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ABSTRACT
Adaptive designs formulti-armed clinical trials have become increas-
ingly popular recently because of their potential to shorten develop-
ment times and to increase patient response. However, developing
response-adaptive designs that offer patient-benefit while ensuring
the resulting trial provides a statistically rigorous and unbiased com-
parison of the different treatments included is highly challenging.
In this paper, the theory of Multi-Armed Bandit Problems is used to
define near optimal adaptive designs in the context of a clinical trial
with anormally distributedendpointwith knownvariance.We report
the operating characteristics (type I error, power, bias) and patient-
benefit of these approaches and alternative designs using simulation
studies basedonanongoing trial. These results are then compared to
those recently published in the context of Bernoulli endpoints. Many
limitations and advantages are similar in both cases but there are also
important differences, specially with respect to type I error control.
This paper proposes a simulation-based testing procedure to correct
for the observed type I error inflation that bandit-based and adaptive
rules can induce.
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1. Introduction

The medical and statistical communities have long held as a ‘gold standard’ for clinical
trials the so-called randomised controlled trial (RCT),where patients are allocated to a treat-
ment arm with a fixed probability which is equal across all arms and for all patients. This
scheme ensures the trial is well balanced, eliminates possible sources of bias, andmakes the
results as sound as possible. However, this design makes no concession to the wellbeing of
patients in the trial: in aK-arm RCT, on average (K − 1)/K of the patients will be assigned
to a treatment other than the most effective one (if it exists).

This creates one of the foremost ethical concerns inherent in any clinical trial: the con-
flict between learning (ensuring the selection of the best treatment) and earning (treating
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most patients effectively). The scientific aim of a traditional RCT is to learn about new
treatments and identify the most effective one. It is inevitable under this paradigm, how-
ever, that a fixed number of patients will be given an inferior treatment. The research on
adaptive methods for trial designs, such as response-adaptive randomisation methods, has
developed as a response to this ethical dilemma, seeking to improve the earning result-
ing from a trial while preserving its learning. The challenge is to find response-adaptive
methods which improve patient welfare during the trial, but do not allow extreme imbal-
ance or bias to hinder the statistical validity of the trial, and are conclusive enough truly to
influence future medical practice.

The need to consider patients’ wellbeing during the trial is particularly acute in the case
of a treatment for a rare disease. In this situation the trial patients represent a high pro-
portion of all those with the disease, and a trial aiming solely to identify the most effective
treatment will benefit only the small number of patients remaining to be treated after the
end of the trial. The ethical concerns with randomising patients onto an inferior treatment
are most severe in the case of a serious or life-threatening disease. Thus, the motivation for
an adaptive trial design is arguably strongest in the case of life-threatening rare diseases
such as the new types of rare cancers identified by the advances of genetics. However, the
challenges of maintaining statistical rigour are even more acute when recruitable patients
are sparse and sample sizes are small.

The majority of the response-adaptive randomisation methods proposed in the litera-
ture use Bayesian learning and a binary endpoint, with information on the effectiveness of
the treatments gained throughout the trial deployed immediately, to increase the chances
of patients in the trial receiving a better performing treatment (see e.g. [22]). A limitation
of these approaches is that they are myopic (they onlymake use of past information to alter
treatment allocation probabilities) and hence they are not influenced at all by the number
of patients that remain to be treated in the trial (nor by the expected number of patients
outside the trial). An approach recently proposed and modified for addressing this limita-
tion and developing ‘forward looking algorithms’ is to consider clinical trial design within
the framework of the Multi-Armed Bandit Problem (MABP). The optimal solution to the
classic MABP has been known since the 1970s [8], and those responsible for its solution
saw clinical trials as the ‘chief practical motivation’ for their work [9, p. 561]; despite this,
it has never been applied to a real life clinical trial. Villar et al. [23, pp. 2–3]

In Villar et al. [23] some of the benefits and limitations of applying the MABP solution
to clinical trials are explored, considering in particular the case where the trial’s primary
endpoint is dichotomous (i.e. the treatment arms are modelled as reward processes by
Bernoulli random variables). The objective of the paper is two-fold. The first is to apply
some of the considerations and techniques of Villar et al. [23] to define a response-adaptive
Bayesian design for a clinical trial whose primary endpoint is normally distributed with
known variance, a case that has been less commonly studied in the response-adaptive liter-
ature. Specifically, we investigate whether the same conclusions in terms of patient-benefit
and operating characteristics hold as in the case of trials with binary endpoints and, since
many trials do have normally distributed endpoints, in this way we hope further to bridge
the gap betweenMABP theory and clinical trial practice. The second objective is to identify
and address issues that may limit the use in practice of the MABP-based designs consid-
ered in this paper. Specifically, we consider in detail the level of bias and type I error rates
observed under this setting and further suggest appropriate procedures to control them.
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Results are illustrated by simulations in the context of a currently ongoing clinical trial:
TAILoR trial, described in Wason et al. [25].

The structure of this paper is as follows: In Section 2 an overview of the general MABP
with a continuous state variable and its solution for the special case of a normally dis-
tributed reward is provided together with an adaptive patient allocation rule based on it.
Then, Section 3 presents some simulations of two-armed and multi-armed trials imple-
menting bandit strategies for normally distributed endpoints and comparing them to
alternative trial designs. Section 4 concludes with a discussion of our findings and lines
of further research.

2. The classic BayesianMABPwith a continuous state variable and known
variance

Let K ∈ N and consider a collection {Xk,t : k = 0, 1, . . . ,K, t = 0, 1, 2, . . .} of inde-
pendent (real-valued) random variables, where for each fixed k the distributions of
Xk,0,Xk,1,Xk,2, . . . are identical and parametrised by some unknown θk ∈ Rp. At each time
t = 0, 1, 2, . . . ,T − 1 we obtain a reward by choosing some distribution k ∈ {0, . . . ,K}
and sampling from Xk,t . In the context of a clinical trial, this corresponds to choosing the
treatment allocation of the tth patient, and Xk,t corresponds to the endpoint observation
for patient t on treatment k. In order to incorporate the adaptive learning element into
the model, we take a Bayesian viewpoint and assume �k is a random variable taking the
value θk. We assign�k a prior distribution π

(0)
k , which is assumed to be a density function

with respect to Lebesgue measure. By Bayes’ Theorem, the posterior density of �k, having
observed values xk,i1 , . . . xk,in in n independent samples from Xk,i1 , . . . ,Xk,in after having
treated t patients, is

π
(t)
k (θ |xk,i1 , . . . , xk,in) ∝ π

(0)
k (θ)

n∏
j=1

fk(xk,ij |θ),

where fk(·|θ) is the density of Xk,t (with respect to Lebesgue measure) [14]. Note that we
have used the subscript ij (for j = 1, . . . , n) to emphasise that the sample of n observations
from distribution k is a subset of the total number of sampling observations possible at
time t.

Formally, the classic Bayesian MABP within this general setting is defined by formu-
lating a Markov decision process as follows. Consider each distribution (or arm) k as a
Markov process Bk with a Borel state space (Ek, Ek), by taking the state ξk(t) ∈ Ek of Bk at
time t to be the value x̃ of some chosen sufficient statistic X̃k for the posterior density of�k,
and updating the state every timewe sample from this arm. At each time t = 0, . . . ,T − 1 a
decision variable ak,t ∈ {0, 1} is chosen for process Bk for each 0 ≤ k ≤ K, such that exactly
one arm receives action 1 (is sampled) and all others receive action 0 (their posterior density
remains frozen). If ak,t = 0 then Bk is frozen (and so is its associated value for the sufficient
statistics), thus ξk(t + 1) = ξk(t)with probability 1. If ak,t = 1 then ξk evolves according to
a Markovian transition kernel Pk, i.e. for any A ∈ Ek and x̃0, x̃1, . . . , x̃t−1, x̃ ∈ Ek we have

P[ξk(t + 1) ∈ A|ξk(t) = x̃, ξk(t − 1) = x̃t−1, . . . , ξk(0) = x̃0]

