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Abstract

One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a
biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static
interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of
reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the
reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One
such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer
both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it
available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the
GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations
for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added
a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This
addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an
irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic
pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to
allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open
source, free for academic and non-academic use and is available for download (Information S1).
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Introduction

The biological revolution unleashed by the use of high–

throughput technologies provides a detailed picture of the protein

interaction map of diverse organisms. The investigation of

complex protein interaction maps requires the development of

methodologies to understand the complex associations, localiza-

tion and binding partners among thousands of proteins [1–4].

These methodologies provide an effective static picture of protein

function in a biochemical pathway. Now the challenge for systems

biologists is in building realistic models of the dynamical behavior

by reconstructing the reaction mechanisms of proteins [5,6].

For more than a century, the traditional experimental practice

to investigate reaction mechanisms and estimate reaction kinetic

parameters has entailed measuring the reactants and products as a

function of time [7,8]. Textbooks in chemical and enzyme kinetics

illustrate diverse approaches for the estimation of kinetic

parameters and determination of reaction mechanisms [9–11].

During the last 40 years, computational tools have emerged to

model biochemical pathways and to estimate kinetic parameters

[12]. However, these computational tools require detailed

knowledge of the reaction mechanisms to estimate kinetic

parameters or deduce specific mechanistic behaviors. More

recently, several approaches have been proposed for the

reconstruction of reaction mechanisms based on the causal

chemical connectivity of the species [13,14], singular value

decomposition of the reaction velocities [15] and on the sequence

of elementary reactions among that constitute the reaction

mechanisms [16–18]. We have extensively reviewed these and

other approaches for reconstructing mechanisms of biochemical

pathways in [6].

MIKANA (Method to Infer Kinetics And Network Architec-

ture) is a computational method to infer reaction mechanisms and

estimate the kinetic parameters of biochemical pathways from time

course data. It identifies the sequence of elementary reaction steps

of a biochemical pathway using a global nonlinear modeling

technique. The method involves the generation of a complete

dictionary of polynomial basis functions based on the law of mass
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action. MIKANA is described in Srividhya et al. [17]. The

sequential reconstruction of elementary reactions is guided by a

cost function, an Information Criterion that penalizes the use of an

excessive number of reactions to reconstruct the mechanism. The

effectiveness of MIKANA to reconstruct the reaction mechanisms

and estimate kinetic parameters relies on the experimental design

employed on the measurements of the concentration of chemical

species [19]. For enzyme catalyzed reactions, the sensitivity of the

method varies with initial substrate–enzyme concentration ratios,

initial substrate–enzyme concentration variation ranges, number

of data points, number of different experiments (time courses) and

experimental noise. We have also found that MIKANA’s accuracy

in the reconstruction of the reaction topology depends on the

number of chemical species and their reaction kinetics. MIKANA

can reconstruct accurately the elementary reaction mechanisms of

eight interacting species following first and second order kinetics.

The reconstruction has also shown to be effective for mechanisms

with a larger number of interacting species, as long as the

mechanisms are accurately described with pseudo-first order

kinetics [19,20].

In this paper, we present a Graphical User Interface (GUI) for

MIKANA. Users can employ the GUI to input, validate, process

and interpret the results of the reconstruction of a mechanism. We

also added a new feature to MIKANA, which permits the

exclusion of physically or biochemically unrealistic reactions from

the inferred mechanism. This addition improves the performance

of the method. We illustrate the GUI with three practical

examples, described in the results section. Importantly, this article

provides a detailed description of the methods and source code of

MIKANA, so that any researcher can reproduce the experiments

and/or continue the development of the software.

Results

In MIKANA, the task of identifying biochemical pathways from

time course data consists of, firstly, identifying the connectivity of

the pathway (the reaction diagram relating reactants and products)

and, secondly, determining and parameterizing the reaction

mechanisms involved in each step of the pathway. This requires

a good deal of chemical knowledge about plausible interconver-

sions for the species in the pathway. We managed to incorporate

this chemical knowledge by reconstructing reaction mechanisms

from time course data using a global nonlinear modeling

technique to identify the elementary reaction steps which

constitute the pathway. The identification is made by selecting

reactions from a dictionary of functions, which is built by assuming

mass action kinetics in all chemically plausible steps between the

chemical species measured in the whole reaction system. For a

description of MIKANA, we invite the user to read [17]. We built

a Graphical User Interface (GUI) for MIKANA, which we

describe below.

MIKANA’s Graphical User Interface
The MIKANA’s GUI is composed of three separate panels: (i)

the INPUT panel (at the top); (ii) the OUTPUT panel (at the

bottom left); and (iii) the MAIN panel (bottom right) (Figure 1).

The Input is composed of five subpanels. At the left, the Time

Course Data subpanel is used to read the input time course data

from a file.

The input time course data file should contain a header or first

line with the chemical species names or symbols. The interface

accepts as many symbols as the number of chemical species. The

following lines should only contain numeric data or an invalid

insertion will be reported back to the user. In the numeric data,

each line should contain one time column plus n chemical species

columns. The time column should contain the time at which the

following chemical species values associate, as in Table 1.

