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Abstract: Freeform injection moulding is a novel technology for powder injection moulding where a
sacrificial 3D printed mould (i.e., a soft tooling) is used as an insert in the injection process. The use
of 3D printed moulds enable a higher geometrical design flexibility as compared to the conventional
injection moulding process. However, there is still very limited knowledge on how the sacrificial soft
tooling material and powder suspension handles the increased geometrical complexity during the
process. In this study, a stainless steel powder suspension is injected into a geometrically challenging
sacrificial mould (viz. a helix structure) that is produced by vat photopolymerization additive
manufacturing. Computed tomography is used to quantify the geometrical precision of the mould
both before and after injection. In addition, a new numerical model that considers the suspension
feedstock is developed to investigate the powder injection moulding process. The numerical results
are found to be in qualitative good agreement with the experimental findings in terms of pinpointing
critical areas of the structure, thereby highlighting a new pathway for evaluating sacrificial inserts
for powder injection moulding with a high geometrical complexity.

Keywords: powder injection moulding; additive manufacturing; soft tooling; low pressure injection
moulding; simulation; freeform injection moulding

1. Introduction

Powder Injection Moulding (PIM) is a well-established technology for mass manu-
facturing of metal parts. Nowadays the market demands new and highly customized
products, forcing the producers to continuously update the moulds in their manufacturing
processes. Applications of PIM include dental implants [1,2], artificial joints [3,4], med-
ical hand tools for special surgical operations [5,6] and steel cutting tools [7,8]. PIM is
a profitable process for mass production, but in the case of prototyping or small batch
production, the cost of the metal tools has an influential weight on the overall cost of the
final parts [9]. An efficient way to reduce the manufacturing cost of PIM parts, when only
a low number of units need to be produced, is to integrate Additive Manufacturing (AM)
with PIM. In addition to being more affordable, the use of AM in a PIM process chain (also
called soft tooling) opens new avenues for the possible geometry of the final part, which
overcomes some limitation of the traditional PIM process [10]. Moulds for soft tooling
in PIM are generally produced via Material Extrusion Additive Manufacturing [11] or
Vat-Photopolymerization Additive Manufacturing (VPAM) [12,13]. In the case of VPAM,
it is possible to manufacture sacrificial moulds with special resins that can be dissolved
chemically [14] or thermally [15]. This soft tooling technique is also known as freeform
injection moulding or lost form injection moulding. The advantage of freeform injection
moulding is its ability to produce complex geometries like a helix structure; however,
there is a lack of knowledge for powder injection moulding with such complex structures,
since they are not possible to produce with conventional injection moulding. One of the
challenges of using a sacrificial mould, or a soft tool in general, is that the strength of this
material is lower than that of traditional tool steel [16], which hinders the possibility to use
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injection pressures from 60 to 200 MPa that are typically applied in conventional powder
injection moulding.

Numerical models have been extensively used to analyse various polymer processing
technologies [17], such as fused deposition modelling [18–20] and resin injection pultru-
sion [21,22]. In case of injection moulding, simulations have also been successfully used in
both research and industry [23,24]. A good overview of simulations of the powder injection
moulding process commonly used in industry can be found in the work of Yavari et al. [25]
and Raymond [26], but only limited work exists that looks into simulations of low pres-
sure powder injection moulding [27–29]. A knowledge gap is found when dealing with
simulations of low pressure powder injection moulding with a high geometrical complexity.

The aim of this work is for the first time to analyse the fabrication of a geometrically
complex helix structure when using low pressure injection moulding in combination with a
sacrificial mould that is produced by VPAM. Computed tomography is used to determine
the geometry of the soft tool before injection as well as the displacements in the part over
the course of the process. In addition, a novel numerical process model is developed to
simulate the flow and packing behaviour of the stainless steel powder suspension during
the PIM process. The experimental and numerical results are used to understand the
deformation pattern in the helix structure.

