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ABSTRACT

Microglia express multiple TLRs (Toll-like receptors) and
provide important host defence against viruses that invade
the CNS (central nervous system). Although prior studies
show these cells become activated during experimental
alphavirus encephalitis in mice to generate cytokines and
chemokines that influence virus replication, tissue inflam-
mation and neuronal survival, the specific PRRs (pattern
recognition receptors) and signalling intermediates con-
trolling microglial activation in this setting remain
unknown. To investigate these questions directly in vivo,
mice ablated of specific TLR signalling molecules were
challenged with NSV (neuroadapted Sindbis virus) and CNS
viral titres, inflammatory responses and clinical outcomes
followed over time. To approach this problem specifically
in microglia, the effects of NSV on primary cells derived
from the brains of wild-type and mutant animals were
characterized in vitro. From the standpoint of the virus,
microglial activation required viral uncoating and an intact
viral genome; inactivated virus particles did not elicit
measurable microglial responses. At the level of the target
cell, NSV triggered multiple PRRs in microglia to produce a
broad range of inflammatory mediators via non-overlap-
ping signalling pathways. In vivo, disease survival was
surprisingly independent of TLR-driven responses, but still
required production of type-I IFN (interferon) to control
CNS virus replication. Interestingly, the ER (endoplasmic
reticulum) protein UNC93b1 facilitated host survival
independent of its known effects on endosomal TLR

signalling. Taken together, these data show that alpha-
viruses activate microglia via multiple PRRs, highlighting
the complexity of the signalling networks by which CNS
host responses are elicited by these infections.
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INTRODUCTION

TLRs (Toll-like receptors) are widely expressed innate immune

sensors that evolved to recognize specific PAMPs (pathogen-

associated molecular patterns) (Janeway and Medzhitov, 2002;

Takeda et al., 2003). Within the TLR family, TLR3, TLR7, TLR8

and TLR9 are nucleotide-sensing receptors located in various

intracellular compartments, including the ER (endoplasmic

reticulum), endosomes and lysosomes (Saitoh and Miyake,

2009). These receptors detect common replication intermedi-

ates of most viral pathogens, including double-stranded RNA

(TLR3), single-stranded RNA (TLR7 and TLR8) and unmethylated

DNA (TLR9). Along with TLR2 and TLR4 that can respond to

certain viral proteins, these receptors form a critical network of

sensors that activate innate host responses against viruses.

Indeed, six human TLRs (TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9)

and five murine TLRs (TLR2, TLR3, TLR4, TLR7 and TLR9) can

trigger the production of type-I IFN (interferon) that is central

to antiviral host defence (Zhang et al., 2007; Barbalat et al.,

2009). The activation of these TLRs also drives transcription of
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various pro-inflammatory cytokines by innate immune cells;

this broadens the early host response to viral infection

and facilitates adaptive antiviral immunity, but it can

also accelerate tissue injury. Over the last decade, mice with

defects in these various nucleotide-sensing TLRs or their

downstream adaptor molecules have been shown to exhibit

diverse outcomes when challenged with different viral

pathogens (Akira et al., 2006; Zhang et al., 2007). Novel

intracellular TLRs (e.g. TLR13) that detect and respond to

viruses continue to be identified (Shi et al., 2011).

Recently, a point mutation of the ER protein, UNC93b1,

was found to ablate TLR3, TLR7 and TLR9 signalling in mice

(Tabeta et al., 2006; Brinkmann et al., 2007). Subsequent

studies showed that the mutant protein fails to transfer these

TLRs from the ER to their expected location in endosomes

(Kim et al., 2008). This 3d (triple defect) causes macrophages

from these mice to be profoundly impaired in their responses

to ligation of the nucleic acid-sensing TLRs as measured by

the production of multiple cytokines, including IFNa/b

(Tabeta et al., 2006; Brinkmann et al., 2007). Such

Unc93b13d/3d animals (herein referred to as UNC93b1-mutant

mice) proved highly susceptible to a systemic viral infection

that normal mice survived (Tabeta et al., 2006). Parallel

studies showed that humans with similar germline mutations

of Unc93b1 can have complete loss of UNC93b1 expression,

PBMCs (peripheral blood mononuclear cells) that do not

produce IFNa/b in response to TLR3, TLR7 or TLR9 ligands,

PBMCs with reduced IFNa/b production following exposure

to different viruses, and high lethality from HSE (herpes

simplex encephalitis) (Casrouge et al., 2006). Conversely,

these same individuals mount effective immune responses

against other viruses, verifying the presence of redundant

pathways that drive type-I IFN production previously shown

to exist in rodents (Casrouge et al., 2006).

Since the susceptibility of UNC93b1-mutant mice to CNS

(central nervous system) viral infection has not been well

studied, we challenged these animals with an NSV (neuroa-

dapted Sindbis virus) that causes a highly lethal encephalo-

myelitis. Titres of infectious virus, local inflammatory

responses and clinical disease outcomes were compared with

wild-type hosts. To characterize how CNS-derived myeloid

cells known to express the nucleotide-sensing TLRs respond to

NSV, primary microglia isolated from wild-type and

UNC93b1-mutant animals were exposed to virus or synthetic

TLR ligands in vitro. Our data show that multiple PRRs

(pattern recognition receptors) and downstream signalling

pathways, including but not limited to the endosomal TLRs,

drive the breadth of microglial cytokine and chemokine

production in response to NSV. Nonetheless, host survival

from infection appears largely independent of these TLR-

driven responses, even though it requires production of type-I

IFN to control CNS virus replication. Furthermore, the

heightened susceptibility of UNC93b1-mutant mice to NSV

infection is likely explained by a mechanism other than a

defect in endosomal TLR signalling, in large part because

redundant pathways driving type-I IFN production keep early

CNS virus replication in check. In this light, therapeutics

directed at these receptors and their signalling intermediates

for the treatment of acute alphavirus encephalitis in humans

must be carefully considered.

