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Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto 
reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a 
wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due 
to the involvement of human aldose reductases in pathologies, such as diabetic com-
plications and cancer, AKR1B subgroup enzymatic properties have been extensively 
characterized. However, the issue of AKR1B function in non-pathologic conditions 
remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes 
from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and 
isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. 
More recently, some AKR1B isoforms have been shown to be endowed with prosta-
glandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger 
function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of 
the major sites for human and murine AKR1B expression, suggesting that their detox-
ifying/signaling activity could be specifically required for the correct handling of adrenal 
function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes 
encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents 
the molecular mechanisms accounting for the adrenal-specific expression of some 
AKR1B genes. Using data from recent mouse genetic models, we will try to connect 
their enzymatic properties and regulation with adrenal functions.

Keywords: aldose reductase, adrenal physiology, AKR1B

iNTRODUCTiON

The pituitary adrenocorticotropic hormone is the main regulator of adrenal steroidogenesis acting 
through the cAMP-dependent protein kinase (PKA) signaling pathway. The fixation of ACTH second 
messenger, cAMP, on PKA regulatory subunits, leads to the release of catalytic subunits that in turn 
phosphorylate several targets, including transcription factors, such as the CCAAT enhancer-binding 
protein (C/EBP) and the cAMP response element-binding protein (CREB). Acting coordinately 
with tissue-specific factors such as the steroidogenic factor 1 (SF1), they stimulate expression of 
genes encoding enzymes and proteins involved in cholesterol metabolism, mobilization, and trans-
port. In the adrenal cortex, steroidogenesis activation results in the generation of large amount of 
lipid aldehydes i.e., isocaproaldehyde (4-methylpentanal) produced by the CYP11A1 cholesterol 
side-chain cleavage and 4-hydroxynonenal (4-HNE), whose harmfulness has to be supported by 
coordinately regulated detoxifying enzymes. We and other groups have previously observed that 
the adrenal gland is one of the main sites of expression of both murine and human AKR1B proteins 
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TABLe 1 | Comparison of protein sequence identity (%) between human 
(h) and murine (m) AKR1B proteins.

Aldose  
reductases

Aldose reductase-like  
proteins

AKR1 B1 b3 b7 b8 B10 B15 b16

Aldose 
reductases

B1 (h) 100 85.8 71.6 70.7 71 65.1 70.7

b3 (m) 85.8 100 69.7 69.4 70.7 65.4 70.3

Aldose 
reductase-
like proteins

b7 (m) 71.8 69.7 100 82.3 79.8 72.1 84.8

b8 (m) 70.7 69.4 82.3 100 82.3 74.9 82.6

B10 (h) 65.1 70.7 79.8 82.3 100 86 82.9

B15 (h) 65.1 65.4 72.1 74.9 86 100 76.2

b16 (m) 70.7 70.3 84.8 82.6 82.9 76.2 100

The protein sequences were aligned using the Clustal Omega program. The amino 
acid sequences used to achieve this multiple alignment correspond to the accession 
numbers listed in Table 2. 
The Gray shade highlights the necessary 100% identity between 2 identical protein 
sequences.
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(1–3). Aldose reductases are cytosolic monomeric enzymes, 
belonging to the aldo-keto reductase (AKR) superfamily. This 
superfamily encompasses more than 150 NAD(P)(H)-dependent 
oxidoreductases distributed in all prokaryotic and eukaryotic 
kingdoms, including yeast, plant, invertebrates, and vertebrates. 
They catalyze the reduction of carbonyl groups from a wide 
variety of substrates, such as aliphatic and aromatic aldehydes, 
ketones, keto prostaglandins, ketosteroids, and xenobiotics. Based 
on sequence identity, these proteins are divided in 15 families 
termed AKR1–AKR15, each family having less than 40% amino 
acid sequence identity with the others (4–6).

Among the AKR1 family, the aldose reductase subgroup-
designated AKR family 1 member B (AKR1B) is one of the most 
characterized because of its involvement in human diseases, such 
as diabetic complications resulting from the ability of the former 
AKR family 1 member B1 (AKR1B1) to reduce glucose into 
sorbitol in a NADPH + H+-dependent manner during hypergly-
cemia. In addition to glucose conversion, AKR1B proteins display 
multiple other activities, including reduction of aldehyde group of 
by-products derived from lipid peroxidation or steroid synthesis, 
retinoids, xenobiotics, and prostaglandins (1, 7–9). The AKR1B 
subfamily includes proteins sharing a high degree of similarity 
(i.e., more than 65% of identity; Table 1). They are organized in 
two subgroups based on their ability to reduce glucose: aldose 
reductases (AR; AKR1B1–6) and aldose reductase-like proteins 
(ARLP; Akr1b7–19), respectively (4, 10–12). Their structure, enzy-
matic properties, and substrate specificities have been the subject 
of many studies (1, 5, 7, 13–17), emphasizing that in addition 
to their high percentage of identity, they also display redundant 
substrate specificities and overlapping expression patterns. These 
potential redundancies, then, complicate study of their distinct 
biological functions in specific physiological or pathological pro-
cesses. Analysis of murine genetic models and identification of the 
mechanisms regulating their expression are the necessary steps to 
complete our understanding in AKR1Bs biological function.

This review will provide an updated integrative view on 
specific regulations of human and murine aldose reductase 
genes with enzymatic and functional data in the adrenal gland 

physiology [further information on AKR1Bs in other endocrine 
functions is reviewed in Ref. (18)]. Since several studies allowed 
identification of some murine and human aldose reductase 
genes as orthologs, common features will be presented for each 
corresponding pair, and individual isoform specificities will be 
discussed.

HUMAN AND MURiNe AKR1B GeNe 
SYNOPSiS

Human AKR1B Genes
Three human AKR1B genes organized in tandem on chromo-
some 7q33–35 have been identified (Table 2; Figure 1): AKR1B1 
[human aldose reductase (19)], AKR1B10 [also designated as HSI 
reductase: human small intestine reductase (1, 7)], and AKR1B15 
(20). AKR1B1 seems to be ubiquitously expressed, whereas 
AKR1B10 expression was only reported in small intestine, colon, 
liver, thymus, and adrenal gland (1, 7). AKR1B15 gene was recently 
characterized and identified as closely related to the AKR1B1 and 
AKR1B10 cluster on chromosome 7 (Figure 1). AKR1B15 under-
goes alternative splicing, giving rise to two protein isoforms, 
designated as AK1R1B15.1 and AKR1B15.2, expressed in thyroid 
gland and testis, respectively, and both in adipose tissue and 
placenta. AKR1B15.1 transcript encodes a putative protein shar-
ing 68 and 91% sequence identity with AKR1B1 and AKR1B10, 
respectively (21). Both AKR1B15 transcripts were absent from 
human adrenal (20).

Murine Akr1b Genes
Four murine Akr1b genes have been described: Akr1b3 (murine 
aldose reductase), Akr1b7 [previously named MVDP: mouse vas 
deferens protein (22)], Akr1b8 [previously named FR-1: fibroblast 
growth factor (FGF)-related protein (23)], and Akr1b16 (21) 
(Table 2). Murine aldose reductase genes are located on chromo-
some 6 (locus 6B1), and their tandem arrangement suggests (as 
for the three human AKR1Bs) that these four genes arise from 
an ancestral gene duplication event (10, 12) (Figure 1). Several 
studies had allowed identification of murine Akr1b3, Akr1b8 as 
the orthologs of the human AKR1B1 and AKR1B10, respectively. 
However, this phylogenetic analysis between human and mouse 
AR has some limits and will be commented below. AKR1B1, 
Akr1b3, and Akr1b16 are rather ubiquitously expressed (11, 21), 
whereas Akr1b7 and Akr1b8 exhibit a restricted tissue distribu-
tion. Indeed, Akr1b7 is detected in vas deferens, adrenal glands, 
gonads, intestine, white adipose tissue, eye, liver, and kidney (2, 
22, 24–26) and Akr1b8 in testis, heart, adrenal glands, intestine, 
and liver (2, 11, 23).

