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Background: The difference of proton density fat fraction (PDFF) between supraclavicular
and gluteal adipose tissue might indicate the presence of brown adipose tissue (BAT). Aim
of this cross-sectional study was to investigate the association between PDFF over the
supraclavicular fat region as a proxy of BAT proportion and resting metabolic rate (RMR).
In addition, the association between the single nucleotide polymorphism (SNP) rs1421085
at the fat mass and obesity associated (FTO) gene locus and both PDFF and RMR
was investigated.

Methods: Anthropometric, clinical, and lifestyle data from 92 healthy adults (66.3%
females, mean age: 36.2 ± 13.0 years, mean body mass index: 24.9 ± 5.4 kg/m2) were
included in the analysis. The RMR was measured by indirect calorimetry. The magnetic
resonance imaging (MRI) was used for the measurement of visceral and subcutaneous
adipose tissue (VAT, SAT) volumes and for the measurement of adipose tissue PDFF.

Results: Mean RMR of the whole group was 1 474.8 ± 242.2 kcal. Genotype data was
available for 90 participants. After adjustment for age, sex, weight change and fat-free
mass (FFM), no association was found between supraclavicular PDFF (p = 0.346) and
gluteal PDFF (p = 0.252), respectively, and RMR, whereas statistically significant evidence
for a negative association between delta PDFF (difference between gluteal PDFF and
supraclavicular PDFF) and RMR (p = 0.027) was obtained. No statistically significant
evidence was observed for per FTO risk allele change in RMR, gluteal and supraclavicular
PDFF maps or volumes of VAT and SAT.

Conclusions: Supraclavicular PDFF as a surrogate marker of BAT presence is not a
determinant of RMR under basal conditions. In the present study, the FTO rs1421085
variant is not associated with either RMR or PDFF. Further studies are needed to elucidate
the effect of BAT on RMR.
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INTRODUCTION

Understanding the determinants that influence resting metabolic
rate (RMR) as the main component of energy metabolism is
fundamental in obesity research. Main determinants of RMR
variability include fat-free mass (FFM), sex, age, and body
temperature (1–3). In particular, FFM including muscle mass
and solid organs explain up to 80% of RMR variability (1, 3–6).
However, also fat mass (FM), depending on its extent and
location, may play a role in RMR variability, although FM
shows a 6 to 7 times lower specific metabolic rate than FFM (7).

The FM consists of white adipose tissue (WAT), composed of
lipid-storing white and – to a poorly defined, but much lower
extent - lipid-burning “beige” adipocytes, and brown adipose
tissue (BAT) in specific depots (8, 9). Whereas WAT stores
energy as triglycerides, BAT and the beige fat cells within WAT
produce heat by the expression of uncoupling protein 1
(UCP1) (8).

Over the last decade, functional imaging provided evidence
for the existence of BAT in adult humans (8), where BAT is
mostly found in the supraclavicular and neck region (8, 10, 11).
In most studies, positron-emission tomography and computed
tomography (PET-CT) was used to identify active BAT (10).
More recently, water-fat magnetic resonance imaging (MRI) was
applied to detect BAT (12–14). One possibility for the surrogate
detection of the presence of brown and beige adipose tissue by
MRI is the quantification of the proton density fat fraction
(PDFF), which is defined as the proportion of mobile proton
density from triglycerides over the total density of mobile
protons from triglycerides and mobile water (15). In a recent
study, supraclavicular PDFF was positively associated with
anthropometric obesity markers as well as volumes of visceral
and subcutaneous adipose tissue (VAT, SAT) (16). Calculating
the difference between the mean supraclavicular PDFF and mean
gluteal PDFF values (delta PDFF) has been proposed with the
aim of detecting BAT presence. Referencing the supraclavicular
PDFF to the gluteal PDFF would partially alleviate the impact of
obesity on a generally lower adipose tissue hydration. It has been
shown that the higher the delta PDFF was, the more likely BAT
was detected (14, 17, 18).