MATERIALS AND METHODS

Animals
Wild-type C57BL/6 mice and TLR3-deficient mice were

purchased from The Jackson Laboratory. C57BL/6-

Unc93b13d/3d mutant mice were obtained from the Mutant

Mouse Regional Resource Center at the University of

California. Mice rendered genetically deficient in the TLR

adaptor protein, MyD88 (myeloid differentiation response

gene 88) were a gift from Dr Steven Kunkel (University of

Michigan). IRF7 (IFN response factor 7)-deficient mice were a

gift from Dr Gabriel Nunez (University of Michigan). All

animals were bred, housed and used on-site under specific

pathogen-free conditions in strict accordance with guidelines

set by the National Institutes of Health and protocols

approved by the University Committee on the Use and Care

of Animals. Mice were housed on a 10 h light/14 h dark cycle

in ventilated cages containing not more than five animals per

cage. Food and water were available ad libitum.

Induction of experimental viral encephalitis and
other animal manipulations
To induce encephalomyelitis, 5–6-week-old mice were

anaesthetized with isoflurane (Abbott Laboratories) and

1000 pfu (plaque-forming units) of NSV suspended in 10 ml

of PBS were inoculated directly into the right cerebral

hemisphere of each animal. Some infected mice received

0.25 ml of clodronate liposomes intraperitoneally on days

1–5 post-infection to deplete circulating monocytes as

described (King et al., 2009). Clodronate liposomes and PBS

liposomes were both gifts from Roche Diagnostics. In other

infected cohorts, mice were injected with 0.5 mg of RB6

(anti-Gr-1) or a control IgG on days 1, 3 and 5 post-infection

to deplete circulating neutrophils as described (Carlson et al.,

2008; Daley et al., 2008). The RB6 and control IgG antibodies

were both gifts from Dr Benjamin Segal (University of

Michigan). Most cohorts of infected mice were monitored

daily for survival in accordance with approved animal

protocols. Some groups of animals were killed at defined

intervals post-infection to collect brain and spinal cord tissue

for further analysis. Following intra-cardiac perfusion with

ice-cold PBS, the left cerebral hemisphere and the lower half

of the spinal cord were isolated from some animals, snap-

frozen on dry ice and stored at 280 C̊ for virus titration

assays (see below). Remaining brain and spinal cord tissues

from these mice were frozen at 280 C̊ and used to generate

N. Esen and others

208 E 2012 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.



tissue homogenates for ELISA (see below). In other groups,

PBS-perfused CNS tissue was used to isolated mononuclear

cells for flow cytometric analysis (see below).

Virus titration assays
Ten percent (w/v) homogenates of each tissue sample were

prepared in PBS, and serial 10-fold dilutions of each

homogenate were assayed for plaque formation on mono-

layers of BHK-21 cells, as previously described (Irani and

Prow, 2007). The results are presented as the geometric

means¡S.E.M. of the log10 number of pfu per gram of tissue

derived from a minimum of three animals at each time point.

Cytokine and chemokine assays
Frozen tissue samples were thawed, minced and homogenized in

0.5 ml of PBS containing a protease inhibitor cocktail and an

RNase inhibitor (Sigma–Aldrich). After homogenates were

centrifuged to pellet all remaining tissue debris, total protein

content was measured in each extract and supernatants were

diluted in PBS to a normalized total protein concentration.

Microglial culture supernatants were used undiluted in these

assays without further manipulation. Levels of individual

cytokines and chemokines were measured directly in samples

using commercial sandwich ELISA kits according to the

manufacturers’ instructions. The results for tissue samples reflect

the means¡S.E.M. of pg of chemokine/mg of tissue extracted

protein derived from a minimum of three animals at each time

point, while for culture supernatants reflect the means¡S.E.M.

pg of chemokine/ml of culture supernatant derived from triplicate

cell culture wells. Quantification of TNFa (tumour necrosis factor

a), IL (interleukin)-12p40, and CCL (CC motif ligand) 2 levels was

performed using mouse OptEIA kits (BD Biosciences). IFNa, CCL3,

CCL5 and CXCL13 (C-X-C motif ligand 13) levels were measured

using Duoset mouse ELISA kits (R&D Systems). The lower limit of

detection for all these assays was 5 pg/ml.

Analysis and separation of CNS-infiltrating
immune cell populations by flow cytometry
Perfused brains and/or spinal cords were minced into small