AKR1B iN ADReNALS: BeTweeN 
DeTOXiFiCATiON AND PARACRiNe 
SiGNALiNG

Akr1b3/AKR1B1: expression Pattern and 
Relevant Functions
In studies using murine adrenal cell lines (Y1 adrenocortical cells 
and MPC862L chromaffin cells), we found that Akr1b3 protein 
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FiGURe 1 | Genomic organization of AKR1B genes in humans and 
mice. In human and mouse genomes, genes encoding aldose reductase are 
located on chromosomes 7 and 6, respectively. Whatever the case, these 
genes are organized in tandem.

TABLe 3 | Localization and regulation of AKR1B in adrenal gland.

isoforms Localization Analyses Control  
by  
ACTH/
cAMP

Transcriptional 
regulators

Reference

Human
AKR1B1 Cortex IHC, RNA 

master 
blot

+ n.d. (1, 27)

AKR1B10 Adrenala RNA 
master 
blot

n.d. n.d. (1)

AKR1B15 n.d. n.d. n.d. n.d. –

Mouse
Akr1b3 Cortex and 

medulla
WB No No (27, 28)

Akr1b7 Cortex NB, WB, 
IHC, ISH

+ Sp1, C/EBPβ, 
SF1

(2, 27, 28, 
55, 58, 67)

Akr1b8 Cortex WB, ISH No No (2, 27, 28)
Akr1b16 n.d. n.d. n.d. n.d. –

aIntra-adrenal tissue localization was not specified.
n.d., not determined; NB, Northern Blot; WB, Western Blot; RT–PCR, reverse 
transcription–polymerase chain reaction; ISH, in situ hybridization; IHC, 
immunohistochemistry; n.d., not determined.
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accumulates in both adrenal cortex and medulla. Moreover, 
in vivo and ex vivo hormonal manipulations demonstrated that 
unlike the other murine Akr1b7 and Akr1b8 isoforms, Akr1b3 
is expressed in the whole gland (27). Finally, cAMP stimulation 
failed to modulate Akr1b3 expression in Y1 cell line, confirming 
that Akr1b3 was insensitive to ACTH signaling (28) (Table 3).

Considering their enzymatic properties and expression levels 
in murine adrenal cortex, Akr1b7 and Akr1b8 are considered 
as the main isocaproaldehyde reductase and 4-HNE reductase, 
respectively, while Akr1b3 could rather participate in the elimina-
tion of these toxic compounds in basal physiological conditions 
(27–29). Moreover, Akr1b3 also displays 9-,11-endoperoxide 
reductase activity that, when coupled to COX-1 (cyclooxygenase 
type 1), allows prostaglandin F2α (PGF2α) synthesis in adrenal 
cortex and medulla (see below).

Despite all these evidences upon Akr1b3 involvement in 
both lipid aldehyde detoxification and PGF2α synthesis, in  vivo 
Akr1b3 gene invalidation (Akr1b3−/− mice) did not highlight any 
phenotype related to adrenal gland (30, 31). The lack of adrenal 
dysfunction in Akr1b3−/− mice may result from the redundancy 
of enzymatic properties carried by the other murine isoforms 
expressed in the gland (Akr1b7 and Akr1b8) that could then 
compensate Akr1b3 loss.

In human adrenal gland, AKR1B1 transcripts have been ini-
tially detected using RNA master blot (1) (Table 3). Thereafter, 
using immunohistochemistry, we confirmed those results and 
demonstrated that AKR1B1 expression pattern is restricted 
to the cortex of adrenal gland (27). Treatment of the human 
adrenocortical tumor cells NC1-H295 with forskolin (adenylyl 
cyclase inducer) allowed us to suggest that similar to the murine 
isoform Akr1b7, AKR1B1 expression was sensitive to ACTH 
(32) (Table  3). The molecular mechanisms and cis-acting ele-
ments responsible for ACTH/cAMP responsiveness of AKR1B1 
gene have not been investigated to date (Figure 2). Analysis of 
AKR1B1 expression in stress-related disorders was not explored 
to date. Moreover, analysis of adrenal samples from Cushing’s 
disease (ACTH-producing pituitary tumor) revealed unchanged 
mRNA levels of AKR1B1 gene (32).

Based on its enzymatic properties, AKR1B1 has long been 
considered as the sole isocaproaldehyde reductase in the human 
adrenal gland (33) (Figure  3A; Table  4). Interestingly, unlike 
murine Akr1b7 isoform, NADPH-dependent isocaproaldehyde 
reductase activity carried by AKR1B1 was inhibited by tolrestat, 
a potent and specific aldose reductase inhibitor belonging to the 
carboxylic acids group of AR inhibitors (13, 29, 33). We demon-
strated that AKR1B1 was also able to convert PGH2 into PGF2α 
(34) (Figure  3C; Table  4). This 9-,11-endoperoxide reductase 
activity is also strictly NADPH-dependent and inhibited by 
tolrestat.

We observed that in the human adrenal gland, AKR1B1 
and the cAMP-inducible COX-2 isoform were co-localized in 
steroidogenic cortical cells (27) (Table 3). Then, we can consider 
that human adrenal cortex has the potential to produce PGF2α 
in response to ACTH surge. The shared properties of human 
AKR1B1 and mouse Akr1b7, such as hormonal regulation and 
reductase activity toward common substrates, prompted us to 
postulate that they can be considered as functional orthologs 

TABLe 2 | Human and murine members of the aldo-keto reductase 
B1 subgroup (AKR1B).

Symbol Common 
associated  
protein 
designation

Species ARN Protein

AKR1B1 Aldose reductase Human NM_001628 NP_001619
Ark1b3 Aldose reductase Mouse NM_009658 NP_033788
Akr1b7 Mouse vas 

deferens protein 
(MVDP)

Mouse NM_009731 NP_033861

Akr1b8 Fibroblast growth 
factor-regulated 
protein 1 (FR-1)

Mouse NM_008012 NP_032038

AKR1B10 Small intestine 
reductase (HSI)

Human NM_020299 NP_064695

AKR1B15 Aldose reductase 
(putative)

Human NM_001080538 NP_001074007

Akr1b16 Aldose reductase 
(putative)

Mouse NM_172398 NP_765986
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FiGURe 2 | Schematic representation of the AKR1B1, AKR1B10, Akr1b3, and Akr1b7 promoters. Cis- and trans-acting factors shown to be involved in 
stress responsiveness are indicated. The DNA-binding site for transcription factors and nuclear receptors required for the Akr1b7-specific expression in adrenal 
gland (pink boxes) are shown. LXR-binding sites are involved in both adrenal and intestine Akr1b7 expression. TonE, tonicity response element; AP1, activator 
protein 1 binding site; ARE, antioxidant response element; C/EBP, CCAAT enhancer binding protein binding site; Sp1, selective promoter factor 1 binding site.
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at least in the adrenal cortex (32). Moreover, increased levels of 
AKR1B1 transcripts in human were observed in adrenocortical 
adenomas harboring glucocorticoid autonomous hypersecretion 
(32). The possibility that AKR1B1 prostaglandin F synthase 
(PGFS) activity could participate in an intra-adrenal feedback 
loop between endocrine activities of cortex and medulla in 
human adrenal gland remains to be explored.