= P[ξk(t + 1) ∈ A|ξk(t) = x̃] = Pk(x̃,A).
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The transition kernel Pk is a density pk (with respect to Lebesgue measure on R):

pk(x̃, x̃ � y) =
∫
Rp

fk(y|θ)π
(t)
k (θ |x̃) dθ , (1)

where x̃ � y denotes the updated value of X̃k if y is the next value sampled.
If the process Bk is sampled at time t we earn the random reward Rk(ξk(t), ξk(t + 1)),

where Rk : E2k → R is the reward function of Bk. In the classic MABP this function is given
by Rk(x̃, x̃ � y) = y, that is, the value of Rk is the value taken byXk,t . We define rk : Ek → R

as the expected reward from the process in a given state [18], given by

rk(x̃) = E[Rk(ξk(t), ξk(t + 1))|ξk(t) = x̃]

= E[Xk,t|X̃k = x̃]. (2)

Let E = E0 × · · · × EK be the joint state space of the MABP, and ξ(t) = (ξ0(t), . . . ,
ξK(t)) ∈ E the joint state vector of the MABP at time t. Let � be the set of all feasible
sampling policies, that is, those in which the decision at time t depends only on past infor-
mation and only sample one arm (or distribution) at a time. Writing aπ

k,t for the sequence
of sampling decisions chosen by policy π , the value function for the classic MABP with a
continuous state variable is

V∗
d (ξ) = sup

π∈�

E

[ K∑
k=0

T−1∑
t=0

dtrk(ξk(t))aπ
k,t

∣∣∣∣∣ ξ(0) = ξ

]
. (3)

Thus, the MABP is the problem of finding a policy π ∈ � which maximises the value of
the expected total discounted reward of the sampling process. Notice that d is a discount
factor (i.e. 0 ≤ d < 1) introduced for reasons of tractability, so that the infinite horizon
problem (T = ∞) can be considered.

One approach to solve the MABP in (3) would be via the dynamic programming
equation

V∗
d (ξ) = max

i∈{0,...,K}

⎧⎪⎨
⎪⎩ri(ξi) + d

∫
Ei

Pi(ξi, dy)R(ξ1, . . . , ξi−1, y, ξi+1, . . . , ξK)

⎫⎪⎬
⎪⎭ . (4)

Standard theory on Markov processes ensures that there is an optimal solution to (3), and
approximations to it may be obtained using value iteration on (4) [7], but such an approach
is computationally expensive, exploding with the truncation horizon T even for a small
number of arms K>3 [23]. For the infinite horizon MABP Gittins and Jones [8] provided
a theorem by which there exists a function ν = ν(Bk, x̃k) such that at any time the optimal
strategy is to sample the process which has the highest value of ν. There is a clear compu-
tational advantage to this approach: if we can compute a grid of values of ν for each bandit
process, then the policy can be followed any number of times by looking up values of ν

for each process at each decision time. Several proofs of the Index Theorem are given in
Gittins et al. [7]. Gittins and Jones referred to ν as a dynamic allocation index, but this is
now known widely as the Gittins index.
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In the case where the MABP state space is discrete, as in the Bernoulli case, values of
ν can be looked up from a matrix. With a continuous state space it is less clear that all
the necessary calculations can be performed in advance. However, in most useful cases,
including the normally distributed case, the function ν(Bk, x̃k) is a linear function of Bk
and x̃k under some discrete boundary conditions; the discrete part can thus be calculated
in advance as a matrix of values [7].

For the finite horizon problem, which is the relevant case in the clinical trial con-
text, [23] suggested an index-based solution to the finite horizon MABP based on the
Whittle index [26]. However, the Whittle index is omitted from the studies in this paper
since inmost trials its performancewas near identical to that of theGittins index (calibrated
through the choice of the discount factor d) which further has a lower computational cost.

2.1. The Gittins index as a Bayesian adaptive patient allocation rule for the
normally distributed endpoint (with known variance)

In this paper we consider clinical trials for which the endpoint of each treatment arm k is
assumed to be normally distributed with unknown mean μk and known variance σ 2

k . We
therefore consider the rewards from arm k to be an independent identically distributed

(iid) sequence Xk,t
iid∼ N(μk; σ 2

k ), and μk is given a prior distribution π
(0)
k , which we will

take to be the improper uniform distribution on the whole real line. The uniform prior
distribution assumption will allow us to isolate the effect on patient welfare and other
relevant statistical properties of the MAB adaptive design alone, that is, without the use
of prior (historical) data. Let f (·|μ; σ 2) denote the density of a N(μ; σ 2) distribution. If
we have observed n independent samples xk,i1 , . . . , xk,in from Xk,i1 , . . . ,Xk,in , then, writing
x̄k,n = (1/n)

∑n
j=1 xk,ij for the samplemean, by Bayes’ Theorem the posterior density ofμk

at time t is π
(t)
k (μk|xk,i1 , . . . , xk,in) ∼ N(x̄k,n; σ 2

k /n). A sufficient statistic for the posterior
distribution of μk is (x̄k,n, n), thus the state vector of process Bk in this case will be (x̄, n)
where n is the number of observations so far sampled from arm k after having treated t
patients, and x̄ is the mean of these observations.

As explained in Gittins et al. [7] for the MABP with normally distributed rewards with
known variance, the indices ν(x̄, n; σ 2

k , d) can be written as follows:

ν(x̄, n; σ 2
k , d) = x̄ + σkν(0, n; 1, d). (5)

Therefore, to implement the Gittins index policy at very low computational cost it suf-
fices to calculate in advance the values of ν(0, n; 1, d). This can be done to a good accuracy
using value iteration on (4) in the case of the two-armed bandit calibration setup. Details
are given in do Amaral [1, pp. 131–162] and Gittins et al. [7, Chapters 7 and 8]. Compu-
tational results for this case were first computed in Jones [12]. The values of the indices
ν(0, n; 1, d) used in this paper have been interpolated from the tables printed in Gittins
et al. [7, pp. 261-262].

Figure 1 shows the values of the indices ν(0, n; 1, d) for a range of discount factors d.
In Gittins andWang [10], the learning component of the index is defined as the difference
between the index value and the expected immediate reward, which for this MABP corre-
sponds to the reward from sampling an armwith posterior mean x̄ from previous samples,
that is, simply x̄. Therefore, σkν(0, n; 1, d) can be interpreted as a measure of the learning
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Figure 1. Gittins Index values (normal reward process, known variance) for various discount factors d.

reward associated with continuing sampling an arm which has already been sampled n
times. Figure 1 illustrates clearly that ν(0, n; 1, d) increases with d, since a larger discount
factor puts greater value on future rewards and increases the value of learning. However,
for any choice of d, the value of learning drops very quickly as n increases; in the limit as
n tends to infinity, the value of learning tends to 0 and the sample mean converges by the
Law of Large Numbers, so the index tends to the true value of the parameter μk.

The Gittins index solution for the case of both μk and σk being unknown exists and is
similar to that in (5). The difference is that the model requires a joint prior distribution on
both parameters and the known variances in (5) are replaced by sample variances.

2.2. Some considerations specific to the use of bandit strategies in a clinical trial
context

In Villar et al. [23] simulation results comparing a number of alternative patient alloca-
tion rules to index-based solutions for trial scenarios with dichotomous endpoints were
provided. The authors conclude that, alongside the clear advantages, there are a number
of limitations to the use of the Gittins index as an allocation mechanism for clinical tri-
als. Some of these disadvantages are still going to be an issue in the normally distributed
case. The endpoint needs to be immediately observable so that index rules can be applied.
This means that a patient in the trial cannot be treated until all previous outcomes have
been observed. This is a strong limitation that affects all adaptive designs in general and
not only MAB-led designs. In practice, this limits the speed at which new patients can
be recruited to the trial; however, this may be less problematic in a rare disease context,
where the rate of patient recruitment is likely to be slow already. Applying the adaptive
algorithms in batches of patients rather than patient after patient is a way of acknowledging
and partially addressing this issue [17,24].
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Another limitation still present is that the allocation of treatments in a Gittins index-
based design is highly deterministic, which can lead to the introduction of different sources
of bias. As explained in Atkinson and Biswas [2], randomisation prevents the trial results
from being influenced by ‘secular trends in the population’s health and our ability to mea-
sure it, in the quality of recruits to the trial and in the virulence of a disease’. In trials where
the clinician can influencewhich patient receives the next treatment, so-called selection bias
(the ability of the experimenter to predict which treatment will be allocated next) can influ-
ence the results. These extrinsic bias effects are absent from the simulations next presented
and from those in Villar et al. [23], but could have a significant impact when deterministic
rules are used on trials with real populations. Recent work [24] addresses this particular
limitation proposing a simple modification of the Gittins index rule for the Bernoulli case
that is randomised. Notice that the lack of randomisation of the resulting patient alloca-
tions is a limitation shared with most bandit-based algorithms, even those that introduce
random terms in their definitions as, for example, [3] or [11].