fragments and pressed through a 70-mM mesh sieve into

HBSS (Hanks balanced salt solution) containing 10% FBS

(fetal bovine serum) before digestion with collagenase

(0.2 mg/ml; Worthington Biochemicals) and DNase (28

units/ml; Sigma–Aldrich) for 40 min at 37 C̊. Mononuclear

cells were then isolated over a 30%/70% Percoll gradient (GE

Healthcare Life Sciences) and washed with HBSS. All cells

were resuspended in PBS containing 2% FBS and stained with

fluorescently conjugated primary antibodies followed by flow

cytometric analysis on a FACSCanto II flow cytometer (BD

Biosciences). To quantify individual cell populations, cell

suspensions were stained with antibodies against CD3, CD4,

CD8, CD11b, CD45, Ly-6C and Ly-6G (all from eBioscience). A

minimum of 10000 events within a defined forward and side

scatter gate containing all CD45+ cells were analysed to

determine the proportion of each cell type in each

experimental sample. The total number of each cell

population present in individual brain or spinal cord speci-

mens was then calculated by multiplying the total number of

gradient-isolated cells from each sample (counted on a

haemocytometer) by the proportion of cells labelled with

each antibody. The results presented reflect the absolute

numbers of cells collected from a minimum of three animals

at each experimental time point. For intracellular cytokine

staining, CNS mononuclear cells were cultured for 5 h in

20 ng/ml phorbol myristate acetate, 1 mg/ml ionomycin and 5

mg/ml brefeldin A, fixed and permeabilized using a Cytofix/

Cytoperm kit (BD Biosciences), and stained with directly

conjugated anti-CD4, anti-IFN-c and anti-IL-17 antibodies

(eBiosciences). For cell sorting, CNS myeloid cells were stained

with a combination of CD45 and CD11b, and then separated

into CD45low/CD11b+ and CD45high/CD11b+ populations

using a MoFlo XDP High-Speed Cell Sorter (Beckman-

Coulter). Individual cell populations pooled from 10 animals

were stored at 220 C̊ in PrepProtect RNA stabilization

solution (Miltenyi Biotec) until RNA isolation was performed.

qPCR (quantitative PCR) analysis of type-I IFN
expression by distinct CNS-derived mononuclear
cell populations
Lysates of flow sorted myeloid cell populations were thawed

and carefully removed from the PrepProtect solution. Total

RNA was isolated from CD45low/CD11b+ cells and CD45high/

CD11b+ cells pooled from the brains of ten naı̈ve or NSV-

infected mice using QIAshredder Kit and the RNeasy Mini Kit

according to the manufacturer’s instructions (Qiagen). cDNA

was then generated using the SuperScriptH III First Strand

Synthesis System for reverse transcriptase–PCR (Invitrogen).

qPCR was undertaken to measure ifnb1 mRNA transcripts

using the MyiQ Single Color Real-Time PCR Detection System

(Bio-Rad) and the ifnb1 primer/probe set in the TaqManH
Gene Expression Assay (Applied Biosystems). Data were

analysed using the D/DCt calculation, and the ifnb1 results

were normalized to the D/DCt values for b-actin mRNA.

Preparation and use of primary microglial
cultures
Primary microglia were isolated and cultured from the

cortices of 2–3-day-old mice as described (Esen and Kielian,

2005). When mixed glial cultures reached confluency after 7–

10 days, flasks were shaken overnight at 200 rev./min at 37 C̊

to detach microglia from the more firmly adherent astro-

cytes. Cells in suspension (.95% pure CD11b+ microglia)

were collected and 16105 cells plated into each well of 96-

well plates. The next day, microglia were stimulated for 24 h

either with NSV or a known TLR ligand in a total volume

of 200 ml as follows: 16106 pfu NSV (infectious virus

Alphavirus-induced microglial activation
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particle-to-cell ratio of 10:1), 100 ng/ml Escherichia coli LPS

(lipopolysaccharide) (List Biological Laboratories) (a TLR4

stimulus), 25 mg/ml poly(I:C) (polyinosinic:polycytidylic acid;

Invivogen) (a TLR3 stimulus), 1 mM loxoribine (Invivogen) (a

TLR7 stimulus) or 3 mM unmethylated DNA ODNs (oligodeox-

ynucleotides) bearing CpG motifs (CpG-ODN) (Invivogen) (a

TLR9 stimulus). Some experiments were conducted in the

presence of 20 nM of Baf A1 (bafilomycin A1) (Sigma–

Aldrich) to prevent the acidification of endosomes and thus

blocking virus uncoating by inhibiting acid-induced fusion

of viral envelopes and the endosomal membrane (Jan and

Griffin, 1999). Pilot studies were performed using UV light-

inactivated NSV generated by exposing the virus to a

germicidal lamp (wavelength5254 nm) at a distance of

5 cm for 1 h at 4 C̊. Heat inactivation of NSV was

accomplished by maintaining the pathogen at 60 C̊ for

15 min before use. Inactivation of viral infectivity was

confirmed via the plaque titration assay described above. At

the end of the 24-h microglial treatment period, culture

supernatants were collected and stored at 280 C̊ until

cytokine and chemokine analyses could be performed by

ELISA assays. Microglial viability was assayed using well-

established MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

2H-tetrazolium bromide] assay.

Statistical analysis
The Prism 5.0 software package (GraphPad Software) was used

for all statistical analyses. Differences in survival among

cohorts of mice were measured using a log-rank (Mantel-Cox)

test. Unpaired Student’s t test was used to assess differences

between different experimental groups at single time points. A

two-way ANOVA test was applied when comparing different

experimental groups over time. In all cases, differences at a

P,0.05 level were considered significant.

RESULTS

Effects of UNC93b1 mutation on the course of
NSV encephalitis in mice
Humans with germline Unc93b1 mutations were found to

exhibit endosomal TLR signalling defects and have high

susceptibility to HSE even as they mounted more normal

immune responses against other viruses (Casrouge et al.,

2006). To further investigate how the UNC93b1 protein

affects CNS viral pathogenesis, wild-type and UNC93b1-

mutant mice were challenged with NSV, a neuroadapted

member of the alphavirus family that causes lethal

encephalomyelitis in rodents and is closely akin to the

neurotropic alphaviruses that infect humans. Outcome in this

model is highly dependent on an effective type-I IFN response

to control early CNS virus replication (Byrnes et al., 2000;

Ryman et al., 2000). In vivo challenge experiments showed

that UNC93b1-mutant animals were very susceptible to

infection, with significantly accelerated death compared with

wild-type controls (Figure 1A). Surprisingly, however, this

poorer outcome was not explained by impaired type-I IFN

production in the CNS (Figures 1B and 1C), or by excessive

virus replication in target tissues (Figures 1D and 1E). Thus,

the wild-type UNC93b1 protein must regulate some host

response that protects mice from NSV encephalitis via a

mechanism other than one either directly targeting the

pathogen itself or the main antiviral immune effector.