2. Materials and Methods
2.1. The Freeform Injection Moulding Process Chain

In Figure 1, a process chain for PIM is illustrated. A detailed description of this process
chain can be found in the authors’ previous works [16]. In this study, the tools used for
the injection moulding machine were fabricated using VPAM. The photopolymer resin
applied in the VPAM process was water soluble, which enabled the creation of the helix
structure. The feedstock for the low pressure injection moulding was tailor made by mixing
together 316L stainless steel powder (with an average size of 50 µm) with a binder system
based on low density polyethylene and paraffin wax. This feedstock was selected due to
its low viscosity (below 50 Pa s at 120 ◦C), as it reduced the pressure during injection. The
characterization of the feedstock can be found in a previous investigation [30]. The solid
loading of the feedstock was 70% in volume.
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Figure 1. The freeform injection moulding process chain.

The fabricated moulds were injected using a BOY XS 10 ton injection moulding
machine from Dr. Boy, Neustadt-Fernthal, Germany. Table 1 shows the injection moulding
conditions used during the experiment. To avoid mould distortion, the injection pressure
was kept below 15 MPa. After injection, the sacrificial mould was dissolved in an alkaline
solution, and the green body was obtained. Note that in this investigation, the deformation
in the helix structure was evaluated after the demoulding step, and thus the debinding and
sintering process steps were not considered.
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Table 1. Injection moulding conditions.

Properties Value

Injection temperature at nozzle 120 ◦C
Injection pressure 15 MPa
Packing pressure 12 MPa

Packing time
Mould temperature

3 s
20 ◦C

2.2. Investigated Geometry

A mould with a straight pillar and helix structure was used (see Figure 2). A total
of 5 moulds were produced and injected. The straight pillar was designed with a height
of 16.26 mm and diameter of 2 mm. Such simple geometry was selected to easily detect
distortion and deflection of the cavity after the injection. The helix structure had the same
overall height and diameter of the pillar, with three revolutions and a pitch of 4 mm. The
geometrical deviation of the part was measured using a Werth Messtechnik Tomoscope XS
CT scan from Werth Messtechnik, Gießen, Germany, with a pixel size of 51 µm. Specifically,
the deviation between the point cloud obtained by the CT scan and the CAD file was
measured using the software GOM inspect.
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Figure 2. Three-dimensional printed sacrificial mould (a) and rendering of the injected part after
mould dissolution (b).

2.3. Numerical Model

The numerical PIM model was developed in Autodesk Moldflow synergy 2019 (AMS),
jointly with Autodesk Moldflow Data Fitting (AMDF). The numerical model simulates
the injection and packing step of injection process, but not the solidification phase. The
numerical model considered four governing equations: conservation of mass, conservation
of momentum, energy balance and particle-phase mass balanced [31], listed hereinafter.
The conservation of mass equation is as follows:

∂ρ

∂t
+∇·(ρ

→
V) = 0 (1)

where ρ is the density of the suspension, t represents the time and
→
V is the velocity vector.

The conservation of momentum equation is as follows:

ρ
D
→
V

Dt
= −∇P +∇·

⇒
τ + ρ

→
g (2)
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where P is the pressure,
⇒
τ is the viscous stress tensor and

→
g is the gravitational acceleration

vector. The conservation of energy equation is as follows:

ρCp
DT
Dt

= ∇·(k∇T) +
⇒
τ : ∇

→
V + βT

DP
Dt

(3)

where CP is the specific heat capacity, T is the temperature, k is the thermal conductivity
and β is the expansivity. The latter is a function of the variation of the density of the
suspension with the temperature. Finally, the particle-phase mass balance equation is
given by

∂θ

∂t
+
→
V·∇θ = −∇·

→
J (4)

where θ is the volume fraction of powder and
→
J is the particle migration flux, which

depends on the viscosity of the suspension, the dimension of the particles and particle
sedimentation. AMDF was used to create the feedstock (i.e., metal powder suspension) for
the simulation. The viscosity data of the feedstock was measured at different temperatures
(see Figure 3) and imported in the software using the WLF viscosity model [32]. This model
correlates the variation of the viscosity of the feedstock with the shear rates:

η(
.
γ) =

η0

1 + ( η0
.
γ

τ∗ )
1−n (5)

where η0 is the viscosity at zero shear rate,
.
γ represents the shear rate, n is the power law

index and τ∗ is the critical shear stress at the shear thinning transition. The viscosity at
zero shear stress is given by

η0 = D1 × exp
[

A1(T−D2)

A2 + T−D2

]
(6)

where A1, A2, D1 and D2 are coefficients that are fitted to the viscosity curves in Figure 3.
A detailed investigation on the viscosity of the feedstock can be found in the authors’
previous work [30].