Although still controversially debated, the presence of active
BAT may play a significant role in human energy metabolism.
Studies have shown that at least under stimulation, such as cold
exposure, BAT is activated and RMR is transiently increased
(19–21). Recently, Claussnitzer et al. identified a causal
relationship between the single nucleotide polymorphism
(SNP) rs1421085 at the fat mass and obesity associated (FTO)
locus and preadipocyte differentiation (22). Thereby, the risk
variant may lead to an enhanced fat storage, due to a cell-
autonomous change of adipogenesis towards white adipocytes.

The aim of the current analysis was to investigate (I) the
association between supraclavicular PDFF, as a surrogate marker
for the presence of BAT, and RMR as well as (II) associations
between the FTO SNP rs1421085 and PDFF including delta
PDFF and RMR.
Frontiers in Endocrinology | www.frontiersin.org 2
MATERIALS AND METHODS

Subjects
Recruitment of study participants started in October 2013 at the
Else Kroener-Fresenius Centre for Nutritional Medicine in
Munich, Technical University of Munich, Germany. Adults
with a body mass index (BMI) equal to or above 18.5 kg/m²
were included. Participants were excluded if an acute
inflammatory state, a history of severe diseases, surgeries
within the last three months or physical limitations were
reported. Pregnant and breast-feeding women and persons on
specific medications such as beta-blocker were also excluded.
Written informed consent was obtained before participation in
the study. The study protocol and the standard operating
procedures were approved by the ethical committee of the
Technical University of Munich, Germany (Number 2719/10 S).

Anthropometry
Height was measured in a standing position without shoes using
a stadiometer (Seca, Hamburg, Germany) and reported to the
nearest 0.1 cm. Body composition, including FFM and FM, was
assessed using bioimpedance analysis (BIA; Tanita BC 418 MA,
Tokyo, Japan). Measurements were performed before indirect
calorimetry in light clothing and with voided bladder, with
subtraction of 1.0 kg for clothes. The BMI was calculated as
quotient of weight in kg and squared height in m (kg/m²). Blood
pressure and heart rate were obtained using a validated electronic
device (Beurer BM70, Ulm, Germany) according to the
recommendations of the American Heart Association (23).

RMR Measurement
Indirect calorimetry was applied for the measurement of RMR
with a ventilated canopy hood (Quark RMR, Suite Version 10.0e,
Cosmed s.r.l., Rome, Italy). The RMR measurement was
performed with the following requirements: overnight fast (10
to 12 hours), no smoking, and abstinence from physical activity
the day before. The 30-minutes measurement started after an
acclimatization time offive minutes. The flow rates were assessed
as recommended by the manufacturer. The Quark RMR software
analyzed oxygen consumption (VO2) and carbon dioxide
(VCO2) expiration resulting from substrate oxidation, while
participants were fully awake and motionless. The respiratory
quotient (RQ) was calculated as VCO2/VO2 ratio. For RMR
calculation, the following equation was used: RMR (kcal/d) =
[3.941 × VO2 (ml/min) + 1.106 × VCO2 (ml/min)] × 1.44 (24).
The VO2 and/or VCO2 variances equal to or greater 10.0% were
re-calculated by cutting out a four-minute window for correction
(25). The results using a 4-minutes time window were not
statistically different to that measured over a 30-minutes
period (25). If correction was not feasible, participants were
excluded from the analysis.

MRT Measurement
Participants were invited for MRI scanning. Exclusion criteria
included standard contraindications for MRI examinations. All
February 2022 | Volume 13 | Article 804874
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participants had given written informed consent before the
examination and underwent an MRI of the neck and the
abdomen/pelvis on a 3T Philips scanner (Ingenia, Philips
Healthcare, Best, The Netherlands). For PDFF analysis, a semi-
automatic segmentation tool based on Matlab (MathWorks,
Natick, MA, USA) was used. Weight data at the time of MRI
measurement was self-reported. Detailed data analysis of MRI
measurement was performed as previously described (16). The
processing steps were followed to determine SAT volume, VAT
volume, mean supraclavicular and gluteal PDFF.