CNS host responses in wild-type and UNC93b1-
mutant mice during NSV encephalitis
To investigate the effects of UNC93b1 mutation on CNS host

responses elicited during NSV encephalitis, brain and spinal

cord leucocytes were characterized by flow cytometry.

Quantification of T-cells and myeloid cells was emphasized,

since these populations constitute the bulk of the parenchy-

mal infiltrate elicited during infection (Moench and Griffin,

1984; Irani and Griffin, 1990). The total number of CD45+
leucocytes isolated from the CNS of infected animals was

similar between UNC93b1-mutant mice and wild-type

controls (Figure 2A). Tissue-infiltrating CD3+ T-cells were

also found in comparable numbers between the two hosts

(Figure 2B), and CD4+ and CD8+ T-cell subsets occurred in

equal proportions (data not shown). Within the CD4+ T-cell

population, cells capable of making IFNc or IL-17 were

detected with equivalent frequencies (data not shown). These

data would seem to exclude a role for UNC93b1 in T-helper

cell differentiation in this disease model. Conversely, fewer

CD11b+ myeloid cells were isolated from both the brains and

spinal cords of UNC93b1-mutant animals at later stages of

NSV infection (Figure 2C). These CD11b+ cells were both

CD45high, likely infiltrating monocytes and neutrophils or

highly activated microglia, as well as CD45low, likely microglia

in a more quiescent state (Figure 2D). Separation of these

discrete CD11b+ populations via flow sorting followed by

analysis of the mRNA content via qPCR of cells pooled from

multiple animals revealed that both CD45low and CD45high

cells were important sources of type-I IFN in the CNS during

the early stages of infection (Figure 2E). The observed

differences in CD11b+ cell numbers found in the CNS

suggest that the accelerated mortality seen in UNC93b1-

mutant mice could be due to impaired recruitment of a

protective myeloid cell population from the periphery.

Alternatively, the local tissue microglial response to infection

could differ in some way other than type-I IFN production

that influences overall host survival.

Effects of CD11b+ monocyte or neutrophil
depletion during NSV encephalitis
Since higher numbers of CNS myeloid cells were asso-

ciated with the improved outcome of wild-type versus
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UNC93b1-mutant mice (Figure 2C), in vivo depletions were

performed to investigate whether two distinct CD45high/

CD11b+ cell types normally present in circulation might enter

the CNS during NSV encephalitis to facilitate host survival.

In the first approach, wild-type animals were infected with

NSV and then treated with clodronate-loaded liposomes that

get phagocytosed by circulating monocytes, causing their

apoptotic destruction (King et al., 2009). Flow cytometry

demonstrated that CD45high/CD11b+ monocytes had largely

been eliminated from the CNS of clodronate liposome-treated

animals compared with controls that received PBS liposomes

on day 6 post-infection (Figures 3A and 3B). Likewise, Ly-6C+
monocytes were virtually undetectable in the blood of these

animals 24 h after their last clodronate liposome treatment

(data not shown). Nonetheless, the two cohorts of animals

showed no difference in overall disease survival (Figure 3C). In

the second set of experiments, wild-type mice were treated

with the monoclonal antibody, RB6, used to deplete circulating

Gr-1+ neutrophils in vivo (Carlson et al., 2008; Daley et al.,

2008). Treatment was highly effective in eliminating the

desired population from the CNS on day 6 post-infection

compared with animals given a control antibody (Figures 4A

and 4B), but depletion of these cells also had no effect on

disease outcome (Figure 4C). Anti-RB6-treated mice had

almost no Ly-6G+ cells present in circulation at the same time

that CNS tissues were collected (data not shown). These data

exclude the involvement of the two main circulating CD45high/

CD11b+ cell populations in NSV pathogenesis. By extension,

they suggest that wild-type UNC93b1 may act through an

endogenous CNS cell-type to slow disease progression.

Figure 1 Mutation of the ER protein, UNC93b1, alters the pathogenesis of NSV encephalitis in mice
UNC93b1-mutant animals are more susceptible to fatal NSV infection than wild-type controls (n520 mice per group) (A). This
heightened disease susceptibility is not associated with altered type-I IFN levels in the brain or spinal cord as measured by ELISA
(B, C), nor is it due to unrestrained viral replication in either tissue compartment as determined by plaque assay (D, E). Type-I IFN
levels and viral titres in these experiments were measured in triplicate CNS samples collected at each time point from a single cohort
of mice.

Alphavirus-induced microglial activation
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Cytokine and chemokine responses generated by
UNC93b1-mutant microglia in vitro

As microglia express multiple TLRs and become activated early

during NSV encephalitis (Irani and Prow, 2007; Prow and

Irani, 2007), primary cultures of these cells were prepared

from wild-type and UNC93b1-mutant animals for in vitro

study. When directly exposed to NSV at an infectious particle-

to-cell ratio of 10:1, primary microglia did not become

productively infected or show any loss of cell viability over a

24-h culture interval (data not shown). Still, both NSV and

various synthetic TLR ligands triggered a broad range of

inflammatory mediators in wild-type cells. This included

production of a subset of pro-inflammatory cytokines

(Figures 5A and 5B), type-I IFN (Figure 5C) and multiple

chemokines (Figure 6). Since many of these mediators are

induced in the CNS during NSV encephalitis in vivo

(Wesselingh et al., 1994; Irani and Prow, 2007), microglia

may be important early integrators of the host response to

infection.