Importantly, all columns should contain the same number of data

points. In order to obtain plausible reaction steps from MIKANA,

the time series should also be reduced to only contain values that

change over the time period selected. This occurs because

MIKANA bases the inference of the chemical species network

and kinetics rate on the dynamics of the network, as reflected by

the change on the concentration of the chemical species over time.

Failure to address this issue may result in inaccurate predictions of

the network and kinetics rate.

After successfully reading a time course data file, an option to

plot and visualize the data over time is made available through the

button Plot Data. The other four Input subpanels are made

available as options to select an information criterion (Empirical,

Akaike or Bayesian), a reaction order (First order or Second order),

interaction molecularity (uni– or bi–molecular) and a set of

reactions to exclude from the final reaction set solution. These

latter reactions are read from a file and follow the grammar

described previously. We generate six different types of error

messages based on different types of errors that may arise upon

insertion of a reactions set file:

N Reactions file not found or permission denied

N Number of molecules not allowed in reaction

N Species identifier greater than number of species available

N Reaction symbol ? expected

N Character not allowed

N Empty file

To process the data and infer the metabolic pathway, the user

will need to click the button Process (the first button in the Main

panel). The Output panel (bottom left) of the GUI is composed of

three subpanels. At the left, the Used reactions subpanel shows all

elementary reactions considered in the model selection process.

The Predicted reactions subpanel shows the final selection of

reactions that constitute the inferred metabolic pathway. The

Differential equations subpanel shows a set of differential

equations that correspond to the final mechanism. We provide

three different views of the results in each of these subpanels. The

first view displays all chemical species that participate in the

reactions. The second view excludes from the reactions species

with zero stoichiometry. The third and last view display the

chemical species by their name or symbol, as introduced in the

input time course data file.

The Main panel (bottom right) of the GUI is composed of eight

buttons (Figure 2). The first button (Process) processes the input

data. The second button (Plot Output Time Course) plots the

chemical species concentrations versus time from the inferred

differential equations and kinetic rate constants. The third button

(Plot Input/Output Time Course) plots the input and the output

time course data in the same figure. The fourth button (Show Fit

Errors) shows the fit error associated with each one of the chemical

species. The fifth and sixth buttons allow the user to save all the

results (Save Output to a File), or just the output time course data

to a file (Save Output Time Course to a File), respectively. When

saving results to a file, the used, predicted and differential

equations are saved according to the current selected output view

in these subpanels. These saving options could be useful to provide

results that can be used in subsequent work. The last two buttons

(Clean All Output and About the Application) cleans all the

information provided in the output panel of the GUI and provides

information about the application, respectively.

Method to Infer Kinetics and Network Architecture
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Examples of reconstruction of reaction mechanisms
using the MIKANA GUI

To illustrate the GUI for MIKANA, we reconstructed the

reaction mechanisms of three biochemical pathways. The first case

deals with one of the simplest pathways in biochemistry: the single-

enzyme, single-substrate catalyzed reaction following a Michaelis-

Menten mechanism. In this example, we used ‘in silico’ time

course data, which was analyzed using MIKANA in a previous

paper [19]. In a second example, we reconstructed the interaction

map of three chemical species of the muscle glycolytic cell

pathway. The experimental time course data from which we

extracted the data was originally obtained by Scopes [21,22]. The

third example deals with a more complex pathway: the temporal

evolution of seven species of the glycolytic pathway in Lactococcus

lactis. This pathway was also analyzed using MIKANA in a

previous paper [17].

Figure 1. MIKANA’s Graphical User Interface (GUI). The GUI is composed of three main panels: (i) the INPUT panel (at the top); (ii) the OUTPUT
panel (at the bottom left); and (iii) the MAIN panel (bottom right).
doi:10.1371/journal.pone.0027534.g001
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Example 1 - The irreversible Michaelis–Menten reaction
mechanism

As a practical example, we considered the single-enzyme, single-

substrate reaction, known as the Michaelis–Menten (MM)

mechanism of enzyme action [11]. The reaction scheme is

represented schematically by

EzS
k1

k{1

C
k2 EzP ð1Þ

Here, E is the enzyme, S is the substrate and C is the enzyme-

substrate intermediate complex. Applying the law of mass action,

we wrote the ordinary differential equation system describing the

above reaction,

dS

dt
~{k1SEzk{1C

dE

dt
~{k1SEz(k{1zk2)C

dC

dt
~zk1SE{(k{1zk2)C

dP

dt
~zk2C

and solved it numerically in MATLAB with the stiff solver

‘ode23s.m’.

We selected the kinetic parameters from reported literature in

the hydrolysis of Dnp-ADCA (7-(29, 49-dinitrophenylamino)

deacetoxycephalosporanic acid) by b-lactamase I from Bacillus

cereus [23]. These parameters are: k1~0:068 mM-1min-1,

k{1~0:0136 min-1 and k2~0:0068 min-1. This produced time

courses for four species: the substrate (S), the enzyme (E), the

complex (C) and the product (P). We added 10% noise to the time

course data to mimic noise levels observed in experimental data.

