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ABSTRACT Background: Several validated clinical scales measure the severity of essential tremor (ET).
Their assessments are subjective and can depend on familiarity and training with scoring systems. Method:
We propose a multi-modal sensing using a wearable inertial measurement unit for estimating scores on the
Fahn-Tolosa-Marin tremor rating scale (FTM) and determine the classification accuracy within the tremor
type. 17 ET participants and 18 healthy controls were recruited for the study. Twomovement disorder neurolo-
gists whowere blinded to prior clinical information viewed video recordings and scored the FTM. Participants
drew a guided Archimedes spiral while wearing an inertial measurement unit placed at the mid-point between
the lateral epicondyle of the humerus and the anatomical snuff box. Acceleration and gyroscope recordings
were analyzed. The ratio of the power spectral density between frequency bands 0.5-4 Hz and 4-12 Hz, and
the sum of power spectrum density over the entire spectrum of 2-74 Hz, for both accelerometer and gyroscope
data, were computed. FTMwas estimated using regressionmodel and classification using SVMwas validated
using the leave-one-out method. Results: Regression analysis showed a moderate to good correlation when
individual features were used, while correlation was high (r2 = 0.818)when suitable features of the gyro and
accelerometer were combined. The accuracy for two-class classification of the combined features using SVM
was 91.42% while for four-class it was 68.57%. Conclusion: Potential applications of this novel wearable
sensing method using a wearable Inertial Measurement Unit (IMU) include monitoring of ET and clinical
trials of new treatments for the disorder.

INDEX TERMS Essential tremor, Fahn-Tolosa-Marin tremor rating scale, wearables, inertial measurement
unit.

I. INTRODUCTION
Essential tremor affects about 2%of the population, begin 5 to
10 times more prevalent compared with Parkinson’s disease
[1], [2]. While relatively mild forms of ET are common, the
disorder does worsen over time and may cause significant
disability in older individuals [3], [4], [5]. Two important
developments have assisted ET clinical research in recent
years. Better diagnostic criteria have been created to delineate
ET and to help to separate it from other tremor disorders with
which it can be confused [6]. Since 1993, a number of tremor
rating scales have been validated.

Objective, reproducible assessments are needed to track
the progression of ET and to facilitate clinical trials of
therapeutic interventions, both pharmacological and non-
pharmacological. These tools must perform well on tests
of intra- and inter-rater reliability [7], and be sensitive to
clinically meaningful changes in tremor severity.

The Fahn-Tolosa-Marin tremor rating scale (FTM) has a
good track record with clinical observations of ET [8], [9].
While not developed specifically for ET, it comprises a range
of observational, task-related and daily living assessments
of tremor severity. A potential limitation of ceiling effect
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created by its definition of severe tremor amplitude is off-
set by a weighting for features that commonly accompany
the progression of ET appearance of rest tremor, worsening
kinetic tremor and spread of tremor to multiple body regions
[10]. As with other clinimetric instruments for tremor, the
ratings are subjective, and reliability can depend on assessors’
familiarity and training with the scale.

Technological measurements of ET that could augment
or even supplant the clinical scales would be advantageous.
Recent advances in electronics have led to the development
of compact, portable, wireless, low power and inexpensive
devices for the measurement of movement [11]. Many smart-
watches and armband fitness monitors contain accelerometer
and gyroscopes [12]. Wearable accelerometers have been
used to study activities of daily living [13], [14], [15], [16],
inferring metabolic energy expenditure [17], [18], [19], mea-
suring gait parameters [20] and predicting falls [21]. They
have also been used for the detection of tremor [22], and for
the assessment of tremor amplitude and frequency in ET [23].