Figure 2 Analysis of CNS infiltrates in wild-type and UNC93b1-mutant mice during NSV encephalitis by flow cytometry and qPCR
Although the total numbers of CD45+ leucocytes (A) and CD3+ T-cells (B) present in brain and spinal cord are comparable between
these two hosts during NSV infection, fewer CD11b+ myeloid cells accumulate at both CNS sites over time in UNC93b1-mutant mice
(C). Tissue cell numbers were determined as described in Materials and Methods section in a single cohort of mice using samples
collected from three animals at each time point. By flow cytometry, these CD11b+ cells in the brains of wild-type mice on day 6
post-infection include both CD45high and CD45low populations (D). Flow sorting of these individual cell populations pooled from
brains of naı̈ve or day 3 post-infection mice shows that both CD45low/CD11b+ and CD45high/CD11b+ cells contain type-I IFN mRNA
by qPCR analysis (E). This assay was performed once using cells pooled from 10 naı̈ve or 10 NSV-infected mice as source material for
total cellular RNA extraction.
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To better understand whether the endosomal TLRs

contribute to microglial activation following exposure to

NSV, cells derived from UNC93b1-mutant mice were

compared with those from wild-type hosts. These assays

showed that pro-inflammatory cytokine responses were

ablated in mutant cells following stimulation with NSV or

synthetic TLR3, TLR7 or TLR9 ligands (Figures 5A and 5B), as

Figure 3 Effects of monocyte depletion on the course of NSV encephalitis
in wild-type mice
Treatment with clodronate-loaded liposomes effectively prevents CNS
infiltration of CD45high circulating monocytes on day 6 of NSV encephalitis
compared with PBS-loaded liposomes (A, B). Dot plots show staining when
gated on CD11b+ cells only. Systemic depletion of these cells has no effect
on the outcome of NSV encephalitis (C). Data are representative of two
separate experiments performed under identical conditions.

Figure 4 Effects of neutrophil depletion on the course of NSV encephalitis
in wild-type mice
RB6 antibody (anti-Gr-1) treatment effectively prevents CNS infiltration of
Ly-6G+ circulating neutrophils on day 6 of NSV encephalitis compared with a
control IgG (A, B). Dot plots show staining when gated on CD45high/CD11b+
cells only. Systemic depletion of these cells has no effect on the outcome of
NSV encephalitis (C). Data are representative of two separate experiments
performed under identical conditions.

Alphavirus-induced microglial activation
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were the chemokine responses triggered by TLR7 or TLR9

ligands (Figure 6). LPS, a TLR4 ligand that acts at the cell

surface rather than in endosomes, stimulated equivalent

production of all mediators in both cell types (Figures 5 and

6). IFNa and various CC chemokine ligands were also

generated at similar levels by cells of both genotypes in

response to NSV or poly(I:C) (Figures 5C, 6A and 6C),

although virus-induced production of CXCL13 was signifi-

cantly reduced in mutant versus wild-type cells (Figure 6D).

In addition to being a known TLR3 ligand, poly(I:C) also

triggers the cytoplasmic RNA sensor, MDA5 (melanoma-

differentiation-associated gene 5) (Kato et al., 2006). The

activation of this pathway could explain why both poly(I:C)

and NSV still provoked certain responses in UNC93b1-mutant

cells. Nonetheless, these data show that NSV induces the

production of a broad range of inflammatory mediators by

primary microglia and that such responses are activated

through non-overlapping pathways, only some of which are

triggered by the endosomal TLRs.

Viral determinants that activate microglial
cytokine and chemokine production
Pilot assays showed that NSV particles exposed to heat or UV

light did not trigger microglial cytokine or chemokine

production (data not shown). This suggests that damage to

the viral genome prevents its recognition by these cells.

At the onset of the alphavirus replication cycle, receptor-

mediated endocytosis brings the virus into early endosomes

where exposure to an acidic pH induces conformational changes

that allow fusion of the viral envelope with the endosomal

membrane and delivery of the single-stranded viral RNA

genome into the cytoplasm (Strauss and Strauss, 1994). Since

neurons can detect and respond to NSV at the time of cell entry

(Jan and Griffin, 1999), we tested whether blockade of viral

fusion had any effect on microglial cytokine and chemokine

production. Baf A1, a selective inhibitor of the vacuolar proton-

ATPase (Drose and Altendorf, 1997), blocks endosomal acidifica-

tion and prevents NSV from uncoating in neuronal cells (Jan and

Griffin, 1999). We found that wild-type microglia pretreated for

30 min with 20 nM Baf A1 prior to virus exposure were

significantly impaired in their capacity to generate IL-12p40,

IFNa and several CC chemokine ligands compared with

untreated control cells (Figure 7). Drug treatment had no effect

on cell viability or on the capacity of microglia to trigger IFNa

production in response to poly(I:C) (data not shown). We

conclude that NSV must uncoat itself in primary microglia in

order to trigger innate immune signalling. This suggests that

intact viral nucleic acids, rather than viral envelope glycopro-

teins, are the main stimuli that activate these cells.