For the MM system, the header line contains 4 symbols and the

numeric data consists of 30 lines and five columns. Along with the

MIKANA package, we provide an example input file for the MM

system. To read it, the user should click the button Read File in

the Time Course Data subpanel (upper left side of the main

screen). Upon selection, the data will be validated by the GUI,

which will promptly notify the user of any problem. If the data in

the file is properly structured, the contents will be displayed in the

Time Course Data subpanel text window. After reading the file, a

plot of the temporal evolution of the species is made available by

clicking Plot Data in the Time Course Data subpanel.

Using some a priori knowledge about the MM system, we set the

input options to allow second order reactions and a maximum of

one molecule for each species in every reaction (uni–molecular

reactions). This is done using the Reaction Order and Molecu-

larity subpanels of the Input panel, respectively. For illustrative

purposes, we also chose to reconstruct the mechanism using two

information criteria: Empirical and Akaike. The user can select

one of three information criteria in the Information Criteria

subpanel. Additionally, the user can choose a set of reactions to be

excluded from the solution, using the Non-Possible Reactions

subpanel of the Input panel. While we chose not to remove any

reactions in this example, this feature will be used in the next

example. We also fully describe the exclusion of unrealistic

Table 1. Time course data file example.

Symbol-Species1 Symbol-Species2 ... Symbol-Speciesn

Time1 Species1(Time1) Species2(Time1) ... Speciesn(Time1)

Time2 Species1(Time2) Species2(Time2) ... Speciesn(Time2)

... ... ... ... ...

Timet Species1(Timet) Species2(Timet) ... Speciesn(Timet)

The first column of the table contains the time index. All other columns contain
the chemical species concentration at the time referred to in the first column.
doi:10.1371/journal.pone.0027534.t001

Figure 2. MIKANA’s GUI Main Panel functions. The Main panel (bottom right) of the GUI is composed of eight buttons.
doi:10.1371/journal.pone.0027534.g002
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biochemical reactions in the Design and Implementation subsec-

tion (Methods).

By clicking the button Process in the Main panel, the GUI

invokes MIKANA to predict a set of biochemical reactions for the

designated input. If the computation is successful, the results are

written in the text windows of the Output panel. To satisfy

different users, the GUI provides different views of the same

results. These views are accessed through the buttons Change

View in the Used Reactions, Predicted Reactions, and Differential

Equations subpanels of the Ouput panel.

When the Empirical information is selected, our method

predicts 2 out of 44 elementary reactions. Together with the

estimated kinetic rate constants, the two predicted reactions are

governed by the following differential equations:

X ’(1)~{0:0410 � X (1)1 � X (2)1

X ’(2)~z0:0106 � X (3)1{0:0410 � X (1)1 � X (2)1

X ’(3)~{0:0106 � X (3)1z0:0410 � X (1)1 � X (2)1

X ’(4)~z0:0106 � X (3)1

Here, k1~0:0410, and k2~0:0106. Note that MIKANA

cannot reconstruct the reversible reaction C?EzS (k{1 = 0). It

is predicting the Van Slyke-Cullen reaction mechanism instead of

the MM mechanism of enzyme action.

On the other hand, MIKANA can reconstruct correctly the

MM reaction mechanism and estimate the kinetic parameters with

the Akaike information criterion. The predicted differential

equations are:

X ’(1)~z0:0082 � X (3)1{0:0478 � X (1)1 � X (2)1

X 0(2)~z0:0103{0:0056 � X (2)1z0:0066 � X (3)1{

0:0478 � X (1)1 � X (2)1

X ’(3)~{0:0149 � X (3)1z0:0478 � X (1)1 � X (2)1

X ’(4)~z0:0066 � X (3)1

Here, k1~0:0478, k{1~0:0082 and k2~0:0066. In this last

example, k1, k{1 and k2 reveal differences of 0:0202 mM-1min-1,

0:0054 min-1 and 0:0002 min-1, respectively, when compared to

the original kinetic rate constants.

MIKANA can produce output time course data by solving the

differential equations of the reconstructed mechanism. Figure 3

shows the output of MIKANA. Here, we show the input time

course data (open circles) and the output course data (solid lines)

using the Empirical (left) and the Akaike (right) information

criterion. In the GUI, this plot is obtained by selecting the button

Plot Input/Output Time Course in the main panel (lower right

side of the main screen). The figure illustrates a difference in the

reconstruction by using these two information criteria. Note that

the Empirical information criterion provides a poor reconstruc-

tion; the fitting is poor and the mechanism is missing a reaction

pathway. An estimate of the fitting error can be obtained by

clicking Show Fit Errors in the main panel of the GUI. The user

can also save all the results or just the output time course data to a

file using the buttons Save Output to a File and Save Output Time

Course to a File in the Main panel.

In this example, we considered second order reactions and a

maximum of one molecule for each species in every reaction (uni–

molecular interactions). However, the user can choose a different

set of options for the mechanism reconstruction.