Gyroscopes are commonly built into consumer wearable
devices such as smart watches and smartphones. They are
used in customised devices for clinical applications such as
quantification of tremor [24] and bradykinesia [25], [26] in
Parkinson’s disease, and the recording of hand tapping angu-
lar movement [27]. Elble et al. [28] investigated the use of
accelerometers and gyroscopes for measuring head tremors
and found gyroscopes to bemore effective.Multi-modal sens-
ing combinations accelerometers with electrocardiograms
[29]; accelerometers withmicrophones [30]; and accelerome-
ters with gyroscopes [31], [32], [33], have shown promise for
activity monitoring in various healthcare applications [34],
[35]. Gyroscopes in combination with accelerometers have
the advantage that both linear and angular motion is recorded
[36], [37], reducing calibration biases. Haubenberger et al.
[38] in reviewing the use of sensors to measure tremor
severity, highlighted both advantages and limitations of the
technology. While sensors are very sensitive to tremor ampli-
tude and frequency, theymay not be superior to clinical scales
in detecting changes that exceed random variability in tremor
amplitude.

The frequency of ET is typically in the vicinity of 8 cps.
Voluntarymovement tends to occupy a lower frequency range
but there is overlap in freely moving individuals, some of
whose actions could be rapid or jerky. When using sensors
to measure ET, it is therefore desirable to select voluntary
tasks that are relatively slow, without pronounced accelera-
tion peaks and troughs [39]. Ideally, the chosen task should
also accentuate the tremor. Spiral drawing, often used by
clinicians as a pen-and-paper assessment of tremor disor-
ders [40], is well-suited to the study of electronic recording
of ET [41]. Several validated tremor rating scales, includ-
ing the FTM, include specific scoring domains for the
drawing of Archimedes spirals. Tremor classification stud-
ies using machine learning methods with the feature sets
established from the acceleration signals [42]. Hand tremor

classification using bi-spectrum analysis of acceleration
signals and back-propagation neural network [43]. More
recently using the combination of sEMG and accelerometer
signals a quantitative classification of Essential and Parkin-
son’s tremor using wavelet transform and artificial neural
network [44] and support vector machines [45] is performed.
A list of various classification studies for tremor diagnosis
using wearable sensors is tabulated in Table 1.

This study extends our previous work on the electronic
measurement of ET, using the FTM as the clinical yardstick.
We previously reported a moderate correlation between the
spectral parameters of the accelerometer and FTM score
[46]. In this study we have proposed the combined use of
accelerometer and gyroscope in ET to improve the estimation
of tremor severity according to the FTM.Mild or localized ET
consists largely of cycles of linear acceleration-deceleration.
As ET progresses, its oscillations may propagate across mul-
tiple upper limb joints, introducing significant angular accel-
eration. Wearable IMU with accelerometer and gyroscopes
were placed on the forearm while participants executed spiral
drawings. Regression analysis was conducted for the FTM
score with four features: the ratios of the power spectral
density (PSD) of accelerometer (AR) and gyroscope (GR)
between the frequency ranges of 0.5-4Hz and 4-12Hz, and
summed PSD for the frequency band of 2Hz to 74Hz of
the accelerometer (AS), and gyroscope (GS). Subsequently,
a sensor based FTM estimation model was developed and
validated. SVM analysis was performed using leave-one-out
cross validation method using the combined features of the
sensor data to identify the accuracy within and between the
ET types.

II. METHODOLOGY
A. PARTICIPANTS
Seventeen participants (eight male) diagnosed with ET were
recruited from the Movement Disorders service at Monash
Health. Their mean age was 67.28 ± 13.39 years, with
mean tremor duration of ET 22.94 ± 19.65 years. Eighteen
healthy age-matched individuals (eight male; mean age 62.8
± 11.6 years) were Age Matched Controls (AMC) for the
drawing task studies. All ET participants compiled with the
Axis 1 definition of ET in the 2018 Consensus Statement on
the Classification of Tremors [54]. No participant with ET
met any of the Axis 1 exclusion criteria for ET and ET plus.