Given the high expression of AKR1B1 in the adrenal cortex, we 
evaluated alterations in its expression in association with human 
adrenal disorders. The relative abundance of AKR1B1 mRNA was 
decreased in adrenocortical carcinomas (ACC) when compared 
to benign tumors, Cushing’s hyperplasia, or normal adrenals (32). 
These data were reinforced by de Reyniès et al., who demonstrated 
that decreased AKR1B1 expression was associated with malig-
nancy using an unsupervised clustering analysis of the human 
adrenal tumors transcriptome (35). This identified AKR1B1 as a 
potential negative marker for adrenocortical malignancy.

Akr1b8/AKR1B10: Phylogeny, Regulation, 
and enzymatic Specificities
Akr1b8 mRNA was initially detected in both fetal and adult murine 
adrenal cortex but remained undetected in the medulla by in situ 
hybridization (2). In fibroblasts as well as in adrenocortical Y1 cell 
line, Akr1b8 was previously shown to be controlled by the FGF 
and phorbol myristate acetate (PMA) (23, 28). On the contrary, 
dexamethasone-induced ACTH suppression did not influence 
Akr1b8 mRNA and protein accumulation (27), suggesting that 
its biological function did not seem to be related to the ACTH-
dependent steroidogenic activity present in adrenocortical cells 
(Table 3). Interestingly, in digestive tract organs, such as liver and 
small intestine, Akr1b8 gene was recently showed to be a target 
of NF-E2-related factor2 (Nrf2), which mediates transcriptional 
response to oxidative stress by binding to antioxidant response 
element (ARE) sites (36). As expected, Akr1b8 expression was 
downregulated in digestive tract from Nrf2 knockout mice. 
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TABLe 4 | Kinetic constants of AKR1B toward isocaproaldehyde, 4-hydroxynonenal, retinaldehyde, and prostaglandin H2.

Substrates isocaproaldehyde 4-hydroxynonenal All-trans-retinaldehyde Prostaglandin H2

Km (μM) kcat (s−1) Km (μM) kcat (s−1) Km (mM) kcat (min−1) Km (μM) Vmax (nmol/min/mg)

Human
AKR1B1 1a 0.66a 716d 0.84d 1.1e 0.35e 1.9f 44f

AKR1B10 330b 0.72b 31d 2.01d 0.6e 27e No activityf

AKRB15 n.d. 2.2g 0.08g 1g 5.4g n.d.

Mouse
Akr1b3 62c 1.3c 665g 0.82d 1.0e 0.52e 26f 26f

Akr1b7 320c 0.38c 256g 0.1d 0.5e 0.02e 53.4f 53.4f

Akr1b8 71c 0.03c 230g 3.18d 2.1e 0.05e No activityf

Akr1b16 n.d. n.d. n.d. n.d.

n.d., not determined.
Reference: a(33); b(40); c(28); d(11); e(12); f(34); g(14).

FiGURe 3 | Schematic diagrams of enzymatic reactions illustrating AKR1B involvement toward lipid aldehyde detoxification (A), retinoids (B), and 
prostaglandins (C) metabolism. All the indicated substrates and enzymatic activities are supposed to coexist in the adrenal glands, but their relative importance in 
adrenal function remains unknown so far. AKR1B isoforms endowed with each of these activities are indicated in green.
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However, no adrenal phenotype was described in these mice, and 
neither oxidative stress nor Nrf2 have been involved in adrenal 
Akr1b8 expression so far.

Previous studies demonstrated that some AKR1B proteins 
showed efficient catalytic activity for the reduction of the abundant 
and highly reactive lipid-derived aldehyde 4-hydroxy-2-nonenal 
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and the phospholipid aldehydes (17). In particular, Akr1b8 
displays the most efficient phospholipid aldehyde and HNE-
reductase activity in mouse tissues (17, 28, 37) (Figure  3; 
Table  4). All these enzymatic data suggest that in the adrenal 
cortex, Akr1b8 isoform could be devoted to detoxify aldehyde 
lipids abundantly accumulated in this tissue (38). Furthermore, 
expression of an antisense RNA directed against Akr1b7 sup-
pressed isocaproaldehyde reductase activity in adrenocortical 
Y1 cells without any alteration of Akr1b8 protein accumulation 
(29). In view of its enzymatic features and constitutive expression, 
Akr1b8 is unlikely to be the principal isocaproaldehyde reductase 
in the adrenocortical gland (28). Akr1b8 gene disruption in mice 
led to reduced lipid synthesis and diminished proliferation of 
colonic epithelial cells but had no evident effect on general 
appearance, body weight, and reproduction. However, in  vivo 
adrenal Akr1b8 physiological role remains to be examined since 
Akr1b8 gene disruption first report did not notice evident effect 
on the adrenal physiology (39).

Whether Akr1b8 and human AKR1B10 gene can be consid-
ered as ortholog is still a matter of debate since they share high 
sequence identity, and proteins display several close structural 
and enzymatic properties (11) (Tables 1 and 4). In contrast to 
Akr1b8, AKR1B10 gene expression is not controlled by FGF 
(12). Although AKR1B10 mRNA was initially detected in 
adrenal glands using a human RNA Master Blot, to date, there 
is no more information available on its in situ localization and 
transcriptional control in this organ (1). Moreover, AKR1B10 
gene expression pattern only partially overlaps that of Akr1b8, 
since AKR1B10 transcripts are absent from heart, lung, or 
testis (7, 11).

Comparative studies demonstrated that AKR1B10 exhibits 
higher 4-HNE-reductase activity than AKR1B1, while lower than 
the murine Akr1b8 (11, 16). Ex vivo studies revealed that both 
human AKR1B1 and -B10 also share the ability to reduce iso-
caproaldehyde (1, 40). Nevertheless, in a comparative enzymatic 
study, Hara and colleagues showed that AKR1B1 had a more 
effective isocaproaldehyde reductase activity than AKR1B10, 
suggesting that in human steroidogenic organs, the latter was 
unlikely to play a major role in the detoxification of steroidogenic 
by-products (41).

The AKR superfamily has been added as a novel group of 
cytosolic enzymes that could contribute to retinoid–redox con-
version. Based on their cofactor specificity (NADPH), AKR work 
in the reductive direction (42). Retinol (vitamin A) and its deriva-
tives, retinaldehyde and retinoic acid (RA), are essential for the 
growth and maintenance of many tissues. RA is a key molecule in 
the development of different vertebrate organs by promoting cell 
differentiation and apoptosis. The control of retinaldehyde levels 
is essential in the regulation of RA synthesis and therefore of its 
signaling role. Once synthesized from β-carotene through the 
β-carotene 15,15′ monooxygenase 1 (BCO1), retinaldehyde has 
two alternative fates, its irreversible oxidation to RA (metabolism 
fate) by the aldehyde dehydrogenases (ADH) or its reduction back 
to retinol (storage fate) by the retinaldehyde reductase activity of 
AKR (43) (Figure 3B; Table 4). Comparative in vitro enzymatic 
studies on murine and human AKRs have fairly evidenced that 
among AKR1B proteins, AKR1B10 is so far the only retinaldehyde 

reductase with the highest kcat value for the retinaldehyde reduc-
tion (11, 12, 44). Ex vivo AKR1B10 overexpression in different 
cell systems demonstrated its contribution in increasing retinol 
production (45, 46). In rodent, previous data evidenced that nor-
mal adrenal gland may function as an important site of retinoic 
acid synthesis involving class I- and IV-ADH, thus furthering 
retinaldehyde metabolism rather than its storage through the 
AKR activity (47). According to its expression, whether the 
well-established retinaldehyde reductase activity of AKR1B10 
is operated in normal human adrenal physiology remains to be 
explored.