Example 2 - The interaction map of chemical species of
the muscle glycolytic pathway

Phosphocreatine (PCr) has been found to play an important role

in the contraction of skeletal muscle cells [24]. During intense

exercise, when the amount of oxygen available is lacking, PCr is

broke down to creatine and its phosphate group (Pi). This

phosphate group binds to ADP to form ATP, which is then used to

contract muscles. Further, it is known that in intense exercise, PCr

is rapidly depleted and does not provide enough ATP. The cell

then uses another pathway as a source for ATP that leads to the

production of lactate [21,22,25]. During the recovery period

following the intense exercise, the ATP molecule produced by

glycolysis is dephosphorylated, and the removed phosphate group

added to creatine to replenish the phosphocreatine.

In an experiment by Scopes [21], lactate production and ATP

synthesis by glycolytic flux was coupled to the creatine kinase flux

so that the concentration of Pi decreased and the concentrations of

PCr and lactate increased in the experimental mixture in vitro as a

function of time. The mixture of substrates or products,

reconstituted the muscle cell network function. We extracted time

course data originally obtained by Scopes [21,22]. These data

comprise 14 time points measured over a period of 10 min for

concentrations of PCr, Pi and Lactate. We interpolated these data

to produce 3 time series of 26 points each over the same time

period. The input time course data file for Scopes data consists of 4

columns: a time column with the time plus three columns with the

chemical species time courses.

Given that the experimental data does not contain a detailed

measurement of all interacting species (enzymes and intermediates),

we chose to proceed with the mechanism reconstruction assuming

that the reactions follow a pseudo-first order kinetics. This will

permit us to reconstruct the interaction map between the three

chemical species. We chose to use a maximum of two molecules for

each species in every possible reaction and an Empirical

information criterion. We further tell MIKANA to exclude

reactions having either PCr as a reactant and lactate as a product,

or lactate as a reactant and PCr as a product. For the purpose, we

use the following rules: x2?x3 and x3?x2. Here, x2 represents

PCr and and x3 represents lactate (third and fourth columns of the

time course data file, respectively). These rules were written to a file,

which was loaded into the MIKANA GUI using the Non-Possible

Reactions subpanel of the Input panel. The addition of these two

rules produces 22 potential reactions and eliminates direct

dependencies between the PCr and lactate in the final result.

Glycolysis leads to ATP and lactate production in muscle and results

in the phosphorylation of creatine, which means that PCr and

lactate are associated through the phosphate (Pi).

The reconstruction leads to 7 elementary reactions. These

reactions, together with the estimated kinetic rate constants, are

described by the following differential equations:

Method to Infer Kinetics and Network Architecture
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X ’(1)~{0:1131 � X (1)2

X ’(2)~z10:0173{0:4110 � X (2)1z0:0457 � X (1)2

X ’(3)~z4:9063{0:2805 � X (3)1z0:0369 � X (1)2

Even in the absence of a large number of unknown

intermediates, MIKANA is capable of reconstructing a mecha-

nism that agrees with the known relations between Pi, PCr and

lactate. MIKANA predicts that Pi (X1) decreases independently of

the concentrations of PCr (X2) and lactate (X3). Furthermore,

MIKANA predicts that Pcr (X2) and Lactate (X3) growth

inversely correlates with Pi (X1). When the concentration of Pi

(X1) is high, Pi (X1) diminishes quickly while PCr (X2) and Lactate

(X3) increase quickly. As Pi (X1) is depleted, both PCr (X2) and

Lactate (X3) evolve to a steady state. Notice that PCr (X2) does not

depend on lactate (X3) and vice-versa. They both only relate to the

phosphate Pi (X1).

Figure 4 compares the experimental/input (open circles) and

the predicted/output time course data (solid lines). The predicted

time course data provides a good qualitative fit to the experimental

data. The reconstruction of the relations between Pi, PCr and

lactate without the removal of the direct relations between PCr

and lactate produce 30 potential reactions and 6 elementary

reactions as a result. However, this result includes direct relations

between PCr and lactate that do not exist in the muscle cell

pathway.

 

 

 

 

Figure 3. Input and Output time course data for the irreversible Michaelis–Menten reaction mechanism. The reaction mechanism
describes interactions between four chemical species. Open circles represent the input time course data. Solid lines represent the output time course
data. We produced the output using the Empirical (left plot) and the Akaike (right plot) information criteria. MIKANA cannot reconstruct the
Michaelis–Menten reaction mechanism and its dynamical behavior using the Empirical information criterion. However, the reconstruction is excellent
using the Akaike information criterion.
doi:10.1371/journal.pone.0027534.g003

 

 

Figure 4. Input and Output time course data for chemical
species of the muscle glycolytic pathway. The pathway describes
interactions between phosphate (Pi), phosphocreatine (PCr) and lactate.
Open circles represent the input time course data. Solid lines represent
the output time course data. We produced the output using the
Empirical information criteria. The predicted time course data provides
a good qualitative fit to the experimental data. MIKANA also
reconstructs the interaction relationships between Pi, PCr and lactate
in the muscle cell pathway.
doi:10.1371/journal.pone.0027534.g004
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Example 3 - The Lactococcus lactis Glycolytic pathway
The Lactococcus lactis glycolytic pathway has been explored

experimentally in great detail [26,27]. The glycolytic pathway

converts glucose to lactate through a series of reaction steps. A

simplified experimentally known topology involves the following

steps: first, glucose (X1) is converted into glucose-6-phosphate (G6P)

(X2). Phosphoenolpyruvate (PEP) (X5) also contributes to this step.