Genotyping
Deoxyribonucleic acid (DNA) was isolated from EDTA full
blood samples according to a standard protocol following
manufacturer`s protocol (DNeasy Blood & Tissue Kit,
QIAGEN, Hilden, Germany). Polymerase chain reaction (PCR)
was used for amplification of DNA. Sequencing of the FTO
polymorphism rs1421085 was carried out by the company
Eurofins (Eurofins Genomics GmbH, Ebersberg, Germany)
with Cycle Sequencing Technology (dideoxy chain
termination/cycle sequencing) using Applied Biosystems
3730xl DNA Analyser. Call rate was calculated with 96.1%
showing a high quality of the genotyping procedure. Calculated
minor allele frequency (MAF) of the risk C allele was 43%.
Hardy-Weinberg equilibrium (HWE) was fulfilled.

Data Analysis
Results of the descriptive analysis were expressed as means ±
standard deviations (SDs) and percentages (%). For comparison
of variables, the unpaired student t-test was conducted for
normally distributed variables, otherwise Mann-Whitney U-test
was used. Analysis of variance (ANOVA) were conducted to
compare more than two variables. Regression analysis was
calculated for associations between different variables. Additive,
as well as dominant and recessive linear models were used to
identify associations between the FTO genotype and PDFF and
RMR. Due to time intervals between the RMR and MRI
measurement, all statistical analysis were adjusted for the body
weight difference (“weight change”) between the time of RMR and
MRI measurement. RMR is known to be significantly associated
with age, sex, and FFM (1, 3, 26, 27). For these reasons, three
different models were applied: model 1 was unadjusted, model 2
was adjusted for age, sex, FFM, and weight change, model 3
contained model 2 and further adjustment for FM. Due to the
explorative character of the study, no correction for multiple
testing was performed. All estimates were presented as
unstandardized betas with 95% confidence intervals (CI). P-
values lower than 0.05 were considered as statistically
significant. All statistical analyses were performed by using the
statistical software R (R Core Team, 2019) (28).
RESULTS

Baseline Characteristics
In total, 92 participants (66.3% female) were included in the
analysis (Table 1). Mean age was 36.2 ± 13.0 years and mean
Frontiers in Endocrinology | www.frontiersin.org 3
BMI was 24.9 ± 5.4 kg/m² (range, 18.5 - 43.1 kg/m²). Mean RMR
was 1 474.8 ± 242.2 kcal/d, with males (1 711.0 ± 213.0 kcal/d)
having on average a 355 kcal/d higher RMR than females
(1 356.0 ± 152.7 kcal/d) (p ≤ 0.001). Mean supraclavicular and
gluteal PDFF were 76.0 ± 4.7% and 89.3 ± 3.9%, respectively.
Supraclavicular PDFF was significantly lower than gluteal PDFF
(p ≤ 0.001) with a mean delta PDFF (difference between gluteal
PDFF and supraclavicular PDFF) of 13.3 ± 4.2%. No sex-specific
differences between PDFFs, delta PDFF, VAT, or SAT were
detected. Almost 50% (48.9%) of the participants (n = 44) were
heterozygous for the C risk allele of the FTO SNP rs1421085,
while 20.0% of the participants (n = 18) were homozygous for the
C risk allele (Table 1).

Association Between Adipose Tissue
Variables and RMR
Supraclavicular PDFF was positively associated with RMR, if
data was unadjusted (ß = 11.92 kcal/d, p = 0.026, 95% Cl 1.44 -
22.39 kcal/d), however significance disappeared after adjustment
in model 2 and model 3 (model 2: p = 0.346; model 3: p = 0.928)
(Table 2). No evidence for a statistically significant association
between gluteal PDFF and RMR was observed in the unadjusted
model (p = 0.389, Table 2), while a significantly negative
correlation was found in the full adjusted model 3 (ß = -11.60
kcal/d, p = 0.006, 95% Cl -19.75 - -3.45 kcal/d) (Table 2). A
significantly negative association between delta PDFF and RMR
was found in all three models (model 1: ß = -19.41 kcal/d, p =
9.15E-4, 95% Cl -30.65 - -8.16 kcal/d; model 2: ß = -8.17 kcal/d,
p = 0.027, 95% CI -15.39 - -0.95 kcal/d; model 3: ß = -8.25 kcal/d,
p = 0.023, 95% CI -15.35 - -1.15 kcal/d) (Table 2).