For other limitations and also for the patient-benefit advantages of index-based designs
reported in Villar et al. [23], the magnitude or even their existence requires careful con-
sideration. This is the case for the possibility of introducing intrinsic sources of bias.
Response-adaptive trials in general can result in biased estimate of a treatment’s outcomes.
For example, in a two-arm trial scenario [23] found that the use of the Gittins index intro-
duced a significant negative bias in the estimate of treatment outcomes; the magnitude of
the bias is greatest for inferior treatments (since they are more likely to be dropped early
in the trial) and the treatment effects are likely to be overestimated. Similar considera-
tions apply with respect to the resulting rates of type I error (a false positive result, i.e.
incorrectly rejecting the null hypothesis H0) and of type II error (failing to detect that an
experimental treatment is effective, i.e. incorrectly acceptingH0). Villar et al. [23] reported
that the index-based designs achieved a level of statistical power that was far below the level
of an RCT with the same number of patients T and also that control of the type I error
rate required adjusting the statistical test to correct for its conservativeness (i.e. moderate
deflation).

An important contribution of this paper is to assess the extent towhich further consider-
ations different from the onesmentioned above apply to the normally distributed endpoint.
In particular, assessing how important the bias and statistical error levels are in the nor-
mally distributed case, and suggesting how to control for the type I error rate at a desired
level, are two of the main contributions of this work.

3. Simulation studies

In this section we evaluate the performance of a range of patient allocation rules in a
clinical trial context, including bandit-based solutions using the Gittins index. As a case
study for simulations we shall use a generalisation of the currently ongoing TelmisArtan
and InsuLin Resistance in HIV trial (TAILoR trial), which is described and also used as a
case study in Wason et al. [25]. See also [15] for discussion of the design of the TAILoR
trial.

The TAILoR trial is a one-sided test of K experimental treatments against a control
treatment (i.e. testing for superiority). Treatment k is assumed to have endpoint outcomes

Xk,t
iid∼ N(μk; σ 2), for k = 0, 1, . . . ,K (where k=0 is the control treatment), and σ 2 is
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known and common to all treatments. Setting δk = μk − μ0, the global null hypothesis
is H0,G : δ1, . . . , δK ≤ 0 and the alternative hypotheses are H1,k : δk > 0, 1 ≤ k ≤ K.

We focus on the following: statistical power (1 − β); type I error rate (α); expected pro-
portion of patients in the trial assigned to the best treatment (Ep∗); the Expected Outcome
(EO) defined as the mean patient outcome across the trial realisations; and, for the two-
arm case, bias in themaximum likelihood estimate of treatment effect associated with each
decision rule.

For testing these hypotheses we shall use the following test statistics:

Zk = X̄k − X̄0

σ
√

1
nk

+ 1
n0

, k = 1, . . . ,K,

where nk is the number of sample observations taken from arm k and X̄k is the sam-
ple mean of arm k. Under the assumption that the nk’s are independent and identically
distributed samples, these k test statistics will follow a normal distribution with mean
δk/(σ

√
1/nk + 1/n0) and variance 1. In the case of a two-arm trial with one experi-

mental treatment to be tested against a control, this simplifies to the case of a standard
z-test using a univariate normal distribution. For the multi-armed case we will consider
the joint distribution of Z1, . . . ,Zk and use a critical value Cα that controls the Family-
Wise type I Error Rate (FWER), defined as P[{rejectH0,G}|H0,G], within a specified level
α ∈ (0, 1).

For each scenario we set the size of the trial T to ensure that an RCT with equal ran-
domisation achieves a specified power (1 − β) to detect a specified effective treatment
difference δ(1) between each arm and the control, while controlling the FWER within
α. Because we are interested in the marginal type II error rate in a single test, rather
than a family-wise error rate, we consider the marginal distributions rather than a joint
distribution to determine a required sample size per arm for an RCT. Following this
rationale it can be computed that the total required size of the RCT trial (i.e. across all
arms) is

T =
K∑

k=0

nk = (K + 1)
(
2σ 2(Cα + zβ)2

(δ(1))2

)
, (6)

where zβ is the 100(1 − β)th-percentile of a standard N(0, 1) distribution. See Appendix
1 for details of how Cα is determined and, for example, [28] for a review of sample size
calculation in RCTs.

Following [25], we shall assume the variance in the outcomes is σ 2 = 1, and specify
the treatment difference to be detected as δ(1) = 0.545 (chosen such that the probabil-
ity of a patient given a treatment k with δk = δ(1) having a better outcome than a patient
on the control treatment is 0.65). We will consider the usual error rates of α = 0.05 and
β = 0.10.

In every scenario we consider the following patient allocation procedures:

• Fixed Randomised (FR): For each patient, treatments are allocated randomly with fixed
probability 1/(K + 1) across all treatments;

• Thompson Sampling (TS) [21]: For each patient, treatments are allocated randomly,
where the probability πk,t of allocating treatment k to patient t is proportional to the
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posterior probability that treatment k is the best, i.e.

πk,t =
P

[
max

i
μi = μk |Xk,t

]c
∑K

l=0 P

[
max

i
μi = μl |Xl,t

]c ,

where c is a tuning parameter defined as t
2T introduced to stabilise the resulting alloca-

tion probabilities [20]. The probabilities in the fraction are estimated by simulation at
each t;

• Upper Confidence Bound (UCB): For the first K+1 patients, patient t is allocated treat-
ment k= t−1; each patient t>K+1 is allocated the treatment k with the highest value
of the index x̄k + σ

√
2lnt/nk, as proposed in [3,13].

• Kullback-LeiblerUCB (KLU): For the first K+1 patients, patient t is allocated treatment
k= t−1; each patient t>K+1 is allocated the treatment k with the highest value of
the index x̄k + σ

√
2(lnt + 3(ln lnt))/nk. This variant of UCB was shown in [6] to have

improved asymptotic regret bounds compared to UCB.
• Current Belief (CB): The next patient is allocated the treatment with the highest

posterior mean x̄k.
• Gittins Index (GI): The next patient is allocated the treatment with the highest value of

the Gittins Index ν(x̄k, nk; σ 2, d), where d is the value of the discount factor;.
• Randomised Gittins Index (RGI): as first suggested in Glazebrook [11], the next

patient is allocated the treatment with the highest value of the semi-randomised index
ν(x̄k, nk; σ 2, d) + ((K + 1)/nk)Yt , where Yt is a random variable sampled from the
exponential distribution with mean 1/(K + 1) (this choice of randomisation element
is the same as that used by Villar et al. [23]).

• Randomised Belief Index (RBI): As first suggested in Bather [4], the next patient is
allocated the treatment with the highest value of the semi-randomised index x̄k +
((K + 1)/nk)Yt , where Yt is a random variable sampled from the exponential distri-
bution with mean 1/(K + 1).
For the multi-armed scenarios we have additionally considered the following rules:

• Trippa et al. Procedure (TP): For each patient, treatments are allocated randomly, where
the probability πk,t of allocating treatment k to patient t is defined by

πk,t = π̄k,t∑K
l=0 π̄l,t

,

where

π̄k,t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P[μk > μ0 | x̄k,t−1]γt∑
l≥1 P[μl > μ0 | x̄l,t−1]γt

, k ≥ 1

1
K
exp

[
max

k=1,...,K
[nk,t − n0,t]ηt

]
, k = 0,

in these simulations we have considered γt = 3(t/T)1.75 and ηt = 0.25(t/T), as in
Trippa et al. [22]. Note that this procedure is only considered for multi-arm trials
because by design its allocation to the control arm will closely follow that of the best
experimental arm.
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• Controlled Gittins (CG): Each patient is randomly assigned the control treatment with
(fixed) probability 1/K. If the patient is not randomly assigned to the control group in
this way, then she is assigned to the treatment with the greatest Gittins index. Although
CG deviates from the optimality of GI, it was still found in Villar et al. [23] to offer a
significant improvement in patient welfare over FR; moreover, it largely combatted the
issue of reduced power. In fact, when there existed a clear superior treatment among the
K arms it was found to achieve even higher power than FR.