G6P is converted into fructose-1,6-bisphosphate (FBP) (X3), then

sequentially to glyceraldehyde-3-phosphate (Ga3P), 3-phosphogly-

ceric acid (3-PGA) (X4) and PEP (X5). Glucose and G6P, along with

PEP, are involved in the conversion of PEP to pyruvate (X6). This

step is activated by a positive feedback from FBP, which also exerts a

positive feedback on the conversion of pyruvate to lactate (X7) [18].

In this example, we used data from 13C (Nuclear Magnetic

Resonance) NMR experiments [26]. These data comprise 25 time

points measured over a period of 15.75 min, at an average time

interval of half a minute. The input time course data file for the

glycolytic pathway consists of a header line followed by numeric data.

The header line contains 7 symbols and the numeric data consists of

25 lines and eight columns: a time column plus seven columns with

the chemical species time courses. Given that the experimental data

does not contain a detailed measurement of all interacting species

(enzymes and intermediates), we chose to proceed with the

mechanism reconstruction assuming that the reactions follow a

pseudo-first order kinetics. We chose to use a maximum of two

molecules for each species in every possible reaction and an Empirical

information criterion. We do not exclude any potential reactions in

MIKANA, rather we let it search through all possible first order

reactions. The dictionary of elementary function produces 182

potential reactions. The reconstruction leads to 18 elementary

reactions. These reactions, together with the estimated kinetic rate

constants, are described by the following differential equations:

X ’(1)~{0:2559 � X (1)1

X 0(2)~z0:0873 � X (1)1{4:0926 � X (2)1z

0:8588 � X (6)1{0:3221 � X (2)2z0:0707 � X (6)2

X ’(3)~z0:3052 � X (1)1z2:4170 � X (2)1{0:5147 � X (3)1

X ’(4)~{0:4734 � X (4)1z0:3472 � X (7)1z0:0064 � X (7)2

X ’(5)~z0:2465 � X (4)1{0:9824 � X (5)1z0:0361 � X (7)1

X 0(6)~z0:1193 � X (1)1z5:7682 � X (2)1{

1:4493 � X (6)1z0:1610 � X (2)2{0:1414 � X (6)2

X 0(7)~z0:2415 � X (3)1z0:3162 � X (4)1{

0:1916 � X (7)1{0:0064 � X (7)2

MIKANA is capable of reconstructing a mechanism in close

agreement with the Lactococcus lactis glycolytic pathway. There are

some small discrepancies. For example, MIKANA predicts that G6P

(X2) is produced independently by glucose (X1) and pyruvate (X6).

However, in reality, glucose (X1) and PEP (X5) are involved in the

production of G6P (X2). MIKANA also predicts that FBP (X3) is

produced by glucose (X1) and G6P (X2). Experimentally, glucose (X1)

is not known to participate in FBP production. These discrepancies

can be resolved by reconstructing the mechanisms with experimental

replicates or under different initial conditions as we have shown before

[19]. In Figure 5 we compare the experimental/input (open circles)

and the predicted/output time course data (solid lines). The predicted

time course data does not fit perfectly the experimental data because

the reconstruction is pseudo-first order. However, it is in a good

qualitative agreement with the experimental data.

Discussion

MIKANA is a computational method to infer reaction mecha-

nisms and estimate kinetic parameters of biochemical pathways from

time course data. This paper presents a Graphical User Interface

(GUI) for MIKANA. MIKANA’s input consists of chemical species

time course data and a set of reactions to be excluded from the

inference. The user can select between three different types of

information criteria: (i) Empirical; (ii) Akaike; and (iii) Bayesian, along

with a choice for first– or second–order reactions (Reaction Order),

and interaction molecularity (one or two molecules per chemical

species per reaction). The output includes a set of reactions used in the

model selection process and a set of differential equations generated

from the inferred reactions and kinetic parameters. Furthermore, the

user can visualize and compare the input and the output time course

data produced by the method.

We illustrate the capacity of the GUI using three different

examples. In the first example, we reconstruct the irreversible single-

enzyme, single-substrate Michaelis–Menten reaction mechanism. In

the second example, we reconstruct the interaction map of chemical

species of the muscle cell pathway. In the third example, we

reconstruct the metabolic pathway of the glycolytic pathway of

Lactococcus lactis. As evidenced by our examples, a number of different

options is available for the reconstruction of a reaction mechanism.