B. CLINICAL ASSESSMENTS
Two movement disorders neurologists, who were blinded to
prior clinical information, scored the FTM from videotapes,
writing and drawing records, and a summary of a structured
clinical interview. Mean total scores were obtained for each
subject. They then classified the ET disorder as defined in
Axis 1 of the Consensus Statement, which addresses the
complexity of ET syndromes with its ET plus category.
Patients were classified as ET plus by the presence of any
of the following features: impaired tandem gait, questionable
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TABLE 1. The review of wearable sensors used for clinical diagnosis.

dystonic posturing, memory impairment, mildly impaired
goal-directed coordination of unknown significance, mildly
impaired rapid alternating movement of unknown signifi-
cance, tremor at rest. For each participant, a neurologist
familiar with the case also phenotyped the tremor disor-
der from the videotape. A majority classification was then
obtained on the presence or absence of plus features, and
on the number of plus features documented. Six subjects
fulfilled the ConsensusAxis 1 definition of ET (ET-0). Eleven
subjects were classified as ET plus; 5 had 1 plus feature
(ET+1) and 6 had 2 plus features (ET+2). The study was
conducted following the human experiments Helsinki Dec-
laration (revised 2004) and approved by the Monash Health
and RMIT University Human Research Ethics Committees
(HREC Project Number: 184981).

All participants gave their written informed consent before
participating in the study. The patient data used in this study
has also been reported in our earlier work [55].

C. EQUIPMENT AND DATA RECORDING
Figure 1 shows the experimental setup of data recording
during the spiral drawing task and shows the anatomical
placement of a wearable sensor at the mid-point of a line
connecting the lateral epicondyle of the humerus with the
anatomical snuff box [56]. The wearable Inertial Measure-
ment Unit (IMU) sensor, Trigno (Delsys Trigno, USA),
contains an inbuilt three-axis accelerometer and gyroscope

used for recording the tremor data. The suitable location of
the sensors has been reported in our previous study, selected
experimentally based on the highest performance in detecting
the tremor during spiral drawin [46]. In our experience, this
location gives less chance of false positive detection of tremor
when compared with the wrist.

The participants were asked to draw the spiral at their
comfortable speed on a paper placed on a digital tablet
(Wacom Intuos Pro Large, A3 sized) with a pressure-sensor
mounted ink-pen. Customized software integrated the dig-
ital tablet and Delsys Trigno IMU signals. Pen-tip pres-
sure was used to identify the start of the activity. Pen
movements with pressure = 0 were labelled as ‘pen-up’
strokes, a ‘pen-down’ stoke was any movement while pres-
sure was > 0. The accelerometer and gyroscope data were
recorded at 148.1 samples/sec and stored in a.csv file
format.

III. DATA ANALYSIS
The three recordings each from the accelerometer and gyro-
scope were segmented to remove the sections before and after
the sketching task using the tablet’s pen-up and pen-down
data. To overcome sensor placement variation from geo-
metrical differences, two scalars were derived from the raw
acceleration and gyroscope such that A(n) =

√
a2x + a2y + a2z ,

G(n) =

√
g2x + g2y + g2z [57], [58].
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FIGURE 1. (a) Position of the wearable sensor placement, best suited for
the data collection mounted on the upper limb. (b) Examples of spiral
drawing by study participants. Note the 4 o’clock – 10 o’clock tremor axis
typical of left-handed spirals produced in essential tremor.

The scalar of both accelerometer and gyroscope, i.e. A(n)
and G(n), were high-pass filtered using 4th order Butterworth
filter with 3dB cut-off= 0.5 Hz. ET is associated with height-
ened activity in the frequency range of 4-12 Hz; in healthy
people, the 0-4 Hz band is dominant [49], [59].

As a first step, the PSD was calculated for separate fre-
quency bands 4-12Hz and 0.5-4Hz using welch periodogram
for both acceleration A(n) and gyro G(n) with a window
size of 2 seconds and a step frequency resolution of 0.5 Hz.
The ratio of the PSD over the frequency bands 4-12 to
0.5-4 Hz, for acceleration (AR), and for Gyro (GR), were
computed. It is hypothesised that people with ET have
a higher PSD ratio compared with AMC. The record-
ings were first pre-processed using a 4th-order notch filter
(50Hz) in accordance Donald and Joseph [60]. For com-
puting the summed PSD over the frequency band of 2Hz
to 74Hz (S), the scalar A(n) and G(n) were filtered using
a 4th-orderButterworth bandpass filter (low cut off fre-
quency= 2Hz, high cut-off frequency= 74Hz). The PSDwas
calculated using the welch periodogram method. The PSD
sum over a frequency range of 2Hz to 74Hz (S) was obtained
for acceleration (As), and for gyro (Gs).