Evidence for a significant association between VAT and RMR
was observed in the statistical models 1 and 2 (model 1: ß =
7.23E-2 kcal/d, p = 6.52E-5, 95% CI 3.81E-2 - 0.11 kcal/d; model
2: ß = 0.03 kcal/d, p = 0.009, 95% CI 8.58E-3 - 0.06 kcal/d)
(Table 2). No significant association was found between SAT
and RMR in models 1 and 2 (p ≥ 0.05) (Table 2). Furthermore, a
significant association was seen between gluteal and
supraclavicular PDFF and VAT after adjustment for age, sex,
FFM, and weight change (p = 1.44E-5, p = 2.22E-6) (data not
shown). Similar results were found for gluteal PDFF,
supraclavicular PDFF, delta PDFF, and SAT (data not shown).

Sub-Analysis in Participants With
Normal Weight
To exclude effects of overweight and obesity on the relationship
between PDFF and RMR, a sub-group analysis of participants
with normal weight (BMI 18.5 – 24.9 kg/m², n = 56) was
performed. Evidence for a statistically significant negative
association between gluteal PDFF and RMR was obtained in the
unadjusted model 1 (ß = -16.30 kcal/d, p = 0.019, 95% CI -29.83 –
-2.78 kcal/d) as well as in the full adjusted model 3 (ß = -14.05
kcal/d, p = 0.005, 95% CI -23.67 – -4.43 kcal/d) (Table 3).
Furthermore, in the unadjusted model 1, an association
between FM and RMR was found in people with normal weight
(ß = -11.24 kcal/d, p = 0.016, 95% CI -20.32 – -2.15 kcal/d), while
no association was found in model 2 (p = 0.221) (Table 3).
February 2022 | Volume 13 | Article 804874
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Association Between FTO SNP rs1421085
and RMR and Adipose Tissue
No statistically significant differences between the different FTO
genotypes and the RMR were seen in the additive as well as in the
dominant or recessive genetic models (p > 0.05, data not shown),
respectively. No evidence for any significant association between
the FTO SNP rs1421085 and the adipose tissue variables under
investigation was obtained, independent of the genetic model
(p ≥ 0.05, additive model: Table 4; dominant and recessive
Frontiers in Endocrinology | www.frontiersin.org 4
model: data not shown). Similar results were found when sub-
group analysis in persons with normal weight were performed
(p ≥ 0.05, data not shown).
DISCUSSION

To investigate the effect of BAT on human energy expenditure,
we studied the association between supraclavicular PDFF and
TABLE 2 | Association between parameters of adipose tissue and RMR.

Parameter Model 1 Model 2 Model 3

beta (95% CI) p beta (95% CI) p beta (95% CI) p

PDFF sup. (%) (n = 92) 11.92 (1.44; 22.39) 0.026 3.33 (-3.66; 10.33) 0.346 -0.38 (-8.63; 7.87) 0.928
PDFF glut. (%) (n = 92) -5.70 (-18.79; 7.38) 0.389 -4.12 (-11.22; 2.98) 0.252 -11.60 (-19.75; -3.45) 0.006
Delta PDFF (%) (n=92) -19.41 (-30.65; -8.16) 9.15E-4 -8.17 (-15.39; -0.95) 0.027 -8.25 (-15.35; -1.15) 0.023
VAT (ml) (n = 89) 7.23E-2 (3.81E-2; 0.11) 6.52E-5 0.03 (8.58E-3; 0.06) 0.009 – –

SAT (ml) (n = 89) 7.98E-3 (-3.58E-3; 1.95E-2) 0.174 7.10E-3 (3.54E-6; 0.01) 0.050 – –

FM (kg) (n = 92) 1.87 (-2.53; 6.26) 0.401 3.01 (-0.12; 6.13) 0.059 – –

FFM (kg) (n = 92) 17.22 (14.95; 19.49) <2.0E-16 19.67 (15.09; 24.25) 3.95E-13 17.11 (11.87; 22.34) 5.24E-9
Februar
y 2022 | Volume 13 | Article
Unstandardized beta estimates and 95% confidence intervals for associations between RMR and MRI data, FFM and FM are shown. Model 1 is unadjusted; model 2 is adjusted for age,
sex, weight change, FFM (when appropriate); model 3 is adjusted for model 2 plus FM; delta PDFF, difference between PDFF glut. and PDFF sup.; FFM, fat-free mass; FM, fat mass; glut.,
gluteal; MRI, magnetic resonance imaging; n, number of participants; p, p-value; PDFF, protein-density fat-fraction; RMR, resting metabolic rate; SAT, subcutaneous adipose tissue; sup.,
supraclavicular; VAT, visceral adipose tissue. Italic p values show a significant association between RMR and parameters of adipose tissue (p ≤ 0.05).
TABLE 1 | Characteristics of the study population.