Polymers 2021, 13, x FOR PEER REVIEW 4 of 11 
 

 

where P is the pressure, 𝜏   is the viscous stress tensor and 𝑔  is the gravitational accelera-

tion vector. The conservation of energy equation is as follows:  

𝜌𝐶𝑃

𝐷𝑇

𝐷𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) + 𝜏  ∶ 𝛻�⃗� + 𝛽𝑇

𝐷𝑃

𝐷𝑡
 (3) 

where 𝐶𝑃 is the specific heat capacity, 𝑇 is the temperature, 𝑘 is the thermal conductiv-

ity and 𝛽 is the expansivity. The latter is a function of the variation of the density of the 

suspension with the temperature. Finally, the particle-phase mass balance equation is 

given by 

∂θ

∂t
+ V⃗⃗ ∙ ∇θ = −∇ ∙ J ̝ (4) 

where 𝜃 is the volume fraction of powder and 𝐽 ̝ is the particle migration flux, which de-

pends on the viscosity of the suspension, the dimension of the particles and particle sedi-

mentation. AMDF was used to create the feedstock (i.e., metal powder suspension) for the 

simulation. The viscosity data of the feedstock was measured at different temperatures 

(see Figure 3) and imported in the software using the WLF viscosity model [32]. This 

model correlates the variation of the viscosity of the feedstock with the shear rates: 

𝜂(γ̇) =
η0

1 + (
η0γ̇
τ∗ )

1−n 
(5) 

where 𝜂0 is the viscosity at zero shear rate, �̇� represents the shear rate, n is the power 

law index and 𝜏∗ is the critical shear stress at the shear thinning transition. The viscosity 

at zero shear stress is given by 

η0 = D1 × exp [
A1(T − D2)

A2 + T − D2
] (6) 

where A1, A2, D1 and D2 are coefficients that are fitted to the viscosity curves in Figure 3. 

A detailed investigation on the viscosity of the feedstock can be found in the authors’ 

previous work [30].  

The numerical model solved the governing equations with a 3D coupled algorithm 

[33]. The mesh type was 3D tetrahedral elements with a total number of ~135,000. In ad-

dition, the model used the level-set method to track the free surface of the feedstock 

[34,35]. The thermal and mechanical properties of the feedstock were acquired from the 

work of Marhöfer et al. [36] and Lui et al. [37]. The properties are summarized in Table 2. 

 

Figure 3. Viscosity vs. angular frequency measured at 100 °C, 120 °C and 140 °C. 
Figure 3. Viscosity vs. angular frequency measured at 100 ◦C, 120 ◦C and 140 ◦C.

The numerical model solved the governing equations with a 3D coupled algorithm [33].
The mesh type was 3D tetrahedral elements with a total number of ~135,000. In addition,
the model used the level-set method to track the free surface of the feedstock [34,35].
The thermal and mechanical properties of the feedstock were acquired from the work of
Marhöfer et al. [36] and Lui et al. [37]. The properties are summarized in Table 2.
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Table 2. Properties used in the simulation for the feedstock.