The choice between these options should be made according to the

background knowledge in each case. For example, if no a priori

knowledge is available for the order and/or molecularity of the

biochemical reactions, the user should consider all possible reaction

steps for the known reactants. If the user knows the order and/or

molecularity, the user can use the GUI to introduce this knowledge

and exclude some of the possible reaction steps.

The GUI provides easy access to experimentalists or researchers

alike to infer relations among chemical species. Hopefully, these

predictions should aid in generating hypothesis that can be

experimentally tested. In addition to the GUI, this paper presents

a description of MIKANA’s code and methods. The description

we provide is in sufficient detail to allow researchers to further

develop the code or reproduce the experiments described. By

making MIKANA’s GUI and code available to the scientific

community, we hope to increase current knowledge on chemical

species interactions, possibly foster working collaborations and

expand the knowledge in the field.

A significant feature of MIKANA is that it uses a nonlinear

modeling technique based on the law of mass action: the rate of

any given elementary reaction is proportional to the product of the

concentration reactant species. This technique produces plausible

chemical reaction steps of a pathway [17]. MIKANA also infers

both reaction mechanisms and their kinetic parameters.

MIKANA’s performance is dependent on several quantitative

and qualitative properties of the time course data. This
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information is important to experimentalists as it could allow them

to setup their experiments in ways that optimize the network

reconstruction. As described in a previous paper, we performed an

extensive test using several combinations of parameter values and

determined the properties that provide the best results. Among the

data tested, the best results are obtained using the Empirical

information criteria. We also tested different parameters such as

initial chemical concentrations, experiments (time courses),

number of data points and noise. For enzyme catalyzed reactions,

we found optimal results when substrate and enzyme have roughly

the same initial concentrations, when we used more than 3 time

courses and more than 30 data points. We also found optimal

results when noise is lower than 20% [19].

To the extent of our knowledge, there are not similar

approaches available in the literature from which we can compare

results. One possible source of comparison comes from the work of

Voit [18]. His approach to modeling reactions is based on a power

law approximation, proposed by Savageau [28,29]: the power-law

approximation assumes that the rate of change of a state variable is

equal to the difference of two products of variables raised to non-

integer powers. Voit [18] has used the power law approximation

to study the regulation of glycolysis in the Lactococcus lactis, but the

difference between this and MIKANA’s approach makes it hard to

compare results. In addition to the seven variables (each one

represents a chemical species), Voit also decided to include as

constants in his model other metabolites, such as ATP and NADz.

This makes any possible comparison inadequate.

Availability and Future Directions
MIKANA is implemented in MATLAB (MATrix LABoratory).

It is open-source and freely available for non-commercial and

commercial use. The source code is available in Information S1. A

standalone compiled version of MIKANA is also available for

download at: http://sitemaker.umich.edu/schnell.lab/products.

This website provides a quick guide for installing and using

MIKANA. We also made available for download the three input

time course data used as examples in this article. In this way, we

have provided all the information necessary for anyone to replicate

our results. In MIKANA, we traverse the search space of possible

models by removing one reaction at a time from the initial set of all

possible elementary reactions that compose the model. While

possibly leading to better results, an exhaustive search would be

impractical. To overcome this problem and potentially find better

solutions, we are currently exploring alternatives to the one–

reaction–at–a–time approach. One such alternative is to consider

an heuristic method which would speed up the process of solution

finding. At the moment, MIKANA also infers reaction mechanisms

with the same or less number of chemical species than the ones used

as input. Based on the current employed methods, we are analyzing

the possibility of identifying unknown chemical species in the

pathway. These and other limitations may be addressed by us or

anyone else interested in our method. This would definitely result in

possible extensions of MIKANA and the GUI.

Methods

The input, main process components and output of MIKANA

are shown in Figure 6. The input consists of time course data for

chemical species and a set of reactions to be excluded from the

inferred scheme. Users can select between three different types of

information criteria: (i) Empirical; (ii) Akaike; and (iii) Bayesian,

along with a choice for first- or second- order reactions (Reaction

order) and interaction molecularity. The method predicts the

reaction mechanism as a set of kinetic equations describing the

rates of change of each chemical species in the pathway.

MIKANA’s main processes
The core process of MIKANA involves the generation of a

complete dictionary of possible chemical interactions (which we will

refer to as elementary reactions). A second process excludes

specified reactions from the model design matrix. A final process

applies a model selection technique to deduce the reaction

mechanism. The latter process is aided by a cost function, an

Figure 5. Input and Output time course data for the glycolytic pathway. The pathway describes interactions between seven chemical
species. Open circles represent the input time course data. Solid lines represent the output time course data. We produced the output using the
Empirical information criterion. The predicted time course data does not fit perfectly the experimental data. However there is a good qualitative
agreement with the experimental data behavior. In addition, MIKANA is capable of reconstructing an interaction mechanism in close agreement with
the Lactococcus lactis glycolytic pathway.
doi:10.1371/journal.pone.0027534.g005