Parameter n (%) Mean ± SD Min Max

Age (years) 92 36.15 ± 13.04 20.00 69.00
Weight (kg) 92 73.87 ± 16.62 50.30 134.30
Height (cm) 92 172.30 ± 9.70 155.20 195.00
BMI (kg/m²) 92 24.89 ± 5.37 18.48 43.08
BMI categories
18.5-24.9 56 (60.87)
25.0-29.9 25 (27.17)
≥30 11 (11.96)

PDFF sup. (%) 92 76.01 ± 4.71 66.51 87.17
PDFF glut. (%) 92 89.27 ± 3.86 73.44 97.28
Delta PDFF (%) 92 13.26 ± 4.24 2.56 22.70
VAT (ml) 89 1 258.08 ± 1 353.06 81.63 6 511.86
SAT (ml) 89 6 114.30 ± 4 349.86 758.50 22 425.90
FM (%) 92 25.66 ± 10.88 4.10 51.40
FM (kg) 92 19.63 ± 11.50 3.20 56.00
FFM (kg) 92 54.26 ± 11.91 37.60 86.90
RMR (kcal/d) 92 1 474.8 ± 242.2 1 022.00 2 123.00
VO2 (ml/min) 92 213.47 ± 35.85 149.00 309.00
VCO2 (ml/min) 92 175.89 ± 28.67 116.00 251.00
RQ 92 0.82 ± 0.06 0.68 0.96
Systolic BP (mmHg) 90 116.93 ± 15.54 95.00 199.00
Diastolic BP (mmHg) 90 71.61 ± 8.69 52.00 96.00
Heart rate (bpm) 90 60.39 ± 9.15 41.00 89.00
FTO rs1421085 (n=90)
Homozygous CC 18 (20.00)
Heterozygous CT 44 (48.89)
Homozygous TT 28 (31.11)
Mean ± SD is shown, min and max are given, if not otherwise indicated; BMI, body mass index; BP, blood pressure; bpm, beats per minute; delta PDFF, difference between PDFF glut. and
PDFF sup.; FFM, fat-free mass; FM, fat mass; FTO, fat mass and obesity associated; glut., gluteal; n, number; PDFF, proton density fat fraction; RMR, resting metabolic rate;
RQ, respiratory quotient; SAT, subcutaneous adipose tissue; SD, standard deviation; sup., supraclavicular; VAT, visceral adipose tissue; VCO2, volume of carbon dioxide; VO2, volume
of oxygen.
804874
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RMR in a sound group of healthy adults. The main finding was
that there was no evidence for an association between mean
supraclavicular PDFF and RMR, indicating – if supraclavicular
PDFF is considered as a surrogate marker of BAT – that there
might be no effect of non-activated BAT on RMR.

Associations Between MRT-Derived Fat
Fractions and RMR
Statistically significant evidence was seen for a negative
association between gluteal PDFF and RMR after adjusting for
FFM and FM. These findings were similar for males and females
(data not shown). Moreover, the negative association between
delta PDFF and RMR remained statistically significant after
adjusting for age, sex, weight change, FFM and FM. However,
the negative correlation disappeared after exclusion of persons
with overweight and obesity. These results were in contrast to
our hypothesis as we assumed (I) the lower the supraclavicular
PDFF, the higher the content of BAT and beige fat cells (II)
resulting in a higher delta PDFF and in a higher RMR. The
associations may indicate that the adipose tissue composition of
the supraclavicular region might not be relevant for energy
expenditure, at least under thermoneutrality. Inverse
correlations between outdoor temperature and BAT activity
were found in different studies, in which BAT was detected via
PET-CT (29, 30). Moreover, active BAT induced via cold
Frontiers in Endocrinology | www.frontiersin.org 5
expression could generate up to 15 times as much glucose
intake than under thermoneutrality (31) leading to an
increased energy expenditure. Therefore, other factors
influencing RMR like FFM and FM might mask a possible
association between BAT and RMR under thermoneutrality.