Properties Value Source

Viscosity Model
WLF coefficients

Fitted data from rheology
measurements

N 0.5699
Taus 4.93 × 104 Pa
D1 1.84 × 1016 Pa s
D2 263.15 K
A1 47.62
A2T 51.60 K

Thermal Conductivity [36]
At 298 ◦C 1.95 W/mK
At 383 ◦C 1.40 W/mK
At 453 ◦C 1.59 W/mK

Specific Heat [36]
At 298 ◦C 640 J/kgK
At 383 ◦C 900 J/kgK
At 453 ◦C 710 J/kgK

Mechanical properties [37]
Young’s Modulus 0.82 GPa

Poisson’s ratio 0.40
In plane shear modulus 0.29 GPa

Thermal Properties [37]
Coefficient of linear thermal expansion 83.93 × 10−6/◦C

Softening point 71.90 ◦C
Transition temperature 53.92 ◦C

3. Results and Discussion

After injection and dissolution of the moulds, all the parts showed damage at the
helix structure (see Figure 4). The parts broke at the turning point of the helix structure,
while the straight pillars stayed undamaged. The failure of the spiral is analysed in the
next subsections using CT and numerical modelling.
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Figure 4. Part after demoulding. All samples showed an intact pillar, while the helix broke at the
turning points.

3.1. Geometrical Displacement

A CT scan was used to investigate the dimension of the cavity of the mould. Figure 5a
shows the displacement for the empty mould. While the cavity of the straight pillar was
printed with high fidelity, deviations were detected at the turning points of the helix. The
displacement between the nominal design and scan was larger than 0.3 mm, showing a
size decrease in the printed cavity. The necking in the helix channel was caused by an
incomplete cleaning. After printing, the cavity of the mould was filled with uncured resin,
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which needed to be removed with isopropyl alcohol and compressed air. In case of thin
intricate channels, such as helix structures, the complete removal of uncured resin can
be challenging. If some leftover resin is still present after cleaning, it will harden during
the post curing process, generating the observed size decrease at the turning points. The
variation of the cavity dimension could also be seen directly in the filled part (see Figure 5b).
The helix structure deviated from the CAD file at the turning points, and the deviations
seemed to be more severe towards the bottom. This indicates that the uncured resin during
the cleaning process tends to accumulate towards the end of the structure. At the end of the
helix, there was only one venting hole (0.8 mm) from which the uncured resin could escape;
such a narrow feature might hinder the complete cleaning of the cavity. The deformation
of the helix created weak points that could be the source of failure during demoulding.
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Figure 5. CT scan of an empty cavity (a) and filled cavity (b). Colour scale illustrates the geometrical displacement from the
CAD file.

3.2. Shear Induced Defects

In Figure 6, the shear rates predicted by the developed numerical model are shown.
The shear rates are depicted at the end of the injection. The numerical results illustrate that
the highest variations in shear rates are obtained in the helix structure with values up to
2000 1/s. Since the feedstock is shear sensitive, the fluctuation in shear can cause powder
binder separation, as reported in [38].

Figure 7 shows numerical predictions of the powder volume concentration for the
entire cavity and for its cross section. The powder volume concentration is approximately
70% in the pillar (i.e., homogeneous), while variations from 60% to 73% are detected in
the helix structure with an increase in powder content from top to bottom. Variations in
shear rate and powder volume concentration have also been shown by authors studying
conventional powder injection moulding [39,40]. In particular, Tseng et al. [40] showed
higher segregation at the turning point of an L-shaped structure due to variations in
shear rate. The segregation pattern in the helix structure might be the reason for the helix
structure’s inability to withstand the dissolution process, which would be in accordance
with other researchers’ findings [41–44].



Polymers 2021, 13, 4183 7 of 11
Polymers 2021, 13, x FOR PEER REVIEW 7 of 11 
 

 

 

Figure 6. Simulation of the shear rate in the cavity (a) and cross section of the cavity (b). 

Figure 7 shows numerical predictions of the powder volume concentration for the 

entire cavity and for its cross section. The powder volume concentration is approximately 

70% in the pillar (i.e., homogeneous), while variations from 60% to 73% are detected in 

the helix structure with an increase in powder content from top to bottom. Variations in 

shear rate and powder volume concentration have also been shown by authors studying 

conventional powder injection moulding [39,40]. In particular, Tseng et al. [40] showed 

higher segregation at the turning point of an L-shaped structure due to variations in shear 

rate. The segregation pattern in the helix structure might be the reason for the helix struc-

ture’s inability to withstand the dissolution process, which would be in accordance with 

other researchers' findings [41–44]. 