A. STATISTICAL ANALYSIS
Shapiro-Wilk test was conducted to check for the normality
distribution of the accelerometer and gyrometer parameters

[61] and it showed a non-Gaussian distribution. Statistical
analysis was performed using the non-parametric Mann-
Whitney U test to determine the statistical significance of
differences between ET and AMC groups for all the com-
puted sensor parameters.

B. REGRESSION ANALYSIS
To determine the strength of correlation between the sensor
features and the clinical FTM score, coefficient of determi-
nation R-squared was calculated. Linear regression analysis
using the least-squares method was performed to find the
relationship between the clinical FTM score and the individ-
ual IMU sensor features AR, GR, AS and GS and the total
task time, Tt. The dependent variable for the analysis was
the clinical FTM score, and the independent variables are the
IMU sensor and time features.

A multiple regression analysis was performed to esti-
mate the FTM score. Highly correlated sensor features of
the accelerometer and gyro were used as the independent
variables and the dependent variable was the FTM score.
The validation of the estimated FTM score with the clinical
FTM score was performed. All the computation, including
statistical analysis, was performed using Python 3.8.

C. SVM CLASSIFIER
Studies have supported the Leave-One-Out Cross-Validation
(LOOCV) for a more reliable performance for small datasets
[62]. However, to ensure comparison with other works in
literature, both, LOOCV and 5-fold Cross-validation (5-fold
CV) were performed. A support vector machine (SVM) clas-
sifier using both LOOCV and 5-fold CV was used. The input
to the SVMwas the data set of the features of the acceleration
and gyro: AR, AS, GR, GS. In the LOOCV technique, the
number of folds equals the number of instances in the data set
as it applies once for each person’s data. All the samples are
selected once, single-item test is performed and the average
of all samples is reported as the overall accuracy. In this study,
there were total of 35 people and thus the folds were repeated
35 times. This was repeated for both the binary classification
of ET vs AMC and between the ET types; Controls, ET-0,
ET+1, ET+2. Both, linear and radial basis function kernels
were used, and the best classification accuracy was chosen
from these two kernels.

IV. RESULTS
Table 2 shows demographic and clinical information for the
35 participants (17 ET, 18 AMC) with analyzable sensor
recordings. The inter-rater analysis for FTM scored by the
two blinded clinical assessors showed a very strong correla-
tion of r2 = 0.95, supporting the choice of the FTM score as
the clinical severity standard for this study. Figure 2 displays
box plots of the sensor features of ET and AMC groups.
Table 2 also shows that, for all computerized features, mean
values are significantly higher for the ET than the AMC
group.
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FIGURE 2. Comparison plot of Controls and ET participants for five parameters, 2.(a) AR, 2.(b) AS, 2.(c) GR, 2.(d) GS, 2.(e) Tt.

TABLE 2. The demographic, clinical and average IMU sensor features of
ET and controls.

A. REGRESSION OF SENSOR FEATURES VS FTM
Linear regression analysis was performed to determine the
relationship between the ET sensor features and FTM clinical
score. The low ranked features were manually selected and

removed, a technique that is suitable when the size of the
dataset and number of features are small. The dependent vari-
able is the FTM clinical score and the independent variable
for each of the cases was ET AR, ET GR, ET AS, ET GS
and Tt. Analysis was performed using all observations from
the 17 ET participants, and the coefficient of determination
r2 values appear in Table 3. Figure 3 shows the regression
analysis performed for the ET participants for the sensor
features with respect to the FTM clinical score. The r2 value
indicated strong correlations between ET AR and FTM clin-
ical score (r2 = 0.50), between ET AS and FTM clinical
core (r2 = 0.5684), and between ET GS and FTM clinical
score (r2 = 0.612). There was moderate to good correlation
between ET GR and FTM clinical score (r2 = 0.4791). The
correlation between Tt the FTM clinical score was moderate
to low (r2 = 0.0018). On that basis, Tt was not considered for
the model to estimate FTM.