AKR1B10 expression was initially characterized in hepatocel-
lular carcinoma and subsequently found to be altered by tumo-
rigenesis process in several other organs (7, 48–50). Moreover, 
AKR1B10 expression was associated with smoker’s non-small 
cell lung carcinomas (48) and was suggested to be involved in 
drug resistance (51). A putative mechanism by which the activity 
of AKR1B enzymes could promote tumor growth is the conver-
sion of retinaldehyde to retinol resulting in RA deprivation and 
blockage of its differentiating effect, promoting cell proliferation 
and fostering tumorigenesis (43). Furthermore, recent studies 
have shown that in breast cancer cells, AKR1B10 associates 
with acetyl-CoA carboxylase-alpha (ACCA), the rate-limiting 
enzyme of de novo synthesis of long-chain fatty acids, and blocks 
its ubiquitination and proteasome degradation. Long-chain fatty 
acids are the building blocks of biomembranes and the precursor 
of lipid second messengers, playing a critical role in cell growth 
and proliferation (52). The AKR1B10-mediated regulation on 
ACCA stability represents a novel regulatory mechanism, in 
which AKR1B10 promotes cell survival via modulating lipid 
synthesis, mitochondrial function, oxidative stress, and carbonyl 
levels (53).

Adrenocortical carcinomas are very aggressive and rare 
malignant tumors with poor prognosis (54). Microarray analy-
sis was used to seek molecular predictors of malignancy and 
survival in a large cohort of unilateral adrenocortical tumors 
(http://www.ebi.ac.uk/arrayexpress, experiment E-TABM-311). 
Unsupervised clustering analysis allowed robust discrimination 
of malignant and benign tumors. On the basis of this analysis, 
AKR1B10 expression was not found to be associated with the 
ACC group (35).

Akr1b7: expression Profile, Detoxification 
Function, and Paracrine Action
High levels of Akr1b7 transcripts were initially observed by in situ 
hybridization in fetal and adult murine adrenal cortex but were 
undetectable in the medulla (2). We confirmed these results by 
immunohistochemistry experiments, which allowed us to further 
restrict major Akr1b7 expression to the zona fasciculata (55). In 
vivo, ACTH suppression with dexamethasone treatment resulted 
in a marked decrease of Akr1b7 mRNA levels that were restored 
when the treated mice were injected with exogenous ACTH. This 
ACTH/cAMP-induced Akr1b7 transcription was blocked by a 
PKA inhibitor (H89) in the murine adrenocortical ATC and Y1 
cell lines (55, 56).

In the adrenal gland, basal and ACTH-induced expressions of 
Akr1b7 gene depend on three SF1 response element (SFRE) and 
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FiGURe 4 | Proposed model integrating dual functions of aldose 
reductases in the regulation of mouse adrenal endocrine functions 
[adapted from Ref. (18)]. AKR1B family is endowed with enzymatic 
activities that at least ensure two metabolic functions: the production of 
PGF2α and the detoxification of lipid aldehydes. Arachidonic acid (AA) is 
metabolized into PGH2, the precursor of all prostanoids, by COX enzymes 
and then converted into PGF2α by the 9-,11-endoperoxyde reductase activity 
of PGF synthases of the AKR1B family. AKR1B are also capable to reduce 
toxic lipid aldehydes resulting from the particularly high prooxidant activities 
of P450 cytochromes in adrenocortical cells (i.e., isocaproaldehyde and 
4-HNE). The mechanism integrating these dual functions was the following: 
(1) In basal conditions, PGF2α is constitutively secreted by chromaffin cells (by 
the coupling of COX-1 and Akr1b3), thus regulating catecholamine 
production and also limiting their paracrine action on steroidogenesis. 
(2) During a stress situation, ACTH transiently induces COX-2 and Akr1b7 
expression, which results in PGF2α production inside the cortex. PGF2α 
produced in the cortex then represses catecholamine release by the medulla 
via a paracrine action on its FP receptor. Decreased catecholamine release in 
turn reduces the effect of ACTH on glucocorticoids production (27). After the 
stress response has ended, COX-2 returns to undetectable levels. The 
coupling between Akr1b7 and COX-2 does not take place. Then, Akr1b7 
together with Akr1b8 and Akr1b3 function only as cortical detoxifying 
enzymes of the harmful aldehydes produced under chronic/basal stimulation 
of steroidogenesis. Catecho, catecholamine; Glucocort, glucocorticoids.
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on other cis-elements located in the upstream promoter region 
(Figure 3). Using transgenic mice and transfection experiments, 
we characterized a cryptic SFRE 102 bp upstream of the tran-
scription start site that supports basal expression of Akr1b7 in the 
adrenal cortex. Among the two other SFREs identified further 
upstream, the site at −458 was a bona fide SFRE, essential for 
both basal and cAMP-stimulated promoter activity. The last 
SFRE, an Sp1, and C/EBPβ binding sites, respectively, local-
ized at positions −503, −52, and −61 are all involved in cAMP 
responsiveness (57, 58).

AKR1Bs are capable to handle the large amount of iso-
caproaldehyde, a toxic by-product coming from the cholesterol 
side-chain cleavage during the initial step of steroid biosynthesis. 
Furthermore, isocaproaldehyde accumulation decreased viability 
of Y1 cells (29). Although Akr1b3, Akr1b7, and Akr1b8 all were 
able to reduce isocaproaldehyde, the two former seemed to be 
the more efficient reductases for this substrate (28). However, 
the silencing of Akr1b7 gene was sufficient to abolish the 
cAMP-induced isocaproaldehyde reductase activity in Y1 cells. 
Therefore, Akr1b7 was the main enzyme in charge of isocaproal-
dehyde detoxification in the adrenal cortex (29). Altogether, these 
data showed that in the adrenal cortex, ACTH not only controls 
expression of enzymes synthetizing steroids but also of proteins 
scavenging toxic by-products derived from steroidogenesis.

Madore et al. established that the bovine 20α-hydroxysteroid 
dehydrogenase, AKR1B5 was responsible for PGF2α synthesis in 
the endometrium (59). Thereafter, we demonstrated by ex vivo 
studies, that AKR1B1, Akr1b3, and Akr1b7 were also able to 
reduce PGH2 into PGF2α, whereas Akr1b8 and AKR1B10 were 
devoid of this PGF2α synthase activity (Table  4). Due to their 
recent discovery, this 9-,11-endoperoxide reductase activity has 
not been investigated yet for Akr1b16 and AKR1B15. Moreover, 
their enzymatic constants suggested that AKR1B1, Akr1b3, and 
Akr1b7 had a higher 9-,11-endoperoxide reductase activity than 
the other PGF synthases already described (34). Prostaglandins 
are paracrine/autocrine signal molecules produced from a com-
mon precursor, PGH2, which is derived from arachidonic acid 
by COX-1 or COX-2. Unlike COX-1, which is a constitutively 
expressed enzyme, COX-2 is not expressed in most organs under 
basal conditions but can be stimulated by inflammation and 
various mitogenic factors (60). Following these observations, we 
carefully examined the PGF2α biosynthetic pathway in the adrenal 
gland (27).