• Controlled UCB (CUC): A variant of UCBwith the control allocation protected as in CG
above.
In all scenarios we also include ‘batched’ versions of the Bayesian rules in which the
allocation probabilities are updated after a block of b patients are treated instead of
after every patient. This idea was implemented in [17,24] as a means of overcoming the
practical limitations imposed by the assumption of immediate outcome observability of
these algorithms. Their inclusion is intended to more closely replicate the constraints of
a real life clinical trial without fully sequential design. Specifically, we consider:

• Batched Thompson Sampling (TSB) and Batched Trippa et al. Procedure (TPB): As per
TS and TP above, but the allocation probabilities πk,t are only updated after every 20
patients. The size of the batch (b=20) was chosen to illustrate the effects of a moderate
delay in relation to the first two trial sizes considered in this paper and a more severe
delay for the trial size reflecting a rare disease scenario. Note that none of the trial sizes
assumed are exactly divided by b=20. This leaves a few remaining patients which are
allocated using the allocation probabilities resulting after observing the outcomes of last
block.

In every scenario considered and for every procedure we assumed that the prior for the
μk parameters is the improper uniform distribution on the whole real line. Notice that a
fully Bayesian approach to the design could make use of historical data existing before the
trial through appropriate choice of the prior distribution. In this paper we have chosen to
use an uninformative prior to make results comparable to the case study in [25] and to
isolate the effects of the adaptive designs in the different performance measures.

For the rules that are based on the Gittins index values there is an obvious ethical con-
cern around the choice of a discounting factor when calculating the indices: clearly current
and future patients’ wellbeing should be valued equally. So for scenarios with large sample
sizes we will take d close to 1, usually d=0.995. In the case of a rare disease, if it is known
that not more than N patients will ever be treated, the value of d could be chosen so that
dN ≈ 0, to ensure that the possibility of treating patients beyond N has little impact on
current decisions. By doing this the current estimation of the patient population could be
used to indirectly affect the choice of trial design. In all trial designs and in all simulations,
ties among index values are broken randomly.

3.1. Two-arm trial

We first simulate the TAILoR trial with one experimental arm to be compared with a con-
trol treatment, that is, K=1. The trial is implemented under H0 with δ1 = μ0 = μ1 = 0
and under H1 with μ0 = 0, μ1 = 0.545 (i.e. δ1 = 0.545). In both scenarios the common
variance is σ 2 = 1 and d=0.995. The sample size considered is of T=116 patients. This
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size ensures a 5% type I error rate (usingCα = 1.645 as a critical value) and(1 − β) = 90%
power to detect a difference of δ(1) = 0.545 through a FR design.

3.1.1. Type I error control for adaptive designs
For the adaptive allocation mechanisms, including the Gittins index-based, the use of a
critical value of Cα = 1.645 is found in simulations to generate a type I error rate inflated
above 5%. This is in stark difference to the type I error deflation reported in [23,24].Wewill
next explain this phenomenon in detail in terms of the GI rule but a similar logic applies
for other adaptive rules.

In each realisation of the trial, if one arm performs badly early on and is dropped (or
allocated with a very low probability), then the sample mean from this arm will not have a
chance to regress upwards to the mean (or do so more slowly), being therefore negatively
biased. Figure 2 illustrates this in a typical GI trial run under H0, displaying the posterior
mean x̄k,t of the outcomes for each treatment arm k after t patients have been allocated
that arm. In this example, the control arm k=0 performs badly early on in the trial, so
is dropped with just n0 = 19 patients, leaving the trial’s estimate of this treatment’s out-
comes negatively biased. The experimental arm performs better early on, so is continued
and regresses to its mean; thus the trial’s final estimate of this treatment’s effect is close
to the true value of 0. The result is that the test statistic takes the value 1.81>1.645, so
a hypothesis test using the normal cut-off value of 1.645 would generate a type I error,
incorrectly concluding the superiority of the experimental arm.

In order to choose a more suitable critical value for the hypothesis tests when using
adaptive designs, we estimate the distribution of the test statistic Z under each trial design
by a Monte Carlo simulation with 104 repeats of the trial under H0. Figure 3 shows the
observed empirical distributions of Z for the GI trials, implemented under H0 and under
H1. In each case, as well as a histogram of the observed empirical distribution, also dis-
played is a curve of the standard normal distribution which the test statistic is expected to
follow in a FR trial, for comparison.

In Figure 3(a) we see that, in the GI trial under H0, the distribution of the test statistic
is starkly different from a normal distribution. The sample standard deviation of 1.37 is
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Figure 2. The posterior mean x̄k,t of each treatment arm’s outcomes after each patient in a typical GI
trial under H0.
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Figure 3. Histogramsof empirical distributionsof the test statisticZ inGI trials, implementedunder each
hypothesis. Also marked is the standard normal distribution which Z should follow in the FR trial (red).
The sample mean Z̄, standard deviation SZ and an empirical 95th-percentile C0.05 have been calculated
under H0. The empirical 95th-percentile under H0 will correspond to the critical value for hypothesis
testing, and ismarked by a vertical dotted line on the histograms. (a) GI trial underH0 (b) GI trial underH1

much greater than the standard deviation of 1.00 in the FR case, and the heavier tails than
a normal distribution correspond to an inflated type I error rate when hypothesis testing
is carried out with the normal critical value of 1.645. Notice that because both left and
right tails are heavier than the normal tails, the inflation of type I error rate when testing
hypotheses at the normal cut-off value would be even greater in a two-tailed test.

The empirical cumulative distribution function evaluated at 1.645 is F̂GI,H0(1.645) =
0.89, indicating that we might expect a type I error rate of 11% if hypothesis testing was
carried out with this critical value. Instead, the empirical 95th-percentile of the distribution
isC0.05 = F̂−1

GI,H0
(0.95) = 1.951, marked on the histogram by a vertical dotted line.We will

therefore use this as the critical value for hypothesis testing in the GI trials to control the
type I error rate within 5%.

Notice that the two peaks in the frequency density arise from the two situations inwhich
the estimate of one arm’s outcomes is negatively biased, and the other is unbiased: the
right-hand peak corresponds to an incorrect conclusion that the experimental treatment
is superior to the control treatment (the situation illustrated in Figure 2), and the left-hand
peak corresponds to an incorrect conclusion of the opposite.

Figure 3(b) illustrates that if the GI trial is implemented under H1 the bimodality of
the distribution of the test statistic is greatly reduced, but still present to some extent.
F̂GI,H1(1.951) = 0.77, i.e. 77% of the distribution still lies to the left of the empirical crit-
ical value of 1.951, marked by a vertical dotted line; thus we expect to observe greatly
reduced power of around 23% in the GI trials. The (small) left-hand peak has a weight
of F̂GI,H1(−0.5) = 5%, indicating that in 5% of trials the superior arm is dropped early on
due to poor initial performance, and the trial has ended up favouring the wrong arm.

Following the same procedure, 95th-percentiles of the test statistic distribution are esti-
mated for the other adaptive trial designs. Histograms for the distributions of the test
statistics in the other trial designs are displayed in Appendix II in Figure A1. Notably, TS,
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RGI, UCB and KLU are the only ones of the adaptive designs which appear unimodal in
both scenarios. The unimodality of TS, RGI, UCB and KLU underH1 (Figure A1(b)) indi-
cates that, in almost all realisations of these trials underH1, the trial is correctly favouring
the superior experimental arm by the end of the trial.

3.1.2. Results and discussion
We now present results of 104 repetitions of each trial design using the estimated values
described before as a priori critical values. The results of the simulation are displayed in
Table 1. Ep∗ under H0 is computed as the proportion of patients receiving the control
treatment, and under H1 as the proportion of patients receiving the experimental treat-
ment. The (s.d) values are the standard deviations associated with each measurement. The
Upper Bound (UB) row displays a theoretical optimum for each measurement based on a
design which assigns every patient to the best treatment (i.e. p∗ = 1) in every trial.

