254874 Recruiting Peg-Alpha-2b Combination (antivirals) > 18
NCT04349410 Recruiting Alpha-2b Alone all
ChiCTR2000029600 Recruiting Alpha Alone & in combination 16−75
ChiCTR2000029756 Recruiting Alpha Alone 18−60
ChiCTR2000031196 Recruiting Alpha Combination (antivirals) 16−85
NCT04293887 Not recruiting Alpha-1b Combination (standard care) > 18
NCT04291729 Not recruiting n.a. Combination (antivirals) 18−75
NCT04320238 Recruiting Alpha-1b Alone & in combination 18−65
ChiCTR2000030535 Recruiting Alpha Combination (antivirals) n.a.
NCT04251871 Recruiting Alpha Combination (antivirals+ traditional chinese

medicine)
14−80

ChiCTR2000030480 Recruiting Alpha-1b Alone 18−110
NCT04275388 Not recruiting Alpha Combination (antivirals) < 100
ChiCTR2000029989 Not Recruiting Alpha-1b Alone >60
NCT04273763 Recruiting Alpha Combination (antivirals) 18−80
ChiCTR2000030166 Not Recruiting Alpha Combination (antivirals) n.a. systemic
NCT04379518 Not recruiting Alpha-2b Combination (Rintatolimod) >18
RPCEC00000307 Recruiting Alpha-2b Combination

(antivirals+ antibiotics+ hydroxychloroquine)
>19

IRCT20161206031256N3 Recruiting Alpha-2a, Beta-
1a

Combination (standard care) > 18

ChiCTR2000030922 Recruiting Long acting
Alpha-2a

Combination (antivirals) 18−65 n.a.

ChiCTR2000029387 Recruiting Alpha Combination (antivirals) 18−65 n.a.
IRCT20200511047396N1 Recruiting Beta-1a Alone >18 mucosal
IRCT20080901001165N53 Recruiting Beta-1a Combination (standard of care) > 18
NCT04385095 Recruiting Beta-1a Alone >18
NCT04315948 Recruiting Beta-1a Combination (antivirals) > 18
EUCTR2020−001023-14-GB Authorised Beta Combination (antivirals) n.a.
ISRCTN83971151 Recruiting Beta Combination (antivirals) n.a. systemic
IRCT20151227025726N12 Recruiting Beta Combination (antivirals) > 18
IRCT20100228003449N28 Recruiting Beta Combination (antivirals) 18−75
NCT04276688 Recruiting Beta Combination (antivirals) > 18
NCT04350281 Recruiting Beta-1b Combination (hydroxychloroquine) >18
IRCT20200412047042N1 Not Recruiting Beta Combination (antivirals+ hydroxychloroquine) n.a.
CTRI/2020/04/024,773 Recruiting Beta-1a Combination (antivirals) 18−99
NCT04324463 Recruiting Beta Alone & in combination >18
IRCT20100228003449N27 Recruiting Beta-1b Combination (antivirals) 18−65
EUCTR2020−001366-11-ES/IE/IT/LT/PT/RO/LV;

IRCT20200405046953N1; PER-010−20
Authorised Beta-1a Combination (antivirals) > 18

NCT04350671 Recruiting Beta-1a Combination (antivirals+ hydroxychloroquine) >50
IRCT20190804044429N1 Recruiting Beta-1b Combination (antivirals+ hydroxychloroquine) >18
IRCT20200516047468N1 Not Recruiting Beta Combination (antibiotics+Vit.D) >18
EUCTR2020−001262-11-ES Authorised Beta-1b Combination (Standard of care) > 18
NCT04350684 Recruiting Beta-1a Combination (antivirals+ hydroxychloroquine) >18 n.a.
IRCT20120225009124N4 Recruiting Beta Combination (antivirals +

hydroxychloroquine+ dexamethasone)
18−70 n.a.

NCT04343768 Not recruiting Beta-1a, Beta-1b Combination (antivirals+ hydroxychloroquine) >18 n.a.

§ Data updated to June 18, 2020; ‡n.a.: not available.
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In conclusion, we believe that to optimally exploit its multiple
biological activities against COVID-19 pandemic, low-dose, intermittent
IFN-I treatment schedules should be used in the early stages of infection
to compensate for virus-induced IFN-impairment or IFN-deficiency in
the frail population, thus accelerating virus clearance and avoiding the
progression to the severe forms of COVID-19.
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