Method to Infer Kinetics and Network Architecture

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e27534



Figure 6. Input, Output and the main processes of MIKANA. MIKANA’s input is composed of a time course data and a set of reactions known
to be absent in the final solution set. There are three different types of information criteria: (i) Empirical; (ii) Akaike; and (iii) Bayesian. The user can also
select between first– or second–order reactions (Reaction Order) and a maximum molecularity (one or two molecules per chemical species per
reaction) to work with. The core process of MIKANA is the construction of a model design matrix with all possible elementary chemical reactions.
Other processes include the exclusion of specified reactions and a model selection process. The output of MIKANA consists of a set of elementary
reactions used in the model selection process and a set of predicted reactions from which we obtain the differential equations.
doi:10.1371/journal.pone.0027534.g006

Figure 7. Model selection in MIKANA. The left flow chart shows the main steps taken in the model selection process. The right box details how
we calculate the error of removing one reaction from the model design matrix mdm in MATLAB.
doi:10.1371/journal.pone.0027534.g007
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information criterion, that penalizes the use of an excessive number

of reactions to reconstruct the pathway.

Construction of a model design matrix
A key feature of our method lies in the construction of a model

design matrix hij appropriate for biochemical pathways. The model

design matrix is composed of columns representing unscaled

velocities corresponding to all possible elementary reaction steps

involving the different species in the pathway. Chemical reaction

pathways are described by a number of elementary steps. Let us

consider the general chemical elementary reaction:

nAAznBB
l

nCCznDD ð2Þ

Here, l is the rate constant of the reaction and nA, nB, nC and nD

are the number of molecules (stoichiometry) of reactants A and B,

and products C and D. The velocity or rate of the above reaction is

given, according to the law of mass action, by:

v~l(xA)nA
(xB)nB

~lw(xA,xB) ð3Þ

where xA and xB are the concentrations of species A and B,

respectively. The above equation defines the unscaled velocity w,

which describes the functional dependence of the reaction velocity

on the concentration variables. Note that it does not depend on any

further unknown parameters.

The above general framework is used to construct a set of

chemically feasible elementary reactions if we restrict the reactions

to a maximum molecularity. For example, for two species, the

general elementary reaction can produce 18 chemically realistic

schemes up to and including bi–molecular reactions:

1 : A 7 : 2A 2B 13 : 2B A
2 : B 8 : 2A AzB 14 : 2B 2A
3 : A 9 : 2A Az2B 15 : 2B AzB
4 : A B 10 : B 16 : 2B 2AzB
5 : A 2B 11 : B A 17 : AzB 2A
6 : 2A B 12 : B 2A 18 : AzB 2B

Here, ? and z represent a reaction and an interaction between

two different molecules, respectively. The general elementary set of

chemical reactions is called the complete dictionary of basis

functions or elementary reactions for two species [17].

For a species k, an element of the model design matrix is then

defined as hk
ij~sk

i nk
i wi(tj). Here nk

i is the molecularity for species k

in the ith reaction, and the element sk
i has unit magnitude with

positive sign (sk
i ~z1) if k is a product and negative sign

(sk
i ~{1) if k is a reactant for the ith reaction. wi(tj) is the unscaled

velocity for the ith reaction, evaluated at the jth time point. The

velocities are evaluated at each point in the time course and the

model design matrix h is constructed for each species as follows:

hk~

sk
1nk

1w1(t1) sk
2nk

2w2(t1) ::: sk
K nk

K wK (t1)

sk
1nk

1w1(t2) sk
2nk

2w2(t2) ::: sk
K nk

K wK (t2)

: : : :

: : : :

: : : :

sk
1nk

1w1(tN ) sk
2nk

2w2(tN ) ::: sk
K nk

K wK (tN )

2
666666664

3
777777775

Only for those reactions in which species k takes part will n be

nonzero. The overall matrix for the biochemical pathway is a

concatenation of such matrices for each of the M species, resulting

in a matrix of dimensions NM|K , where N is the number of time

points in the time course and K is the number of elementary

reactions. A complete description of the construction of the model

design matrix can be obtained in [17].

Index and nindex matrices
In MATLAB, besides the model design matrix, we create two

other auxiliary matrices, labeled index and nindex. Both matrices

are useful throughout the program. Their size is 4|R, where 4 is

the number of lines and R the number of columns or possible

elementary reactions. While the first two lines refer to reaction

reactants, the last two lines refer to reaction products. The index

and the nindex matrices store the species identifier and the

number of molecules that participate in the reaction, respectively.

For example, the reaction 2X2?X1zX3 would add the

following vectors to the index and nindex matrices:

index~

::: 2

::: 0

::: 1

::: 3

2
6664

3
7775

nindex~

::: 2

::: 0
::: 1

::: 1

2
664

3
775

The construction of the index and the nindex matrices is

essential to the process of exclusion of reactions in the final

mechanism, as it is described below.

Exclusion of biochemically unrealistic reactions
The number of possible elementary chemical reactions increases

with the number of chemical species affecting the performance of

MIKANA. We build a simple language that allows the user to

introduce chemical species interaction information of biochemi-

cally unrealistic reactions. The language can also be used to

identify known chemical interactions in the reaction. The syntax of

our language makes the use of the following symbols:

N ?: Represents an irreversible reaction.