All the adaptive rules achieve better patient welfare than the FR design under H1. In
this scenario RBI, RGI, UCB and GI all perform similarly well in patient welfare, with EO
values between 0.47 and 0.48, the closest values to the theoretical UB of 0.545. Note that
this contrasts with the findings in Villar et al. [23] for the Bernoulli case, where GI was
found to achieve much better patient welfare than either of the semi-randomised designs.
However, the results for these rules are in line with their poorer performance in terms of
power when compared to the findings in Villar et al. [23]. The TS trial is outperformed
by the other adaptive designs in terms of patient welfare; this is explained by the tuning
parameter c in the TS mechanism which stabilises the randomisation probabilities.

The high standard deviations in p∗ for all the adaptive designs underH0 indicate that p∗
has a broad distribution across the realisations of the trial, so the trials are not consistent
and are frequently unbalanced. The standard deviation of 0.48 forCB is close to the limiting
case where, in each trial, p∗ ∼ Bernoulli( 12 ), that is, all patients within a trial are assigned

to the same treatment, which would give a standard deviation of
√

1
2 (1 − 1

2 ) = 0.50 in
p∗ across the trials. This indicates that most trials under CB (and to some extent also GI

Table 1. Comparison in 104 trial replicates of operating characteristics of different two-arm trial designs
of size T = 116, under both hypotheses.

H0 : μ0 = μ1 = 0 H1 : μ0 = 0, μ1 = 0.545

Cα α Ep∗ (s.d.) EO (s.d.) (1 − β) Ep∗ (s.d.) EO (s.d.)

FR 1.645 0.0510 0.4997 (0.05) −0.0001 (0.09) 0.8996 0.4997 (0.05) 0.2718 (0.10)
(Adaptive TS 1.701 0.0528 0.5006 (0.11) 0.0003 (0.09) 0.8723 0.7317 (0.10) 0.3997 (0.11)
random) TSB 1.676 0.0519 0.4994 (0.10) −0.0001 (0.09) 0.8824 0.6962 (0.09) 0.3816 (0.11)
(Semi-random
index-based)

RBI 1.998 0.0509 0.5041 (0.37) −0.0001 (0.09) 0.3493 0.8891 (0.17) 0.4845 (0.13)
RGI 1.941 0.0487 0.5005 (0.27) 0.0000 (0.09) 0.5494 0.8764 (0.09) 0.4765 (0.10)

(Index-based) UCB 2.068 0.0508 0.5050 (0.24) 0.0012 (0.09) 0.5575 0.8697 (0.10) 0.4734 (0.11)
KLU 1.867 0.0481 0.5021 (0.17) −0.0001 (0.09) 0.7777 0.8225 (0.08) 0.4489 (0.10)
CB 1.782 0.0420 0.4918 (0.48) 0.0007 (0.09) 0.1724 0.7624 (0.40) 0.4139 (0.24)
GI 1.951 0.0437 0.5006 (0.38) −0.0010 (0.09) 0.2373 0.8786 (0.23) 0.4796 (0.16)

UB 0.0000 (0.09) 1.0000 (0.00) 0.5450 (0.09)

Note: Cα : critical value used in hypothesis testing; α: type I error rate; Ep∗ : mean proportion of trial patients assigned the
best treatment; (s.d.): standard deviation for each measurement; EO: mean patient outcome; (1 − β): statistical power.
UB: theoretical UB from assigning all patients best treatment.
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and RBI) are highly unbalanced, with one arm being dropped early on and most patients
receiving the same treatment).

Under H1, the high standard deviation in p∗ under GI arises from the bimodality
observed in Figure 3(b): in a small proportion of realisations of the trial, the control arm
is incorrectly favoured and p∗ < 1

2 . The lower standard deviation in p∗ for RGI confirms
that RGI trials are more consistent in correctly favouring the superior treatment arm. As
expected, theGI trial has greatly reduced statistical power (just 24%) compared to the value
of 90% achieved by the FR trial. Reduced power is also evident in the other trial designs
(c.f. Figure A1); CB has the lowest power (17%).

Note that UCB outperforms KLU in patient welfare, but KLU offers significantly higher
power (78%) than UCB (56%). Interestingly, despite the improved regret bounds for KLU
proved in Cappé et al. [6] KLU only begins to dominate UCB under both power and
patient-benefit when the number of patients is very large. Nevertheless, KLU seems to
achieve the best compromise between patient welfare and statistical inference out of other
modifications to the UCB algorithm designed to improve regret bounds reviewed for this
paper, with power of 78% and EO of 0.45 (only slightly below the 0.48 achieved by GI).
The low standard deviation of 0.10 in expected outcome indicates that the welfare benefit
is more consistent than in the GI trial.

The results for the batched TS (TSB) illustrate the effects of a blocked implementa-
tion of the algorithm to deal with a moderate delay: a marginal increase in power and a
considerable decrease of the patient welfare benefits. However, the patient-benefit advan-
tages of TSB over FR are considerably large even if assuming a moderate delay in patient
recruitment.

3.1.3. Bias in treatment effect estimates
Figure 4 shows the mean (across the trial realisations) of the bias (x̄(t)

k − μk) in the esti-
mated outcome of each treatment after a total of t patients have been treated across both
arms in the trial, under each scenario. Figure 4(a,b) shows the GI design introducing a
negative bias into estimates of both treatment’s effects; within each trial realisation this
bias will be restricted to one of the two arms, corresponding to the two modes of the test
statistic distribution in Figure 3(a). In all scenarios, the deterministic designs GI and CB
exhibit larger bias than the semi-randomised designs RBI and RGI.

3.2. Four-arm trial scenario

This scenario uses the TAILoR trial but now considers K=3 experimental treatments to
be compared with a control treatment. To achieve a type I error rate of 5%, the critical
value is Cα = 2.0621 for the FR trials. Once again we take σ 2 = 1, and we assume a
trial size is of T=302 patients since this is the total required trial size for FR to achieve
(1 − β) = 90%power to detect a difference of δ(1) = 0.545 in treatment outcome. The trial
is implemented underH0 withμ0 = μ1 = μ2 = μ3 = 0 and underH1 withμ0 = 0, μ1 =
μ2 = 0.178, μ3 = 0.545. These values are chosen to give the Least Favourable Configura-
tion (LFC) for the trial, with μ1 = μ2 = δ(0) and μ3 = δ(1), where, as [25] explain: ‘δ(1)

is a prespecified clinically relevant effect, and δ(0) is some threshold below which a treatment
is considered uninteresting. The configuration is called least favourable as it minimises the
probability of recommending a treatment with effect greater than or equal to δ(1) amongst
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Figure 4. E(x̄(t)k − μk), the mean (across the trial realisations) of the bias in the estimated outcome of
each treatment after a total of t patients have been treated across both arms in the trial, under each sce-
nario (two-arm trial simulations). (a) H0, control arm k= 0, (b) H0, experimental arm k= 1 (c) H1, control
arm k= 0 and (d) H1, experimental arm k= 1.

all configurations where at least one treatment has a treatment effect of δ(1) or higher and
no treatment effects lie in the interval (δ(0), δ(1)).’ Following [25], δ(0) = 0.178 is chosen so
that the probability of a patient on a treatment with this treatment effect achieving a better
outcome than a patient on the control treatment is 0.55 and the corresponding probability
for δ(1) = 0.545 is 0.65.

We will compare all the trial designs, including now the Controlled Gittins (CG) design,
in which each patient is allocated the control treatment with probability 1/(K + 1) = 0.25,
and otherwise allocated the drug with the highest value of the Gittins Index. We compare
CG design against similar procedures: the Trippa Procedure (TP) and Controlled UCB
(CUC) designs. We also include the Batched Trippa Procedure (TPB) to assess the effects
of delays in outcome observability. The Gittins Indices used are again based on discount
factor d=0.995. To calculate critical values for the trial designs other than FR, Monte
Carlo simulations were run as explained in Section 3.1.1. Critical values are found by
calculating the empirical 95th-percentile of the distribution of Zmax := maxj=1,2,3 Zj, in
order to control the FWER. Trial simulations are then run using the computed quan-
tiles as critical values; for each design the trial is run 104 times. Results are displayed in
Table 2.
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Table 2. Comparison in 104 trial replicates of operating characteristics of different four-arm trial designs
of size T = 302, under both hypotheses.