B. DETERMINATION OF MULTICOLLINEAR VARIABLE
Regression analysis was applied to sensor features AR, GR,
AS, GS and Tt to determine any redundant multicollinear vari-
ables, and those r2 values can be seen in Table 4. When two
independent variables are highly correlated, these is redun-
dancy and only one should be used in multiple regression
analysis. Based on the r2 values, it was found that AR and
AS for ET had high correlation (r2 = 0.6838), there was
moderate to good correlation between GS and AS for ET
(r2 = 0.4679), while correlations between other parameters
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TABLE 3. Regression analysis with respect to the FTM.

FIGURE 3. The regression plot of the ET sensors features vs FTM, 3.(a) ET AR vs FTM, 3.(b) ET AS vs FTM, 3.(c) ET GR vs FTM, 3.(d) ET GS vs FTM, 3.(e) ET Tt
vs FTM.

were weaker. AS was therefore identified to be redundant and
not considered for the model to estimate FTM.

C. WEARABLE SENSORS FTM ESTIMATION
The multiple regression analysis using the least-square
method was performed to estimate the FTM score from the
sensor features. Based on Table 3 and 4, AR, GR and GS were
found to be the suitable features for the FTM estimation. The
dependent variable was the FTM clinical score and the three

independent variables were AR, GR andGS. The regression
analysis resulted in a model equation (1).

y = (10.6101 + (0.7461∗AR)

+ (7.1881∗GR) + (0.0472∗GS )). (1)

The estimation model has an r2 = 0.818 and RMSE = 5.25.
From the equation (1), the estimated FTM scores were vali-
dated and compared with the clinical FTM score, as shown in
Table 5. Figure 4 is the comparison plot between the clinically

obtained FTM and the estimated FTM using the wearable
sensor for each of the ET participants.

D. WEARABLE SENSORS ET CLASSIFICATION
SVM Classifier showed a high accuracy of 91.42% for the
2-class ET and AMC in the following combination of the
features (AS, GS), (AS, GS, GR), (AR, GR, Tt) and (AR, GR,
AS, GS). The other combination of the features showed an
accuracy of 74.28% in (AS, GR) and 80% in (AR, GS, Tt),
(AS, GS, Tt) and 82.85% in (AS, GR, Tt) and 85.71%
in (AR, GR, AS, GS), (AR, GR, AS) and 88.57% in
(AR, GR), (AR, GS), (AR, GR, GS), (AS, GS, AR).

When considering the 4-class problem with the classes
being ET-0, ET+1, ET+2 and AMC, the best SVM classi-
fication mean accuracy was 68.57% using combination of
three features: AS, GS, Tt. The SVM classification accuracy
for the different combination of features is shown in Table 6.
The performance measured using two methods- LOOCV and
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TABLE 4. Regression analysis within the sensor features.

TABLE 5. The clinical vs estimated FTM.

5-fold CV are presented to facilitate comparison with other
similar works. The table shows that both the cross-validation
methods show very similar classification accuracy for both,
2-class and 4-class problems.

V. DISCUSSION
Regression analysis identifies relationships between depen-
dent and independent variables and generates models that can
be used to estimate the dependent variables. The principle
has been used to examine various clinical aspects of ET [63].
Regression analyses can also yield models for estimating
clinical scores of neurological disability from data obtained
from wearable accelerometer [64] and surface electromyo-
gram (sEMG) [65] sensors. A study that investigated the use
of accelerometer output for estimating the FTM in ET showed
amoderate correlation (r = 0.80), equating to an approximate
model [49].