Prostaglandin F2α was produced by both cortical (steroido-
genic cells) and medullary (chromaffin cells) tissue of the adrenal 
gland. In primary adrenocortical cell culture, PGF2α release was 
induced 2.5-fold by ACTH treatment. This secretion was correlated 
with ACTH responsiveness of both COX-2 and Akr1b7. Using ex 
vivo gain- and loss-of-function strategies, we demonstrated the 
pivotal role of Akr1b7 in ACTH-induced PGF2α release, and it 
is functionally coupled with COX-2. In the adrenal medulla in 
which Akr1b7 was not expressed, PGF2α was produced from the 
coordinated activities of Akr1b3 and COX-1. Adrenal expression 
of PGF2α-specific receptor (FP) was restricted to the chromaffin 
cells, suggesting that both autocrine and paracrine mechanisms 
(within the medulla and between steroidogenic and medulla cells, 
respectively) were relaying PGF2α action. In agreement with this 

hypothesis, we demonstrated that PGF2α repressed both basal 
and glucocorticoid-induced dopamine release in the chromaffin 
cell line MPC862L. Comparison of the PGF2α-responsiveness 
of isolated cells and whole adrenal tissue cultures showed that 
PGF2α-mediated repression of glucocorticoid release is an indi-
rect mechanism relying on a decrease in catecholamine secretion, 
which in turn decreased cortical steroidogenesis.

These functional data led us to propose an intra-adrenal 
feedback loop in which adrenal endocrine activities are regulated 
through the involvement of AKRs [Figure  4 and Ref. (18)]. 
Surprisingly, however, the absence of Akr1b7 in  vivo did not 
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affect basal adrenocortical function as illustrated by normal 
glucocorticoid plasma levels in Akr1b7−/− mice (61). Indeed, these 
mice displayed an obese phenotype that did not rely on adrenal 
dysfunction but on the lack of Akr1b7-dependent production of 
PGF2α within the stromal vascular adipose tissue (3, 61). Adrenal 
expression of Akr1b3 and b8 is not affected in knockout mice 
and since they all share redundant enzymatic activities regard-
ing detoxification of lipid aldehydes (see Akr1b3/AKR1B1: 
Expression Pattern and Relevant Functions and Akr1b8/
AKR1B10: Phylogeny, Regulation, and Enzymatic Specificities), 
the remaining isoforms can compensate the absence of Akr1b7 
at least in basal conditions. Importantly, Akr1b7 is the only one 
out of the three adrenal isoforms to be ACTH-responsive (27) 
and also the most abundantly expressed (3). Taken together, these 
hallmarks would predict that physiological importance of Akr1b 
enzymes in adrenal function should be rather explored under 
stress conditions during which scavenging capacity of constitu-
tive (and less abundant) isoforms should be exhausted.

FUTURe DiReCTiONS

Fighting against oxidative stress is a challenging but mandatory 
task for adrenocortical cells. Indeed, P450 cytochrome systems 
involved in steroidogenesis, and in particular glucocorticoid 
production, contribute very significantly to oxidative stress by 
cellular reactive oxygen species (ROS) production (62). The 
redox imbalance due to excessive ROS production can cause 
adrenal damage that may progress to severe insufficiency, 
including familial glucocorticoid deficiency (FGD). Therefore, 
adrenal cortex is well supplied in antioxidant defense genes 
encoding enzymes of the superoxide dismutase (SOD), glu-
tathione peroxidase (GPX), and peroxiredoxin (PRDX) families 

[for review, see Ref. (63)]. Since the precursor works of Feige’s 
group showing the ACTH responsiveness of SOD2 expression, 
the expected coordinated regulation of antioxidant enzymatic 
systems and P450s systems producing prooxidant by-products 
has been somewhat neglected (64). Accordingly, AKR1B 
enzymes family may be considered as antioxidant defense genes. 
Among these, ACTH-responsive ones, e.g., Akr1b7 and SOD2 
genes, could participate in the adaptive response of antioxidant 
systems of adrenal cortex under stress conditions. Disturbance 
in redox homeostasis was the most recently discovered cause 
of FGD and mutations in NNT gene (nicotinamide nucleotide 
transhydrogenase) account for about 10% of cases (65). NNT 
ensures mitochondrial NADPH supply that is essential to ROS 
detoxification enzymatic systems. Then, it would be interesting to 
know whether adrenal-specific deficit in AKR1B enzymes could 
contribute to cortical damage or adrenal insufficiency in mice 
carrying a spontaneous Nnt mutation (66). This could provide 
the proof of principle for studying the physiological contribution 
of AKR1B family in detoxifying function in steroidogenic organs 
and beyond.

AUTHOR CONTRiBUTiONS

All authors listed have made substantial, direct, and intellectual 
contribution to the work and approved it for publication.

FUNDiNG

This work was supported by funds from the Centre National de la 
Recherche Scientifique, Clermont Université, Institut National de 
la Santé et de la Recherche Médicale and grant from the Région 
Auvergne.

ReFeReNCeS

1. Hyndman DJ, Flynn TG. Sequence and expression levels in human tissues of 
a new member of the aldo-keto reductase family. Biochim Biophys Acta (1998) 
1399:198–202. doi:10.1016/S0167-4781(98)00109-2 

2. Lau ET, Cao D, Lin C, Chung SK, Chung SS. Tissue-specific expression of 
two aldose reductase-like genes in mice: abundant expression of mouse vas 
deferens protein and fibroblast growth factor-regulated protein in the adrenal 
gland. Biochem J (1995) 312(Pt 2):609–15. doi:10.1042/bj3120609 

3. Pastel E, Pointud JC, Loubeau G, Dani C, Slim K, Martin G, et al. Aldose 
reductases influence prostaglandin F2α levels and adipocyte differentiation 
in male mouse and human species. Endocrinology (2015) 156:1671–84. 
doi:10.1210/en.2014-1750 

4. Hyndman D, Bauman DR, Heredia VV, Penning TM. The aldo-keto reduc-
tase superfamily homepage. Chem Biol Interact (2003) 14(3–144):621–31. 
doi:10.1016/S0009-2797(02)00193-X 

5. Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM. Comparative anatomy 
of the aldo-keto reductase superfamily. Biochem J (1997) 326(Pt 3):625–36. 
doi:10.1042/bj3260625 

6. Jez JM, Flynn TG, Penning TM. A new nomenclature for the aldo-keto 
reductase superfamily. Biochem Pharmacol (1997) 54:639–47. doi:10.1016/
S0006-2952(97)84253-0 

7. Cao D, Fan ST, Chung SS. Identification and characterization of a novel human 
aldose reductase-like gene. J Biol Chem (1998) 273:11429–35. doi:10.1074/
jbc.273.19.11429 

8. Jin Y, Penning TM. Aldo-keto reductases and bioactivation/detoxication. 
Annu Rev Pharmacol Toxicol (2007) 47:263–92. doi:10.1146/annurev.pharmtox. 
47.120505.105337 

9. Petrash JM. All in the family: aldose reductase and closely related aldo-keto 
reductases. Cell Mol Life Sci (2004) 61:737–49. doi:10.1007/s00018-003- 
3402-3 

10. Ho HT, Jenkins NA, Copeland NG, Gilbert DJ, Winkles JA, Louie HW, et al. 
Comparisons of genomic structures and chromosomal locations of the mouse 
aldose reductase and aldose reductase-like genes. Eur J Biochem (1999) 
259:726–30. doi:10.1046/j.1432-1327.1999.00110.x 

11. Joshi A, Rajput S, Wang C, Ma J, Cao D. Murine aldo-keto reductase family 
1 subfamily B: identification of AKR1B8 as an ortholog of human AKR1B10. 
Biol Chem (2010) 391:1371–8. doi:10.1515/BC.2010.144 

12. Ruiz FX, Moro A, Gallego O, Ardèvol A, Rovira C, Petrash JM, et al. Human 
and rodent aldo-keto reductases from the AKR1B subfamily and their specific-
ity with retinaldehyde. Chem Biol Interact (2011) 191:199–205. doi:10.1016/j.
cbi.2011.02.007 

13. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily 
and its role in drug metabolism and detoxification. Drug Metab Rev (2008) 
40:553–624. doi:10.1080/03602530802431439 

14. Giménez-Dejoz J, Kolář MH, Ruiz FX, Crespo I, Cousido-Siah A, 
Podjarny  A,  et al. Substrate specificity, inhibitor selectivity and structure- 
function   relationships of aldo-keto reductase 1B15: a novel human retinal-
dehyde reductase. PLoS One (2015) 10:e0134506. doi:10.1371/journal.pone. 
0134506 

15. Penning TM. The aldo-keto reductases (AKRs): overview. Chem Biol Interact 
(2015) 234:236–46. doi:10.1016/j.cbi.2014.09.024 

16. Shen Y, Zhong L, Johnson S, Cao D. Human aldo-keto reductases 1B1 and 
1B10: a comparative study on their enzyme activity toward electrophilic 
carbonyl compounds. Chem Biol Interact (2011) 191:192–8. doi:10.1016/j.
cbi.2011.02.004 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://dx.doi.org/10.1016/S0167-4781(98)00109-2
http://dx.doi.org/10.1042/bj3120609
http://dx.doi.org/10.1210/en.2014-1750
http://dx.doi.org/10.1016/S0009-2797(02)00193-X
http://dx.doi.org/10.1042/bj3260625
http://dx.doi.org/10.1016/S0006-2952(97)84253-0
http://dx.doi.org/10.1016/S0006-2952(97)84253-0
http://dx.doi.org/10.1074/jbc.273.19.11429
http://dx.doi.org/10.1074/jbc.273.19.11429
http://dx.doi.org/10.1146/annurev.pharmtox.
47.120505.105337
http://dx.doi.org/10.1146/annurev.pharmtox.
47.120505.105337
http://dx.doi.org/10.1007/s00018-003-
3402-3
http://dx.doi.org/10.1007/s00018-003-
3402-3
http://dx.doi.org/10.1046/j.1432-1327.1999.00110.x
http://dx.doi.org/10.1515/BC.2010.144
http://dx.doi.org/10.1016/j.cbi.2011.02.007
http://dx.doi.org/10.1016/j.cbi.2011.02.007
http://dx.doi.org/10.1080/03602530802431439
http://dx.doi.org/10.1371/journal.pone.
0134506
http://dx.doi.org/10.1371/journal.pone.
0134506
http://dx.doi.org/10.1016/j.cbi.2014.09.024
http://dx.doi.org/10.1016/j.cbi.2011.02.004
http://dx.doi.org/10.1016/j.cbi.2011.02.004


9

Pastel et al. AKR1B in Adrenal

Frontiers in Endocrinology | www.frontiersin.org July 2016 | Volume 7 | Article 97

17. Spite M, Baba SP, Ahmed Y, Barski OA, Nijhawan K, Petrash JM, et al. Substrate 
specificity and catalytic efficiency of aldo-keto reductases with phospholipid 
aldehydes. Biochem J (2007) 405:95–105. doi:10.1042/BJ20061743 

18. Pastel E, Pointud JC, Volat F, Martinez A, Lefrançois-Martinez AM. Aldo-keto 
reductases 1B in endocrinology and metabolism. Front Pharmacol (2012) 
3:148. doi:10.3389/fphar.2012.00148 

19. Bohren KM, Bullock B, Wermuth B, Gabbay KH. The aldo-keto reductase 
superfamily. cDNAs and deduced amino acid sequences of human aldehyde 
and aldose reductases. J Biol Chem (1989) 264:9547–51. 

20. Weber S, Salabei JK, Möller G, Kremmer E, Bhatnagar A, Adamski J, et al. 
Aldo-keto Reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto 
reductase with activity toward steroids and 3-keto-acyl-CoA conjugates. J Biol 
Chem (2015) 290:6531–45. doi:10.1074/jbc.M114.610121 

21. Salabei JK, Li X-P, Petrash JM, Bhatnagar A, Barski OA. Functional expres-
sion of novel human and murine AKR1B genes. Chem Biol Interact (2011) 
191:177–84. doi:10.1016/j.cbi.2011.01.020 

22. Pailhoux EA, Martinez A, Veyssiere GM, Jean CG. Androgen-dependent 
protein from mouse vas deferens. cDNA cloning and protein homology with 
the aldo-keto reductase superfamily. J Biol Chem (1990) 265:19932–6. 

23. Donohue PJ, Alberts GF, Hampton BS, Winkles JA. A delayed-early gene 
activated by fibroblast growth factor-1 encodes a protein related to aldose 
reductase. J Biol Chem (1994) 269:8604–9. 

24. Brunskill EW, Sequeira-Lopez MLS, Pentz ES, Lin E, Yu J, Aronow BJ, et 
al. Genes that confer the identity of the renin cell. J Am Soc Nephrol (2011) 
22:2213–25. doi:10.1681/ASN.2011040401 

25. Schmidt DR, Schmidt S, Holmstrom SR, Makishima M, Yu RT, Cummins CL, 
et al. AKR1B7 is induced by the farnesoid X receptor and metabolizes bile 
acids. J Biol Chem (2011) 286:2425–32. doi:10.1074/jbc.M110.181230 

26. Tirard J, Gout J, Lefrancois-Martinez AM, Martinez A, Begeot M, Naville D. 
A novel inhibitory protein in adipose tissue, the aldo-keto reductase AKR1B7: 
its role in adipogenesis. Endocrinology (2007) 148:1996–2005. doi:10.1210/
en.2006-1707 

27. Lambert-Langlais S, Pointud JC, Lefrancois-Martinez AM, Volat F, Manin M, 
Coudore F, et al. Aldo keto reductase 1B7 and prostaglandin F2alpha are reg-
ulators of adrenal endocrine functions. PLoS One (2009) 4:e7309. doi:10.1371/
journal.pone.0007309 

28. Martinez A, Aigueperse C, Val P, Dussault M, Tournaire C, Berger M, et al. 
Physiological functions and hormonal regulation of mouse vas deferens 
protein (AKR1B7) in steroidogenic tissues. Chem Biol Interact (2001) 
13(0–132):903–17. doi:10.1016/S0009-2797(00)00244-1 

29. Lefrancois-Martinez AM, Tournaire C, Martinez A, Berger M, Daoudal S, 
Tritsch D, et al. Product of side-chain cleavage of cholesterol, isocaproal-
dehyde, is an endogenous specific substrate of mouse vas deferens protein, 
an aldose reductase-like protein in adrenocortical cells. J Biol Chem (1999) 
274:32875–80. doi:10.1074/jbc.274.46.32875 

30. Aida K, Ikegishi Y, Chen J, Tawata M, Ito S, Maeda S, et al. Disruption of aldose 
reductase gene (Akr1b1) causes defect in urinary concentrating ability and 
divalent cation homeostasis. Biochem Biophys Res Commun (2000) 277:281–6. 
doi:10.1006/bbrc.2000.3648 

31. Ho HT, Chung SK, Law JW, Ko BC, Tam SC, Brooks HL, et al. Aldose reduc-
tase-deficient mice develop nephrogenic diabetes insipidus. Mol Cell Biol 
(2000) 20:5840–6. doi:10.1128/MCB.20.16.5840-5846.2000 

32. Lefrancois-Martinez AM, Bertherat J, Val P, Tournaire C, Gallo-Payet N, 
Hyndman D, et al. Decreased expression of cyclic adenosine monophos-
phate-regulated aldose reductase (AKR1B1) is associated with malignancy 
in human sporadic adrenocortical tumors. J Clin Endocrinol Metab (2004) 
89:3010–9. doi:10.1210/jc.2003-031830 