H0 : μ0 = μ1 = μ2 = μ4 = 0 H1 : μ0 = 0, μ1 = μ2 = 0.178, μ3 = 0.545

Cα α Ep∗ (s.d.) EO (s.d.) (1 − β) Ep∗ (s.d.) EO (s.d.)

FR 2.062 0.0534 0.2493 (0.02) 0.0006 (0.06) 0.8982 0.2502 (0.02) 0.2252 (0.06)
TS 2.198 0.0476 0.2504 (0.08) −0.0001 (0.06) 0.8751 0.4997 (0.10) 0.3394 (0.07)
TSB 2.103 0.0514 0.2497 (0.07) −0.0001 (0.06) 0.8989 0.4794 (0.10) 0.3314 (0.07)

RBI 2.041 0.0519 0.2469 (0.27) 0.0002 (0.06) 0.3608 0.7917 (0.22) 0.4624 (0.10)
RGI 2.070 0.0499 0.2479 (0.18) −0.0006 (0.06) 0.6309 0.7603 (0.12) 0.4462 (0.07)

UCB 2.223 0.0500 0.2507 (0.13) 0.0001 (0.06) 0.7333 0.7028 (0.12) 0.4238 (0.08)
KLU 2.154 0.0434 0.2502 (0.09) −0.0002 (0.06) 0.8718 0.6068 (0.10) 0.3848 (0.07)
CB 1.691 0.0524 0.2468 (0.41) 0.0008 (0.06) 0.1075 0.4941 (0.49) 0.3438 (0.20)
GI 1.955 0.0486 0.2457 (0.28) −0.0008 (0.06) 0.2264 0.7743 (0.29) 0.4552 (0.13)

CG 1.923 0.0405 0.4577 (0.21) −0.0006 (0.06) 0.8667 0.5681 (0.22) 0.3392 (0.10)
CUC 1.934 0.0572 0.3362 (0.09) 0.0007 (0.06) 0.9599 0.5357 (0.10) 0.3277 (0.07)
TP 2.027 0.0498 0.2593 (0.02) −0.0010 (0.06) 0.9418 0.3095 (0.06) 0.2462 (0.06)
TPB 2.027 0.0479 0.2488 (0.02) 0.0003 (0.06) 0.9342 0.3082 (0.06) 0.2476 (0.06)

UB 0.0000 (0.06) 1.0000 (0.00) 0.5450 (0.06)

Note:Cα : critical value used in hypothesis testing;α: type I error rate;Ep∗ :meanproportion of patients in a trial assigned the
best treatment; (s.d.): standard deviation for each measurement; EO: mean patient outcome; (1 − β): statistical power.
UB: theoretical UB from assigning all patients best treatment.

As in the two-arm scenario, all the adaptive rules outperform the FR design under H1
in terms of patient welfare, although TP only improves marginally over FR in this case.
The greatest EO values are achieved by RGI, RBI, UCB and GI, but these designs and CB
exhibit a greatly reduced power level compared with FR, rendering them less useful as trial
designs from a frequentist point of view. In particular, CB, which is essentially the simplest
myopic approach, exhibits the worst performance in terms of power and variability. As in
the two-arm trial, KLU achieves considerably greater power thanUCB and thewelfare ben-
efit is only slightly reduced, offering a very good compromise between the two conflictive
objectives.

As in the two-armed case TSB (90%) achieves marginally higher power than TS (88%)
in return for slightly lower patient welfare (EO of 0.33 compared to 0.34). Conversely, TPB
results in a slightly reduced power than TPwhile the patient wlefare is practically identical.
In both cases, the difference caused by the moderate ‘batching’ of patients’ outcomes is
small, indicating that these adaptive designs could offer patient-benefit advantages even if
applied without a fully sequential design.

As expected, the family of ‘protected control’ designs: TP, CG and CUC, offer a compro-
mise between learning (power) and earning (patient welfare).Whilst CG does not perform
as well as GI in patient welfare, its EO value of 0.3392 is still a significant improvement on
FR’s 0.2252, and the 87% power attained by CG is greater than that of many of the other
adaptive designs, and only marginally lower than FR’s 90%. CUC compares similarly to
UCB and dominates over TP by offering a significantly increased patient welfare with a
slight increase in power over TP. Just as found in Villar et al. [23] for the Bernoulli case,
fixing the control allocation in thisway is a simple heuristicmodification of adaptive alloca-
tion rules that results in good trial designs in terms of both patient welfare and frequentist
operating characteristics.

Figure 5 shows the bias in the estimates of treatment outcomes in this scenario, for the
control treatment and the best experimental treatment (arm 3). For the designs which were



1068 A. L. SMITH AND S. S. VILLAR

Figure 5. E(x̄(t)k − μk), the mean (across the trial repeats) of the bias in the estimated treatment out-
come of each drug under each scenario in the four-arm trial (large sample size). (a)H0, control arm k= 0,
(b) H0, experimental arm k= 3, (c) H1, control arm k= 0, (d) H1, experimental arm k= 3.

included in the two-arm simulation, the results here are similar. CG significantly lowers
the bias in the estimates of control treatment outcomes, but it does not improve the issue
of negatively biased estimates of unselected experimental treatment outcomes, where it
performs almost identically to the original GI.

3.3. Four-arm rare disease trial scenario

The final simulation scenario is the same as in Section 3.2 but with the trial size reduced to
T=64 to imitate a rare disease setting where the number of patients who can be recruited
is limited. Notice that for T=64 the FR trial will achieve a power of 30% while controlling
the FWERwithin 5%. The same critical values are used for hypothesis testing as in the large
trials in Section 3.2, based on the assumption that (especially in a trial where patients are
recruited sequentially) the experimenter might not know at the start of the trial the total
number of patients she will be able to recruit, so more appropriate critical values cannot
be estimated a priori. Based on the same reasoning we continue to use the original choice
of d=0.995.

Table 3 shows the full results of the simulations. Due to the greatly reduced sample sizes,
all designs now achieve much lower power, a common situation in drug development for
rare diseases. In a situation whereN � T, statistical power is important, and CUC and CG
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Table 3. Comparison in 104 trial replicates of operating characteristics of different four-arm trial designs
of size T = 64, under both hypotheses.

H0 : μ0 = μ1 = μ2 = μ4 = 0 H1 : μ0 = 0, μ1 = μ2 = 0.178, μ3 = 0.545

Cα α Ep∗ (s.d.) EO (s.d.) (1 − β) Ep∗ (s.d.) EO (s.d.)

FR 2.062 0.0490 0.2497 (0.05) 0.0009 (0.13) 0.2975 0.2490 (0.05) 0.2260 (0.13)
TS 2.198 0.0510 0.2491 (0.09) −0.0001 (0.13) 0.2592 0.3594 (0.11) 0.2779 (0.13)
TSB 2.103 0.0499 0.2489 (0.08) −0.0010 (0.13) 0.2901 0.3245 (0.09) 0.2625 (0.13)

RBI 2.041 0.0471 0.2497 (0.22) 0.0000 (0.13) 0.1619 0.5351 (0.26) 0.3529 (0.16)
RGI 2.070 0.0565 0.2489 (0.14) 0.0013 (0.12) 0.2344 0.4725 (0.18) 0.3258 (0.15)

UCB 2.223 0.0444 0.2475 (0.14) −0.0028 (0.13) 0.1730 0.4772 (0.18) 0.3296 (0.15)
KLU 2.154 0.0503 0.2492 (0.10) −0.0023 (0.13) 0.2452 0.4194 (0.13) 0.3043 (0.13)
CB 1.691 0.0515 0.2522 (0.37) −0.0006 (0.12) 0.0775 0.4569 (0.46) 0.3239 (0.22)
GI 1.955 0.0477 0.2529 (0.24) 0.0015 (0.13) 0.1226 0.5445 (0.29) 0.3585 (0.17)

CG 1.923 0.0523 0.4100 (0.17) −0.0002 (0.12) 0.3806 0.4061 (0.22) 0.2742 (0.15)
CUC 1.934 0.0573 0.3445 (0.10) −0.0011 (0.13) 0.3851 0.3821 (0.15) 0.2670 (0.14)
TP 2.027 0.0462 0.2275 (0.04) 0.0011 (0.12) 0.3174 0.3256 (0.10) 0.2534 (0.13)
TPB 2.027 0.0472 0.1751 (0.04) −0.0019 (0.12) 0.2674 0.3141 (0.07) 0.2620 (0.13)

UB 0.0000 (0.13) 1.0000 (0.00) 0.5450 (0.13)

Note:α: type I error rate;Ep∗ : meanproportion of patients in a trial assigned the best treatment; (s.d.): standard deviation for
each measurement; EO: mean patient outcome; (1 − β): statistical power. UB: theoretical UB from assigning all patients
best treatment.

offer the best compromise. Both perform similarly well, achieving higher power than FR,
and offering a marked improvement in patient welfare compared with FR. However, if the
trial subjects comprise most of the total population to be treated (T/N ≈ 1), then GI and
RBI provide the best patient outcome throughout the trial.