N z: Represents an interaction between two chemical species.

N x: Represents any generic chemical species.

N xi: Represents chemical species i for 1ƒiƒn. n stands for the

number of chemical species for which a time course exists.

Examples of uni–molecular and bi–molecular interactions are,

respectively: (i) x1?x; and (ii) x?x1zx2. In a system with three

chemical species, the first example would represent reactions

x1?x2 and x1?x3.

We exclude reactions from the model design matrix (Figure 6),

and from the index and nindex matrices, before applying the

model selection process (Figure 6). The implementation of this

section is mainly based on the outcome of evaluating the following

expression:

[matchstr splitstr] = regexp(newline, ‘[? x +]’, ‘match’, ‘split’)

This expression searches for the symbols ?, x and + in the

string newline. It further splits the string based on the matches

found. The variable splitstr retains the number of molecules and

the identifier of the chemical species that participate in the

reaction. For example, if newline is nAXAznBXB
nCXCznDXD, the variable splitstr is equal to: fnA A nB B nC

C nDDg. Such as for the index and nindex matrices described in
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the previous section, we add vectors with the splitstr outcome in

two matrices of size 4|R, namely removal-index and removal-

nindex. These matrices store the chemical species identifier and

the number of molecules of each reaction identified, respectively.

If the chemical species or the number of molecules is not specified,

a value of {1 replaces the omitted values in the created vectors.

The value {1 is used to represent any chemical species or any

number of molecules. For example, the evaluation of the reaction

strings: (i) ?x; (ii) x?; (iii) x1?x; (iv) x?x1; (v) x2?x; and (vi)

x?x2, adds the following vectors to the removal-index and

removal-nindex matrices:

removal-index~

::: 0 {1 1 {1 2 {1

::: 0 0 0 0 0 0

::: {1 0 {1 1 {1 2

::: 0 0 0 0 0 0

2
6664

3
7775

removal-nindex~

::: 1 {1 {1 {1 {1 {1

::: 1 1 1 1 1 1

::: {1 1 {1 {1 {1 {1

::: 1 1 1 1 1 1

2
6664

3
7775

Here, the introduction of reactions (i) and (ii) could be used to

define a closed system. Reaction (iii) would make the conversion of

x1 into any other species without interacting with another

chemical component impossible. Reversibly, reaction (iv) makes

it impossible the conversion of any species into x1 without

interacting with another chemical species. The last four reactions

could be useful for introducing restrictions on chemical species

interactions, such as to an enzyme or to a substrate, in an enzyme

catalyzed reaction. Our next step is to identify which reactions in

the matrices index and nindex match with the reactions in the

matrices removal-index and removal-nindex. We exclude from the

model design matrix and the matrices index, nindex all those

reactions for which a match occurs. Those reactions are not

considered in the model selection process (Figure 6), which we

explain in the following subsection.

Model selection
The iterative scheme proposed by Judd and Mees [30] uses a

sensitivity analysis to determine the reaction which added or

removed to a model, will most improve the model fit to the data.

The model selection employed in MIKANA follows the latter

approach (see [17] for more details). We show a flow chart of the

most important steps of the model selection process in Figure 7.

We start by assigning a vector ind with the column positions of all

possible elementary reactions. We calculate a vector of errors

where we assign to each position the error of removing that

column reaction from the model design matrix. Using an

information criterion, we calculate the cost of dropping the

reaction that minimizes the error. If the cost of dropping this

reaction is less than the previous cost (obtained with one more

reaction), the cycle continues as we then attempt to remove

another reaction. If the cost is not reduced, the cycle ends and the

current reactions constitute the final mechanism.

Errors. To obtain the error for each reaction column position i

(Figure 7, right side), we first obtain the non-negative least square

solution of: (i) the model design matrix (mdm) without the ith

reaction; and (ii) the derivative vector y (step 1 in the box).

Lsqnonneg returns the vector a that minimizes the norm(y-mdm

|a) subject to aw0. The norm of a vector V is defined as:

sum(abs(V).2)(1=2). The derivative vector is obtained from the

chemical species input time course data using the following

equation:

yj~
x(tjz1){x(tj)

(tjz1{tj)

We then multiply mdm by the solution vector a and calculate the

squared difference to the derivative vector y (step 2 in the box). The

result is an error vector. Here, each point corresponds to an

estimated error of using the current elementary reactions (columns

of mdm) to explain a specific chemical species value on a time point.

Cost. To calculate the cost of dropping a reaction, we use an

information criterion. The information criterion is used to penalize

the use of an excessive number of reactions to reconstruct the

pathway. We make three different types of information criteria

available:

Empirical : C~sum(Error:2)zk

Akaike : C~N log(mean(Error:2))z2k

Bayesian : C~N log(mean(Error:2))zk log(N)

Here, Error is the error vector, N is the length of the Error

vector and k is the number of reactions in the current model

design matrix.

Supporting Information

Information S1 MIKANA Source Code and Examples.
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