 

Figure 7. Simulation of the powder volume concentration for the entire cavity (a) and for the cross 

section (b). 

3.3. Pressure Difference in the Cavity  

Figure 8 presents the numerical results of the pressure at the end of the injection. A 

lower pressure is obtained in the helix structure as compared to the pillar. However, the 

difference in pressure between the two cavities is quite low: 5.5 MPa in the helix and 6.1 

Figure 6. Simulation of the shear rate in the cavity (a) and cross section of the cavity (b).

Polymers 2021, 13, x FOR PEER REVIEW 7 of 11 
 

 

 

Figure 6. Simulation of the shear rate in the cavity (a) and cross section of the cavity (b). 

Figure 7 shows numerical predictions of the powder volume concentration for the 

entire cavity and for its cross section. The powder volume concentration is approximately 

70% in the pillar (i.e., homogeneous), while variations from 60% to 73% are detected in 

the helix structure with an increase in powder content from top to bottom. Variations in 

shear rate and powder volume concentration have also been shown by authors studying 

conventional powder injection moulding [39,40]. In particular, Tseng et al. [40] showed 

higher segregation at the turning point of an L-shaped structure due to variations in shear 

rate. The segregation pattern in the helix structure might be the reason for the helix struc-

ture’s inability to withstand the dissolution process, which would be in accordance with 

other researchers' findings [41–44]. 

 

Figure 7. Simulation of the powder volume concentration for the entire cavity (a) and for the cross 

section (b). 

3.3. Pressure Difference in the Cavity  

Figure 8 presents the numerical results of the pressure at the end of the injection. A 

lower pressure is obtained in the helix structure as compared to the pillar. However, the 

difference in pressure between the two cavities is quite low: 5.5 MPa in the helix and 6.1 

Figure 7. Simulation of the powder volume concentration for the entire cavity (a) and for the cross section (b).

3.3. Pressure Difference in the Cavity

Figure 8 presents the numerical results of the pressure at the end of the injection. A
lower pressure is obtained in the helix structure as compared to the pillar. However, the
difference in pressure between the two cavities is quite low: 5.5 MPa in the helix and
6.1 MPa in the pillar. The small variation in pressure indicates that this probably is not the
origin of the failure of the helix.
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3.4. Shrinkage of the Part

In Figure 9, the numerical results of the volumetric shrinkage of the part are plotted
at the end of the packing step of the injection moulding process. The simulation shows
the highest shrinkage as well as the variation in shrinkage in the helix structure. Up to 4%
variation in shrinkage was detected at the turning point of the helix. This shrinkage profile
might generate internal stresses and crack formation that potentially can lead to failure
of the structure. Hsu et al. [45] observed this exact pattern when studying conventional
powder injection moulding, both experimentally and numerically.
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4. Conclusions

This paper investigated the behaviour of a powder suspension when injected into a
3D printed sacrificial mould with high geometrical complexity. The soft tool had a straight
pillar and a helix structure both with a diameter of 2 mm. After demoulding of the parts,
damage was observed at the helix. Specifically, the helix was broken at the turning points,
illustrating the inability of the process to produce such a structure with a diameter of 2 mm.
A CT scan and numerical model were used to analyse the failure of the parts. The CT scan
of the empty mould revealed the presence of necking at the turning points of the helix with
a deviation of more than 300 µm from the nominal design. These variations in the cavity
dimension were also confirmed by the CT scan of the part. The geometrical alteration of
the helix structure created weak spots that could act as the source of failure. In addition,
the numerical model predicted shear rates up to 2000 1/s, powder volume concentrations
from 60% to 73% and volumetric shrinkage up to 4%, which all could be alternative sources
of the failure of the helix. From a qualitative point of view, the numerical results were
congruent with the experimental findings in terms of highlighting the critical areas of the
helix structure. In future research, a quantitative comparison between the experimental and
numerical results should be carried out. In addition, it is of interest to find the appropriate
diameter of the helix structure and process parameters that does not lead to failure.
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