The results in the table for the batched approaches show that, as expected, as the delay
in recruitment is more severe the advantages of TSB and TPB over FR are significantly
reduced (though both designs still offer important patient welfare advantages). Notice-
ably, the effect on power and patient welfare of a severe delay in the controlled version (i.e.
TPB) differs to that of the uncontrolled variant (TSB). The controlled version has its power
levels reduced as the delay increases (while the opposite happens to TSB). TP improves
power over FR by matching the allocation of the control arm to that of the best perform-
ing arm, therefore increasing the allocation to these two arms over the other arms. With a
larger delay TBP will allocate larger number of patients to all arms which therefore reduces
its marginal power levels compared to TP. For TSB the power improvement is explained
because the design cannot skew allocation to the best arm as fast as with TS, thus allocating
more patients to all arms when compared to TS.

One distinctive feature of the results is that the Type I error rate α in the UCB trial
is lower than the expected 5%, at just 4.4%. As explained above, the same critical values
for hypothesis testing have been used as in Section 3.2, since the experimenter might not
known in advance the total number of patients to be recruited. Figure 6 shows how the
appropriate critical valueC0.05 for hypothesis testing with a Type I error rate α = 5% varies
according to the size T of the trial. For most trial designs, there is little variation in C0.05 as
T increases. However, for the UCB trial, C0.05 increases significantly with T; as a result, the
appropriate critical value to ensure a 5% Type I error rate is lower for the smaller 64 person
trial, at C0.05 = 2.10, compared to C0.05 = 2.22 for the 302 person trial. Therefore, the 64
person trial conducted at the higher critical value of 2.22 generates a low Type I error rate,
and the power is even lower than it could be if the test was relaxed by lowering the critical
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Figure 6. Empirical critical values C0.05 for one-tailed testing to maintain 5% FWER in the four-arm trial
design, against number T of patients in the trial.

value to 2.10. As a result, the UCB mechanism may be unsuitable for trials where the total
number of patients to be recruited is not known in advance. This effect is less pronounced
in the KLU variant making it more suitable in that case.

Since the trial size was much smaller than expected, there is a motivation to consider if
using a smaller value for dwould affect results, as a smaller discounting factor corresponds
to putting less value on learning for the future. Note that, when varying the discount factor,
we might expect the distribution of the test statistic Z to change, and so critical values for
the hypothesis tests would have to be recalculated for each discount factor for the Gittins
index designs, via a Monte Carlo simulation as in Section 3.2. In simulations not included
here we found that for this trial setting in all of GI, RGI and CG there is no significant
variation in patient outcome between discount factors in {0.9, 0.95, 0.995, 0.99}.

4. Conclusions and discussion

The simulation results provided by this paper illustrate how the index-based response-
adaptive design derived from the MABP can lead to significant improvements in patient
welfare also with a normally distributed endpoint. In all situations, designs based on the
Gittins index achieved the largest patient welfare gain over FR trials ormyopic designs cur-
rently in use in drug development such as TP.However, there are a number of limitations to
the effectiveness of the purely deterministic Gittins index design that still prevail. As in the
binary case, the Gittins index rule exhibits considerably lower power than FR, and whilst
the loss of power can be alleviated to some extent by the introduction of random pertur-
bations to the indices (RGI), in the two-arm trial the power achieved is still not sufficient
for most clinical trials unless the exploration term is correctly calibrated.
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In a multi-armed case, the patient welfare advantages of adaptive designs, and GI-based
particularly, over FR are the largest. Moreover, there are adaptive designs that can offer
more power than FR together with a patient-benefit advantage, making them suitable for
drug development for common conditions. In the four-arm case based on a real trial we
studied, a small deviation from optimality by protecting the allocation of the control treat-
ment (CG and CUC) offers a power close to (or even above) FR’s while still providing
considerable patient-benefit. In contexts where power is relatively less important (if there
are very few disease sufferers outside the trial), GI, RGI or UCB offer even better patient
welfare at the expense of a power reduction.

There are designs that increase power levels of the UCB algorithm by introducing mod-
ifications to improve its asymptotic regret bounds, as shown for KLU in Cappé et al. [6].
However, such power gains require a very large number of patients in the trial to be
also accompanied by similar patient welfare advantages. For example, KLU dominates
over UCB under both criteria only in scenarios where trials had more than thousands
of patients. For smaller (and more realistic) trial sizes, as the ones considered in this
paper, UCB had better patient welfare and less power than KLU. Nevertheless, rules like
KLU offer a good trade-off between the two objectives and can be suitable designs for
common diseases.

An important observation drawn from the simulations provided by this paper is that the
type I error deflation of theGI observed for the Bernoulli case does not hold in the normally
distributed case. Actually, if no correction is introduced using a standard test will result
in an important type I error inflation. In this work we have outlined a simulation-based
procedure that can be used to prevent this inflation.

As pointed out in Berry [5], trying to shoehorn trials employing an adaptive design
from a Bayesian viewpoint into traditional frequentist hypothesis testsmay not be themost
appropriate method of inference. Alongside the statistical community’s faith in randomi-
sation is a trust in frequentist inference, so this is generally used even in Bayesian trials
to make the results as persuasive as possible. But, the inferential power and the poten-
tial patient-benefit from adaptive trials could be improved by applying Bayesian inference
methods combined with the use of prior data. Further research could seek an appropri-
ate method of Bayesian inference based on index-based adaptive trials, for example, by
considering which arm the adaptive design is favouring most at the end of the trial, or by
incorporating information derived from historical data.

None of the Bayesian allocation mechanisms considered here manages to completely
eliminate the statistical bias phenomenon; further research is needed to seek an alternative
mechanism or a means of accounting for the bias introduced. Moreover, they all carry a
level of selection bias which, while not studied in the simulations included in this paper,
could lead to much greater bias in clinical trials on a real population. Further research is
needed to investigate whether significant practical problems will arise from selection bias
in real trials, and whether random perturbations to the indices are sufficient to eliminate
these problems. Alternatively, to overcome this limitation further research could repeat the
idea introduced in Villar et al. [24] to randomise group of patients based on probabilities
determined by the Gittins Indices for trials with continuous endpoints. For the procedures
that protect allocation to the control arm we recommend a randomised implementation
(where a patient is randomised to control or experimental arms with probabilities 1/(K +
1), 1 − 1/(K + 1) respectively and then allocated to experimental arms according to the
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index rule). A systematic allocation to control arm (i.e., 1 in everyK+1 patient is allocated
to control) while in theory is equivalent to its randomised counterpart in practice is subject
to a very high degree of selection bias.

Some adaptive trials are designed to take account of covariates in the trial popula-
tion (e.g. age, weight, blood pressure) which might affect the treatment response, by
ensuring the allocations are balanced across the covariate factors [2]. Other trials incor-
porating covariate information combined with response-adaptive procedures with the aim
of identifying superior treatments more quickly, mainly treatments that work better within
subgroups, is an essential requirement to make personalised medicine possible. Some work
has been done on incorporating covariates into the one-armed bandit problem, yet further
research is needed to extend the approach to multi-armed bandits used in this work to
clinical trials with biomarkers. See [16,19,27].