33. Matsuura K, Deyashiki Y, Bunai Y, Ohya I, Hara A. Aldose reductase is a 
major reductase for isocaproaldehyde, a product of side-chain cleavage of 
cholesterol, in human and animal adrenal glands. Arch Biochem Biophys 
(1996) 328:265–71. doi:10.1006/abbi.1996.0172 

34. Kabututu Z, Manin M, Pointud JC, Maruyama T, Nagata N, Lambert S, et al. 
Prostaglandin F2{alpha} synthase activities of aldo-keto reductase 1B1, 1B3 
and 1B7. J Biochem (2009) 145:161–8. doi:10.1093/jb/mvn152 

35. de Reyniès A, Assié G, Rickman DS, Tissier F, Groussin L, René-Corail F, 
et al. Gene expression profiling reveals a new classification of adrenocortical 
tumors and identifies molecular predictors of malignancy and survival. J Clin 
Oncol (2009) 27:1108–15. doi:10.1200/JCO.2008.18.5678 

36. Luo L, Chen Y, Wu D, Shou J, Wang S, Ye J, et al. Butylated hydroxyanisole 
induces distinct expression patterns of Nrf2 and detoxification enzymes in 
the liver and small intestine of C57BL/6 mice. Toxicol Appl Pharmacol (2015) 
288:339–48. doi:10.1016/j.taap.2015.08.006 

37. Srivastava S, Chandra A, Ansari NH, Srivastava SK, Bhatnagar A. Identification 
of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxida-
tion-derived aldehyde-4-hydroxynonenal. Biochem J (1998) 329(Pt 3):469–75. 
doi:10.1042/bj3290469 

38. Burczynski JM, Hayes JR, Longhurst PA, Colby HD. Species differences in 
adrenal lipid peroxidation: role of alpha-tocopherol. Free Radic Biol Med 
(1999) 26:987–91. doi:10.1016/S0891-5849(98)00289-5 

39. Shen Y, Ma J, Yan R, Ling H, Li X, Yang W, et al. Impaired self-renewal 
and increased colitis and dysplastic lesions in colonic mucosa of AKR1B8-
deficient mice. Clin Cancer Res (2015) 21:1466–76. doi:10.1158/1078-0432.
CCR-14-2072 

40. Martin H-J, Maser E. Role of human aldo-keto-reductase AKR1B10 in the 
protection against toxic aldehydes. Chem Biol Interact (2009) 178:145–50. 
doi:10.1016/j.cbi.2008.10.021 

41. Endo S, Matsunaga T, Mamiya H, Ohta C, Soda M, Kitade Y, et al. Kinetic 
studies of AKR1B10, human aldose reductase-like protein: endogenous 
substrates and inhibition by steroids. Arch Biochem Biophys (2009) 487:1–9. 
doi:10.1016/j.abb.2009.05.009 

42. Crosas B, Cederlund E, Torres D, Jornvall H, Farres J, Pares X. A vertebrate 
aldo-keto reductase active with retinoids and ethanol. J Biol Chem (2001) 
276:19132–40. doi:10.1074/jbc.M010478200 

43. Ruiz FX, Porté S, Parés X, Farrés J. Biological role of aldo-keto reductases 
in retinoic acid biosynthesis and signaling. Front Pharmacol (2012) 3:58. 
doi:10.3389/fphar.2012.00058 

44. Crosas B, Hyndman DJ, Gallego O, Martras S, Parés X, Flynn TG, et al. Human 
aldose reductase and human small intestine aldose reductase are efficient 
retinal reductases: consequences for retinoid metabolism. Biochem J (2003) 
373:973–9. doi:10.1042/BJ20021818 

45. Gallego O, Ruiz FX, Ardèvol A, Domínguez M, Alvarez R, de Lera AR, et al. 
Structural basis for the high all-trans-retinaldehyde reductase activity of 
the tumor marker AKR1B10. Proc Natl Acad Sci U S A (2007) 104:20764–9. 
doi:10.1073/pnas.0705659105 

46. Wang R, Wang G, Ricard MJ, Ferris B, Strulovici-Barel Y, Salit J, et al. Smoking-
induced upregulation of AKR1B10 expression in the airway epithelium of 
healthy individuals. Chest (2010) 138:1402–10. doi:10.1378/chest.09-2634 

47. Haselbeck RJ, Ang HL, Deltour L, Duester G. Retinoic acid and alcohol/retinol 
dehydrogenase in the mouse adrenal gland: a potential endocrine source 
of retinoic acid during development. Endocrinology (1997) 138:3035–41. 
doi:10.1210/endo.138.7.5274 

48. Fukumoto S, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J, 
et al. Overexpression of the aldo-keto reductase family protein AKR1B10 is 
highly correlated with smokers’ non-small cell lung carcinomas. Clin Cancer 
Res (2005) 11:1776–85. doi:10.1158/1078-0432.CCR-04-1238 

49. Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, et al. 
Identification and validation of genes involved in gastric tumorigenesis. 
Cancer Cell Int (2010) 10:45. doi:10.1186/1475-2867-10-45 

50. Yoshitake H, Takahashi M, Ishikawa H, Nojima M, Iwanari H, Watanabe A, 
et al. Aldo-keto reductase family 1, member B10 in uterine carcinomas: a 
potential risk factor of recurrence after surgical therapy in cervical cancer. 
Int J Gynecol Cancer (2007) 17:1300–6. doi:10.1111/j.1525-1438.2007.00932.x 

51. Matsunaga T, Wada Y, Endo S, Soda M, El-Kabbani O, Hara A. Aldo-keto 
reductase 1B10 and its role in proliferation capacity of drug-resistant cancers. 
Front Pharmacol (2012) 3:5. doi:10.3389/fphar.2012.00005 

52. Ma J, Yan R, Zu X, Cheng JM, Rao K, Liao DF, et al. Aldo-keto reductase family 
1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA 
carboxylase-alpha in breast cancer cells. J Biol Chem (2008) 283:3418–23. 
doi:10.1074/jbc.M707650200 

53. Wang C, Yan R, Luo D, Watabe K, Liao DF, Cao D. Aldo-keto reductase 
family 1 member B10 promotes cell survival by regulating lipid synthesis 
and eliminating carbonyls. J Biol Chem (2009) 284:26742–8. doi:10.1074/jbc.
M109.022897 