In this study, we have aimed to improve the estimation of
FTM scores in ET by combining accelerometer and gyro-
scope sensors. After identifying the redundant parameters by
regression analysis of PSD features of the two sensors, mul-
tivariate regression between the FTM clinical score and the
sensor features showed high correlation (r2 = 0.818). From
the observed regression coefficients of the sensor variables,

TABLE 6. SVM classification accuracy for different inputs.

gyro coefficients add considerable value to models based
on accelerometer data alone [13], [14]. In our developed
regressionmodel of wearable IMU sensors that best estimated
the FTM, correlations were high for GR and moderate for AR
and GS.

It has been previously shown that the spectral analysis of
accelerometer signals can effectively discriminate between
ET and healthy controls [66]. ET is dominant over the fre-
quency range of 4-12 Hz, while normal voluntary movement
usually generates frequencies ranging from 0 to 4 Hz [49],
[67]. Thus, the ratio of the PSD computed over the two
frequency bands 4-12Hz and 0.5-4 Hz, for both accelerometer
(AR) and gyro (GR), is an obvious choice. We found a sta-
tistically significant difference between ET and controls for
both these features, as is seen in Table 2. Regression analysis
shows that AR and GR correlate with the FTM score.
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The total PSD in ET is higher than for controls [68],
suggesting that, when performing similar tasks, people with
ET have increased overall motor activity. This is confirmed
by our study, which shows that the PSD of accelerometer
(AS) and gyro (GS), computed over the entire frequency range
of 2Hz to 74Hz, shows statistically significant differences
between ET and healthy controls (Table2). Much of this dif-
ference is explained by the tremor itself within its dominant
frequency range. There may also be changes in the lower
frequencies of voluntary movement from compensatory or
adaptive motor strategies to minimise loss of accuracy during
the spiral drawing task. For accelerometers, the PSD sum
AS and ratio AR features showed strong correlation, with the
redundant sum feature being omitted from the final model.
The summed gyro activity GS across frequencies 2Hz to 74Hz
did, on the other hand, enhance the discriminative properties
of our model, and appears as a term in its equation.

It is essential that sensors have a frequency range appro-
priate to the recording of tremor. Those used in this study
had sampling rate of 148.1 samples/sec, sufficient to cap-
ture ET frequencies in the range 4-12 Hz [49] [58]. We
employed a wireless IMU device that was small (size of case
dimension 27 × 37 × 15 mm), lightweight (14.7 grams) and
well-secured by mounting straps; none of the participants
reported that it impeded their actions. These attributes, plus
durability and long battery life, are suited to remote and
long-term monitoring [12]. With high accuracy and repeata-
bility, and relatively low price, the sensors have advantages
over devices such as smartphones [69]. We believe that a
standard motor task rather than freestyle movement allows
better device-assisted measurement of the severity in ET, and
that spiral drawing is particularly suitable.

The combination of accelerometer and gyro features
of improved the accuracy for differentiating between two
classes, i.e ET and control and between four classes, i.e.
Controls, ET, ET+1 and ET+2 compared with the use of
the use of only the accelerometer. In the two-class problem,
it improved from 85% (reported in our previous study) to
91.42%, while it improved from 57.14% to 68.57% for the
four-class problem. This is in line with the works of other
researchers who have reported similar improvements but for
movement analysis among healthy people only [31], [32],
[33]. While this has potential for being used for measuring
the difference between ET and controls, further improvement
for the four class problem is necessary.

VI. CONCLUSION
This study has shown that by combining accelerometer and
gyroscope data from IMUs placed on the forearm, the FTM
score for people with ET can accurately be estimated. Regres-
sion analysis identified the ratio of PSD in the frequency
bands, 0.5-4 Hz and 4-12Hz for accelerometer and gyroscope
scalars and the total PSD of gyroscope as the most relevant
features (r2 = 0.818). Classification of the combined features
of accelerometer and gyro using SVM, the two-class ET and
controls achieved an accuracy of 91.42% using the features

of AS, GS, and the four class ET-0, ET+1, ET+2, Controls
achieved a classification accuracy of 68.57% using the fea-
tures of AG, GS, Tt. The accuracy of classification using
the combination was better than when using accelerometer
alone. The proposed study has potential for assessment and
monitoring of ET patients, and for use in clinical trials using
commercially available IMU.
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