Unfortunately, any subsequent requirement for endosomal

versus cytosolic signalling pathways cannot be inferred from

these data since all events downstream of virus entry are

blocked in Baf A1-treated cells.

Downstream signalling intermediates involved in
the microglial response to NSV
To further understand how various microglial PRRs signal in

response to NSV, cells derived from other mutant animals

were examined. All TLR signalling pathways except ones

downstream of TLR3 converge on the common intracellular

adaptor protein, MyD88 (Akira and Takeda, 2004). Both the

TLRs and the cytoplasmic RLRs (retinoic acid-inducible gene

I-like receptors) also activate the IRFs, particularly IRF3 and

Figure 5 In vitro cytokine production by primary microglia cultures
derived from either wild-type or UNC93b1-mutant mice
Cultures were prepared as outlined in Materials and Methods section. Three
wells were left untreated, exposed to NSV or stimulated with synthetic
ligands for the TLRs indicated also as described in Materials and Methods
section. Cytokine concentrations were measured in culture supernatants 24 h
later using ELISA-specific for IL-12p40 (A), TNFa (B) and IFN-a (C). The
production of these mediators was measured using primary cells prepared on
two separate occasions.
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Figure 6 In vitro chemokine production by primary microglia cultures derived from either wild-type or UNC93b1-mutant mice
Cultures were prepared as outlined in Materials and Methods section. Three wells were left untreated, exposed to NSV or stimulated
with synthetic ligands for the TLRs indicated also as described in Materials and Methods section. Chemokine concentrations were
measured in culture supernatants 24 h later using ELISA-specific for CCL2 (A), CCL3 (B), CCL5 (C) and CXCL13 (D). The production of
these mediators was measured using primary cells prepared on two separate occasions.

Figure 7 Effects of Baf A1, a pharmacological inhibitor of virus uncoating in endosomes, on cytokine and chemokine production by
primary microglia cultures prepared from wild-type mice and then exposed to NSV
Some wells were treated with Baf A1 as outlined in Materials and Methods section. A minimum of three wells either without or with
Baf A1 pretreatment were then exposed to NSV, and cytokine and chemokine concentrations measured by ELISA in culture
supernatants 24 h later using ELISA-specific for IL-12p40 (A), IFN-a (B), CCL2 (C) and CCL5 (D). The production of these mediators
without or with Baf A1 treatment was measured using primary cells prepared on two separate occasions.
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IRF7, to drive the release of type-I IFN (Genin et al., 2009). We

found that virus-induced production of IL-12p40 was fully

ablated in primary microglia derived from MyD88-deficient

hosts (Figure 8A). Since this defect was also observed in

UNC93b1-mutant cells (Figure 5A), it is likely that TLR7 and/or

TLR9 signalling stimulate release of this particular mediator in

response to NSV. The production of IFNa, on the other hand,

depended entirely on IRF7 activation (Figure 8B), which could

be induced via upstream TLR3 and/or RLR activation. However,

because TLR3-deficient cells generated significant levels of

IFNa in response to both NSV and poly(I:C) (Figure 8C),

cytoplasmic RLR pathways such as those triggered by MDA5

are presumably involved. Virus-induced production of CCL2 by

microglia was partially MyD88-dependent (Figure 8D). Since

its release was unaffected in UNC93b1-mutant cells exposed to

NSV (Figure 6A), signals delivered by a non-endosomal TLR as

well as some non-TLR pathway must both be involved in the

induction of this mediator. Finally, NSV actually triggered

augmented production of CXCL13 in the absence of IRF7

(Figure 8E), suggesting that type-I IFN might negatively

regulate this chemokine. Overall, these data confirm that

multiple PRRs and downstream signalling pathways drive the

breadth of cytokine and chemokine production by primary

microglia in response to NSV (Table 1).

Impact of specific PRR signalling defects on the
outcome of NSV encephalitis
Given both the redundancy and breadth of virus-induced PRR

activation in cultured microglial cells, involvement of these

signalling intermediates during NSV encephalitis was exam-

ined in vivo. As was observed in UNC93b1-mutant mice

(Figure 1A), IRF7-deficient animals were highly susceptible to

fatal NSV infection (Figure 9A). In this case, however, CNS

virus replication was poorly controlled; upwards of 100-fold

more infectious NSV was found in the brains and spinal cords

of mutants compared with wild-type animals (Figures 9B

and 9C). These IRF7-deficient mice failed to generate any

measurable amount of type-I IFN in the CNS over the course

of infection (data not shown). In contrast, the survival of

both MyD88- and TLR3-deficient mice was not significantly

different from wild-type controls (Figures 9D and 9E), and

neither of these mutant hosts showed any defect in type-I

IFN production within the CNS over the course of NSV

infection (Figure 9F). These findings reinforce the importance

of type-I IFN for the control of NSV replication and host

survival, as previously reported during infections caused by

less virulent viral strains (Byrnes et al., 2000). Although it is

possible that TLR3- and MyD88-dependent responses fully

compensate for one another during NSV infection, our in

vitro data strongly implicate the actions of a non-TLR-

dependent pathway in the type-I IFN response (Figures 5C

and 8C). This suggests that TLR-dependent responses do not

contribute to disease outcome, and by extension, that the

wild-type UNC93b1 protein confers protection via some

mechanism independent of endosomal TLR signalling.