54. Libè R, Fratticci A, Bertherat J. Adrenocortical cancer: pathophysiology and 
clinical management. Endocr Relat Cancer (2007) 14:13–28. doi:10.1677/
erc.1.01130 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://dx.doi.org/10.1042/BJ20061743
http://dx.doi.org/10.3389/fphar.2012.00148
http://dx.doi.org/10.1074/jbc.M114.610121
http://dx.doi.org/10.1016/j.cbi.2011.01.020
http://dx.doi.org/10.1681/ASN.2011040401
http://dx.doi.org/10.1074/jbc.M110.181230
http://dx.doi.org/10.1210/en.2006-1707
http://dx.doi.org/10.1210/en.2006-1707
http://dx.doi.org/10.1371/journal.pone.0007309
http://dx.doi.org/10.1371/journal.pone.0007309
http://dx.doi.org/10.1016/S0009-2797(00)00244-1
http://dx.doi.org/10.1074/jbc.274.46.32875
http://dx.doi.org/10.1006/bbrc.2000.3648
http://dx.doi.org/10.1128/MCB.20.16.5840-5846.2000
http://dx.doi.org/10.1210/jc.2003-031830
http://dx.doi.org/10.1006/abbi.1996.0172
http://dx.doi.org/10.1093/jb/mvn152
http://dx.doi.org/10.1200/JCO.2008.18.5678
http://dx.doi.org/10.1016/j.taap.2015.08.006
http://dx.doi.org/10.1042/bj3290469
http://dx.doi.org/10.1016/S0891-5849(98)00289-5
http://dx.doi.org/10.1158/1078-0432.CCR-14-2072
http://dx.doi.org/10.1158/1078-0432.CCR-14-2072
http://dx.doi.org/10.1016/j.cbi.2008.10.021
http://dx.doi.org/10.1016/j.abb.2009.05.009
http://dx.doi.org/10.1074/jbc.M010478200
http://dx.doi.org/10.3389/fphar.2012.00058
http://dx.doi.org/10.1042/BJ20021818
http://dx.doi.org/10.1073/pnas.0705659105
http://dx.doi.org/10.1378/chest.09-2634
http://dx.doi.org/10.1210/endo.138.7.5274
http://dx.doi.org/10.1158/1078-0432.CCR-04-1238
http://dx.doi.org/10.1186/1475-2867-10-45
http://dx.doi.org/10.1111/j.1525-1438.2007.00932.x
http://dx.doi.org/10.3389/fphar.2012.00005
http://dx.doi.org/10.1074/jbc.M707650200
http://dx.doi.org/10.1074/jbc.M109.022897
http://dx.doi.org/10.1074/jbc.M109.022897
http://dx.doi.org/10.1677/erc.1.01130
http://dx.doi.org/10.1677/erc.1.01130


10

Pastel et al. AKR1B in Adrenal

Frontiers in Endocrinology | www.frontiersin.org July 2016 | Volume 7 | Article 97

55. Aigueperse C, Martinez A, Lefrancois-Martinez AM, Veyssiere G, Jean CI. 
Cyclic AMP regulates expression of the gene coding for a mouse vas def-
erens protein related to the aldo-keto reductase superfamily in human and 
murine adrenocortical cells. J Endocrinol (1999) 160:147–54. doi:10.1677/
joe.0.1600147 

56. Ragazzon B, Lefrancois-Martinez AM, Val P, Sahut-Barnola I, Tournaire C, 
Chambon C, et al. Adrenocorticotropin-dependent changes in SF-1/DAX-1 
ratio influence steroidogenic genes expression in a novel model of glucocorti-
coid-producing adrenocortical cell lines derived from targeted tumorigenesis. 
Endocrinology (2006) 147:1805–18. doi:10.1210/en.2005-1279 

57. Martinez A, Val P, Sahut-Barnola I, Aigueperse C, Veyssiere G, Lefrancois-
Martinez AM. Steroidogenic factor-1 controls the aldose reductase akr1b7 gene 
promoter in transgenic mice through an atypical binding site. Endocrinology 
(2003) 144:2111–20. doi:10.1210/en.2002-220825 

58. Val P, Aigueperse C, Ragazzon B, Veyssiere G, Lefrancois-Martinez AM, 
Martinez A. Adrenocorticotropin/3′,5′-cyclic AMP-mediated transcription of 
the scavenger akr1-b7 gene in adrenocortical cells is dependent on three func-
tionally distinct steroidogenic factor-1-responsive elements. Endocrinology 
(2004) 145:508–18. doi:10.1210/en.2003-1093 

59. Madore E, Harvey N, Parent J, Chapdelaine P, Arosh JA, Fortier MA. An 
aldose reductase with 20 alpha-hydroxysteroid dehydrogenase activity is most 
likely the enzyme responsible for the production of prostaglandin f2 alpha in 
the bovine endometrium. J Biol Chem (2003) 278:11205–12. doi:10.1074/jbc.
M208318200 

60. Ramsay RG, Ciznadija D, Vanevski M, Mantamadiotis T. Transcriptional 
regulation of cyclo-oxygenase expression: three pillars of control. Int 
J Immunopathol Pharmacol (2003) 16:59–67. 

61. Volat FE, Pointud JC, Pastel E, Morio B, Sion B, Hamard G, et al. Depressed 
levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity 
and predispose to diet-induced obesity. Diabetes (2012) 61:2796–806. 
doi:10.2337/db11-1297 

62. Rapoport R, Sklan D, Hanukoglu I. Electron leakage from the adrenal cortex 
mitochondrial P450scc and P450c11 systems: NADPH and steroid depen-
dence. Arch Biochem Biophys (1995) 317:412–6. doi:10.1006/abbi.1995.1182 

63. Prasad R, Kowalczyk JC, Meimaridou E, Storr HL, Metherell LA. Oxidative 
stress and adrenocortical insufficiency. J Endocrinol (2014) 221:R63–73. 
doi:10.1530/JOE-13-0346 

64. Chinn AM, Ciais D, Bailly S, Chambaz E, LaMarre J, Feige JJ. Identification 
of two novel ACTH-responsive genes encoding manganese-dependent super-
oxide dismutase (SOD2) and the zinc finger protein TIS11b [tetradecanoyl 
phorbol acetate (TPA)-inducible sequence 11b]. Mol Endocrinol (2002) 
16:1417–27. doi:10.1210/mend.16.6.0844 

65. Meimaridou E, Kowalczyk J, Guasti L, Hughes CR, Wagner F, Frommolt P, 
et al. Mutations in NNT encoding nicotinamide nucleotide transhydroge-
nase cause familial glucocorticoid deficiency. Nat Genet (2012) 44:740–2. 
doi:10.1038/ng.2299 

66. Toye AA, Lippiat JD, Proks P, Shimomura K, Bentley L, Hugill A, et al. A genetic 
and physiological study of impaired glucose homeostasis control in C57BL/6J 
mice. Diabetologia (2005) 48:675–86. doi:10.1007/s00125-005-1680-z 

67. Aigueperse C, Val P, Pacot C, Darne C, Lalli E, Sassone-Corsi P, et al. SF-1 
(steroidogenic factor-1), C/EBPbeta (CCAAT/enhancer binding protein), and 
ubiquitous transcription factors NF1 (nuclear factor 1) and Sp1 (selective pro-
moter factor 1) are required for regulation of the mouse aldose reductase-like 
gene (AKR1B7) expression in adrenocortical cells. Mol Endocrinol (2001) 
15:93–111. doi:10.1210/mend.15.1.0577 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Pastel, Pointud, Martinez and Lefrançois-Martinez. This is 
an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://dx.doi.org/10.1677/joe.0.1600147
http://dx.doi.org/10.1677/joe.0.1600147
http://dx.doi.org/10.1210/en.2005-1279
http://dx.doi.org/10.1210/en.2002-220825
http://dx.doi.org/10.1210/en.2003-1093
http://dx.doi.org/10.1074/jbc.M208318200
http://dx.doi.org/10.1074/jbc.M208318200
http://dx.doi.org/10.2337/db11-1297
http://dx.doi.org/10.1006/abbi.1995.1182
http://dx.doi.org/10.1530/JOE-13-0346
http://dx.doi.org/10.1210/mend.16.6.0844
http://dx.doi.org/10.1038/ng.2299
http://dx.doi.org/10.1007/s00125-005-1680-z
http://dx.doi.org/10.1210/mend.15.1.0577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Aldo-Keto Reductases 1B in Adrenal Cortex Physiology
	Introduction
	Human and Murine AKR1B Gene Synopsis
	Human AKR1B Genes
	Murine Akr1b Genes

	AKR1B in Adrenals: Between Detoxification and Paracrine Signaling
	Akr1b3/AKR1B1: Expression Pattern and Relevant Functions
	Akr1b8/AKR1B10: Phylogeny, Regulation, and Enzymatic Specificities
	Akr1b7: Expression Profile, Detoxification Function, and Paracrine Action

	Future Directions
	Author Contributions
	Funding
	References