None of the adaptive designs considered formally accounts for the estimated popula-
tion size. The index-based approaches indirectly can consider that by appropriate selection
of the discount factor. However, the results in this paper suggest that the choice between
implementing a traditional FR design or an adaptive design should depend on the current
belief of how large the population of patients outside the trial is.

Finally, the results presented in this paper have highlighted that further analogous
research is needed to extend these results and address potential specific issues to trials with
other endpoints, such as continuous endpoints that are not normally distributed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This workwas funded by the Biometrika Trust and theUKMedical Research Council (grant number
MC_UP_1302/2).

References

[1] J.F.P. do Amaral, Aspects of optimal sequential resource allocation, D.Phil. thesis, University of
Oxford, 1985.

[2] A.C. Atkinson and A. Biswas, Randomised Response-Adaptive Designs in Clinical Trials, CRC
Press, Boca Raton, FL, 2014.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem,
Mach. Learn. 47 (2002), pp. 235–256.

[4] J. Bather, Randomized allocation of treatments in sequential trials, Adv. Appl. Probab. 12 (1980),
pp. 174–182.

[5] D.A. Berry, [Investigating therapies of potentially great benefit: ECMO]: comment: ethics and
ECMO, Stat. Sci. 4 (1989), pp. 306–310.

[6] O. Cappé, A. Garivier, O.-A. Maillard, R. Munos, and G. Stoltz, Kullback-Leibler upper confi-
dence bounds for optimal sequential allocation, Ann. Stat. 41 (2013), pp. 1516–1541.

[7] J. Gittins, K. Glazebrook, and R.Weber,Multi-Armed Bandit Allocation Indices, 2nd ed., Wiley,
Chichester, 2011.

[8] J.C. Gittins andD.M. Jones,ADynamic Allocation Index for the sequential design of experiments,
in Progress in Statistics (European Meeting of Statisticians, Budapest, 1972), J. Gani, K. Sarkadi,
and I. Vincze, eds., North-Holland, Amsterdam, 1974, pp. 241–266.



JOURNAL OF APPLIED STATISTICS 1073

[9] J.C. Gittins and D.M. Jones, A dynamic allocation index for the discounted multiarmed bandit
problem, Biometrika 66 (1979), pp. 561–565.

[10] J. Gittins and Y. Wang, The learning component of dynamic allocation indices, Ann. Stat. 20
(1992), pp. 1625–1636.

[11] K.D. Glazebrook, On randomized dynamic allocation indices for the sequential design of experi-
ments, J. R. Stat. Soc. Ser. B (Methodol.) 42 (1980), pp. 342–346.

[12] D. Jones, Search procedures for industrial chemical research. Master’s thesis, U.C.W. Aberyst-
wyth, 1970.

[13] M.N. Katehakis and H. Robbins, Sequential choice from several populations, Proc. Natl. Acad.
Sci. U.S.A. 92 (1995), pp. 8584–8585.

[14] H. Kobayashi, B.L. Mark, andW. Turin, Probability, Random Processes, and Statistical Analysis,
CUP, Cambridge, 2012.

[15] D.Magirr, T. Jaki, and J.Whitehead,AgeneralizedDunnett test formulti-armmulti-stage clinical
studies with treatment selection, Biometrika 99 (2012), pp. 494–501.

[16] V. Perchet and P. Rigollet,Themulti-armed bandit problemwith covariates, Ann. Stat. 41 (2013),
pp. 693–721.

[17] V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg, Batched bandit problems, Ann. Stat. 44
(2016), pp. 660–681.

[18] M.L. Puterman, Markov decision processes: discrete stochastic dynamic programming, Wiley-
Interscience, Hoboken, NJ, 2005.

[19] J. Sarkar, One-armed bandit problems with covariates, Ann. Stat. 19 (1991), pp. 1978–2002.
[20] P.F. Thall and J.K. Wathen, Practical Bayesian adaptive randomisation in clinical trials, Eur. J.

Cancer. 43 (2007), pp. 859–866.
[21] W. Thompson, On the likelihood that one unknown probability exceeds another in view of the

evidence of two samples, Biometrika, 25 (1933), pp. 285–294.
[22] L. Trippa, E.Q. Lee, P.Y. Wen, T.T. Batchelor, T. Cloughesy, G. Parmigiani, and B.M. Alexan-

der, Bayesian adaptive randomized trial design for patients with recurrent Glioblastoma, J. Clin.
Oncol. 30 (2012), pp. 3258–3263.

[23] S. Villar, J. Bowden, and J. Wason,Multi-armed bandit models for the optimal design of clinical
trials: benefits and challenges, Stat. Sci. 30 (2015), pp. 199–215.

[24] S. Villar, J. Bowden, and J.Wason, Response-adaptive randomization for multi-arm clinical trials
using the forward-looking Gittins index rule, Biometrics 71 (4) (2015), pp. 969–978.

[25] J. Wason, N. Stallard, J. Bowden, and C. Jennison, A multi-stage drop-the-losers design for
multi-arm clinical trials, Statistical Methods in Medical Research (to appear). Advance online
publication. doi:10.1177/0962280214550759, 2014.

[26] P. Whittle, Restless bandits: Activity allocation in a changing world, J. Appl. Probab. 25 (1988),
pp. 287–298.

[27] M.B. Woodroofe, A one-armed bandit problem with a concomitant variable, J. Am. Stat. Assoc.
74 (1979), pp. 799–806.

[28] B. Zhong,How to calculate sample size in randomized controlled trial?, J. Thorac. Dis. 1 (2011),
pp. 51–54.

Appendix 1. Controlling the family-wise type I error rate

In order to control the FWER when carrying out multiple testing, we need to consider the joint
distribution of Z1, . . . ,Zk. We have, for 1 ≤ j = k ≤ K,

cov(Zj,Zk) = cov

⎛
⎝ X̄j − X̄0

σ
√

1
nj + 1

n0

,
X̄k − X̄0

σ
√

1
nk

+ 1
n0

⎞
⎠

= 1
σ 2

1√
1
nj + 1

n0

1√
1
nk

+ 1
n0

Var(X̄0),
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by the independence of Zj and Zk. Using the fact that Var(X̄0) = σ 2/n0,

cov(Zj,Zk) =
[(

1 + n0
nj

) (
1 + n0

nk

)]−1/2
.

Error rates are lowest when the variance of the sample means is minimised, which corresponds to
the trial being well balanced: in a RCT trial with fixed equal randomisation all the sample sizes
are (asymptotically) equal, so we will have a good approximation for n0 ≈ n1 ≈ · · · ≈ nK and
cov(Zj,Zk) ≈ 1

2 . Hence, under H0,G, δ1 = · · · = δK = 0 and

Z = (Z1, . . . ,ZK) ∼ NK(0,�K),

where �K is the K × K matrix given by

(�K)ij =
⎧⎨
⎩
1, i = j,
1
2
, i = j.

So we would expect a RCT trial to control the FWER at level α by using critical value Cα satisfying

Cα∫
−∞

· · ·
Cα∫
−∞

φ�K (x1, . . . , xK) dx1 . . . dxK = 1 − α, (A1)

where φ�K is the probability density function of a multi-variate normal NK(0,�K) distribution, i.e.
ensuring that

P

[
max

k=1,...,K
Zk ≤ Cα

]
= 1 − α. (A2)
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Appendix 2: Calculating empirical cut-off values to control the type I
error rate

Figure A1. Histograms of empirical distributions of the test statistic Z0,1 in TS, RBI, RGI, UCB, KLU and CB
two-arm trials, implemented under each hypothesis (as in Figure 3). Also marked is the standard normal
distributionwhich Z0,1 should follow in the FR trial (red). For each design, the samplemean Z̄0,1, standard
deviation SZ0,1 and an empirical 95th-percentile C0.05 have been calculated underH0. The empirical 95th-
percentile underH0 will correspond to the critical value for hypothesis testing, and ismarked by a vertical
dotted line on the histograms. (a) TS trial underH0, (b) TS trial under H1, (c) RBI trial underH0, (d) RBI trial
under H1, (e) RGI trial under H0, (f ) RGI trial under H1, (g) UCB trial under H0, (h) UCB trial under H1, (i)
KLU trial under H0, (j) KLU trial under H1, (k) CB trial under H0, (l) CB trial under H1.
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Figure A1. (Continued).
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