DISCUSSION

Alphaviruses infect neurons of the brain and spinal cord,

and neuronal survival controls in vivo outcome in acute

encephalitis models (Lewis et al., 1996; Kerr et al., 2002). Not

only can these pathogens directly kill the target cells they

infect, but they also provoke substantial bystander damage to

uninfected neurons (Havert et al., 2000; Nargi-Aizenman

et al., 2004; Prow and Irani, 2008). Indeed, blockade of this

bystander neuronal damage greatly reduces NSV-induced

mortality without affecting CNS viral replication or clearance

(Nargi-Aizenman et al., 2004; Irani and Prow, 2007; Prow and

Irani, 2007; 2008). Current data suggest that innate host

responses arising from activated microglia trigger changes in

adjacent astrocytes that drive this bystander neuronal injury

(Darman et al., 2004; Irani and Prow, 2007; Prow and Irani,

2007, 2008; Carmen et al., 2009). Blockade of the type-I IFN

response, however, causes unrestrained CNS virus replication

early in disease that is rapidly lethal to the host (Byrnes et al.,

2000). Thus, early activation of innate immunity is crucial in

alphavirus pathogenesis. We sought to identify the signalling

receptors triggering microglial production of type-I IFN

and other inflammatory mediators that influence disease

outcome. Our data show that NSV activates microglia via

multiple PRRs, that these cells are an important source

of type-I IFN in the CNS during early stages of disease, that

type-I IFN production occurs independent of TLR signalling

and that the ER protein, UNC93b1, plays an unexpected and

still poorly understood protective role during infection.

Although other investigators have shown that RNA viruses

can trigger microglia to produce inflammatory cytokines

(Olson and Miller, 2004), our studies reveal a previously

unreported breadth and complexity of this response. Not only

do microglia make a wide range of cytokines and chemokines

following exposure to NSV, but it is clear that such responses

are driven by non-overlapping signalling pathways activated

by multiple PRRs (Table 1). UNC93b1 and MyD88 are both

required for generating certain pro-inflammatory cytokines

such as IL-12p40 (Figures 5A and 8A), meaning that an

endosomal pathway utilizing TLR7 and/or TLR9 is involved.

The CC ligand chemokine responses, on the other hand, occur

independently of UNC93b1 and are only partially dependent

on MyD88 (Figures 6A–6C and 8D), demonstrating that signals

delivered by a non-endosomal TLR and some non-TLR pathways

are both required. Like IL-12p40, production of CXCL13 by

microglia depends on both UNC93b1 and MyD88 (Figures 6D

and 8E), but this chemokine is also negatively regulated via an

IRF7-dependent mechanism (Figure 8E). Most importantly,

production of type-I IFN absolutely requires IRF7 and is not

activated by any of the classical endosomal TLRs (Figures 5C,

8B and 8C). This complexity presents opportunities to subvert

an individual pathway for therapeutic purposes during

infection. In particular, interventions that target the pro-

inflammatory cascades resulting in bystander neuronal injury

might be feasible without disrupting the type-I IFN response.
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Until now, both the source and mechanism of type-I IFN

production in the CNS during SV (Sindbis virus) encephalitis

has remained poorly understood. IFNa/b receptor null mice

are highly susceptible to a number of viruses, including the

mosquito-borne alphaviruses (Muller et al., 1994; Huang

et al., 1995; Grieder and Vogel, 1999). Replication of wild-

type SV is strongly inhibited by IFNa in vitro (Depres et al.,

1996), and SV encephalitis generates large amounts of type-I

IFN within the CNS in vivo (Vilcek, 1964; Sherman and Griffin,

1990). Mice deficient in the IFNa/b receptor rapidly succumb

to attenuated strains of SV; direct intracerebral inoculation

results in uncontrolled CNS virus replication and death that

normal mice survive (Byrnes et al., 2000), while systemic

challenge causes fatal disease with expanded tissue tropism

and high peripheral and CNS tissue viral titres not seen in

receptor-sufficient hosts (Byrnes et al., 2000; Ryman et al.,

2000). Our data show that for the virulent NSV strain, the

type-I IFN response within the CNS is triggered via TLR-

independent pathways (Figures 8B, 8C and 9F). Furthermore,

early type-I IFN production arises from both microglia and

infiltrating myeloid cells (Figure 2E), and is highly IRF7-

dependent (Figure 8B and data not shown). Mice incapable of

making type-I IFN have high lethality and uncontrolled CNS

virus replication following NSV challenge (Figures 9A–9C).

Figure 8 In vitro chemokine production by primary microglia cultures derived from either wild-type, MyD88-, IRF7- or TLR3-deficient
mice following exposure to either NSV (A, B, D, E) or NSV or poly(I:C) (C)
Cultures were prepared as outlined in Materials and Methods section. A minimum of three wells were exposed to NSV or poly(I:C) as
described in Materials and Methods section. Cytokine and chemokine concentrations were measured by ELISA in culture supernatants
24 h later using ELISA-specific for IL-12p40 (A), IFN-a (B, C), CCL2 (D) and CXCL13 (E). The production of these mediators was
measured using primary cells prepared on two separate occasions.

Table 1 NSV triggers the production of inflammatory mediators in primary microglia via multiple non-overlapping signalling pathways

Mediator UNC93b1-dependent MyD88-dependent IRF7-dependent

IL-12p40 + + 2

CCL2 2 +/2 2

CXCL13 + + +*
IFNa 2 2 +

* Inhibitory.
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Since expression of IRF7 is restricted to haematopoietic cells

and can be induced by various external stimuli (Ning et al.,

2011), it is possible that the early type-I IFN response could

be augmented by manipulating IRF7 levels. Our findings shed

important light on this critical antiviral host defence pathway

during alphavirus encephalitis.

Because of their capacity to detect common DNA and RNA

replication intermediates of many viral pathogens, the

endosomal TLRs are considered central to innate host defence

against viral infections. Recently, a point mutation of the ER

chaperone protein, UNC93b1, was found to ablate TLR3, TLR7

and TLR9 signalling in mice because the mutant protein fails

to transfer the receptors from the ER to their natural location

in endosomes (Tabeta et al., 2006; Brinkmann et al., 2007;

Kim et al., 2008). Macrophages from these mice have

profoundly impaired cytokine responses, including type-I

IFN production, when exposed to synthetic ligands that

activate the endosomal TLRs (Tabeta et al., 2006; Brinkmann

et al., 2007). Such animals are also highly susceptible to viral

pathogens such as murine CMV (cytomegalovirus) due to

uncontrolled systemic virus replication (Tabeta et al., 2006).

Together, these data suggested that UNC93b1-mutant mice

should be highly susceptible to NSV challenge because of

their impaired host response to infection. Although enhanced

disease susceptibility proved to be true, mutant animals

mounted a surprisingly normal type-I IFN response and fully

controlled NSV replication in the CNS (Figure 1). We have not

yet identified a mechanism through which the wild-type

UNC93b1 protein prolongs survival in this disease. Looking at

other models, however, animals carrying this mutation have a

Figure 9 Pathogenesis of NSV encephalitis in IRF7-, MyD88- and TLR3-deficient mice
IRF7-deficient mice are highly susceptible to fatal NSV infection compared with wild-type controls (n510 per group) (A). This
heightened disease susceptibility is associated with unrestrained viral replication in the brain (B, P50.0009 by two-way ANOVA) and
spinal cord (C, P50.0002 by two-way ANOVA). Neither MyD88- nor TLR3-deficient mice show altered disease susceptibility
compared with wild-type controls (n512 per group) (D, E). Both MyD88- and TLR3-deficient hosts generate equivalent levels of
type-I IFN in the CNS over the course of infection compared with wild-type controls (F).
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heightened susceptibility to experimental HSE without an

impaired CNS type-I IFN response or altered virus replication

in the brain (Wang et al., 2011). On the other hand,

UNC93b1-mutant mice were recently found to have

unrestrained parasite replication during experimental

Toxoplasma gondii infection fully independent of their TLR

signalling defects (Melo et al., 2010). These data, in

conjunction with our findings, reveal that this chaperone

protein serves some critical TLR-independent function in the

setting of intracellular infection.

Another notable result among the data reported here is the

apparent role of IRF7 in dampening microglial production of

the lymphoid chemokine, CXCL13 (Figure 8E). This finding

suggests that type-I IFNs act in either an autocrine or

paracrine manner to negatively regulate the generation of

this mediator within the CNS. Under normal circumstances

CXCL13 helps form germinal centres in lymphoid organs

(Forster et al., 1996; Legler et al., 1998; Bagaeva et al., 2006),

but its ectopic expression has been reported around B-cell

aggregates that develop in the inflamed meninges of mice

with EAE (experimental autoimmune encephalomyelitis) and

humans with multiple sclerosis (Magliozzi et al., 2004, 2007;

Serafini et al., 2004; Aloisi et al., 2008; Lalor and Segal, 2010).

Perivascular mononuclear cells and parenchymal microglia

within active multiple sclerosis plaques also express CXCL13

(Krumbholz et al., 2006), and cerebrospinal fluid levels of the

protein are elevated in samples from patients with the RRMS

(relapsing-remitting form of multiple sclerosis) and decline

with successful therapy (Sellebjerg et al., 2009; Piccio et al.,

2010; Khademi et al., 2011; Ragheb et al., 2011). The

production of CXCL13 is pathogenic during EAE by sustaining

myelin-specific CD4+ T-cell responses, and in vivo neutral-

ization of CXCL13 ameliorates disease (Bagaeva et al., 2006).

Since subcutaneous or intramuscular administration of IFNb

has been convincingly shown to reduce relapse rate, disability

progression and the formation of new brain and spinal cord

lesions in patients with RRMS (The IFNB Multiple Sclerosis

Study Group, 1993; UBC MS/MRI Study Group and The IFNB

Multiple Sclerosis Study Group, 1993; The Multiple Sclerosis

Collaborative Research Group, 1996; Prevention of Relapses

and Disability by IFNb1a Subcutaneously in Multiple Sclerosis

Study Group, 1998; The Multiple Sclerosis Collaborative

Research Group, 1998), its capacity to regulate CXCL13

production may be an explanation for its mechanism of

action in this complex neuroinflammatory disease. Further

studies are underway to address this important question.

In summary, data presented here show that microglial

activation in response to a neurotropic alphavirus is a

complex process involving multiple, non-overlapping PRRs.

Although endosomal TLR, non-endosomal TLR and non-TLR

pathways all contribute to virus-induced cytokine and

chemokine production by these cells, the type-I IFN response

is activated in a TLR-independent manner. Microglia are an

important source of type-I IFNs within the CNS during the

initial stages of infection, and this response is critical for both

early control of virus replication within the target tissue and

subsequent host survival. Recent studies show that activated

microglia trigger a cascade of cellular events, including

disruption of the homoeostatic support provided by astro-

cytes that augment neuronal injury during NSV encephalo-

myelitis (Darman et al., 2004; Irani and Prow, 2007; Prow and

Irani, 2007, 2008; Carmen et al., 2009). Being able to

selectively target such pro-inflammatory mediators by means

of disrupting the receptors and pathways that activate them,

without impacting the type-I IFN response, raises hope that

more precisely targeted immunotherapies can be developed

for these life threatening human infections.
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