The significant difference between supraclavicular and gluteal
PDFF as demonstrated in this study is in line with other studies
(13, 14) indicating a difference in tissue composition concerning
the proportions of brown/beige adipose tissue and WAT. In fact,
the supraclavicular PDFF is known to be confounded by partial
voluming effects due to the presence of both white and brown
adipocytes in the human supraclavicular fossa (32). In addition,
the gluteal PDFF is known to be positively associated with
obesity markers (16). Delta PDFF has been thus proposed as a
way to correct for the inter-individual variation of WAT PDFF
(14). In the present work, participants with normal weight had a
significantly lower supraclavicular PDFF and higher delta PDFF
compared to people with overweight or obesity (data not shown).
This finding is in line with the recently described positive
association between adipose tissue PDFF and obesity markers
suggesting that with increasing BMI the relative content of BAT
and beige adipocytes is decreasing (16). Similar results have been
found in other studies (11, 33). A large retro-perspective study
based on 18F-fluorodeoxyglucose PET-CT scans of patients with
cancer identified 5 070 participants (9.5% of all participants) with
TABLE 4 | Per risk allele change of the FTO rs1421085 genotype and parameters of adipose tissue.

Parameter Model 1 Model 2 Model 3

beta (95% CI) p beta (95% CI) p beta (95% CI) p

PDFF sup. (%) (n=90) 0.02 (-0.01; 0.05) 0.246 0.01 (-0.03; 0.05) 0.604 6.31E-3 (-0.04; 0.05) 0.792
PDFF glut. (%) (n=90) 0.02 (-0.01; 0.06) 0.217 0.02 (-0.02; 0.06) 0.285 0.02 (-0.03; 0.07) 0.356
Delta PDFF (%) (n=90) -2.81E-3 (-0.04; 0.03) 0.878 0.01 (-0.03; 0.05) 0.556 0.01 (-0.03; 0.06) 0.561
VAT (ml) (n=87) 2.09E-5 (-9.11E-5; 1.33E-4) 0.711 -2.76E-5 (-1.67E-4; 1.12E-4) 0.696 – –

SAT (ml) (n=87) 1.06E-5 (-2.43E-5; 4.56E-5) 0.546 -2.80E-6 (-4.30E-5; 3.74E-5) 0.890 – –

FM (kg) (n=90) 0.01 (-5.41E-3; 0.02) 0.252 4.75E-3 (-0.01; 0.02) 0.592 – –

FFM (kg) (n=90) 4.13E-3 (-0.01; 0.02) 0.514 0.02 (-0.01; 0.04) 0.179 0.01 (-0.02; 0.04) 0.381
February
 2022 | Volume 13 | Article 8
Unstandardized beta estimates and 95% confidence intervals for associations between FTO SNP rs1421085 and MRI data, FFM and FM are shown. Model 1 is unadjusted; model 2 is
adjusted for age, sex, weight change, FFM (when appropriate); model 3 is adjusted for model 2 plus FM; delta PDFF, difference between PDFF glut. and PDFF sup.; FFM, fat-free mass;
FM, fat mass; FTO, fat mass and obesity associated; glut., gluteal; MRI, magnetic resonance imaging; n, number of participants; p, p-value; PDFF, protein-density fat-fraction; SAT,
subcutaneous adipose tissue; SNP, single nucleotide polymorphism; sup., supraclavicular; VAT, visceral adipose tissue.
TABLE 3 | Association between parameters of adipose tissue and RMR in persons with BMI 19.5 – 24.9 kg/m2.

Outcome Model 1 Model 2 Model 3

beta (95% CI) p beta (95% CI) p beta (95% CI) p

PDFF sup. (%) (n=56) -6.86 (-22.24; 8.52) 0.375 -0.79 (-10.95; 9.37) 0.877 -3.17 (-13.84; 7.50) 0.553
PDFF glut. (%) (n = 56) -16.30 (-29.83; -2.78) 0.019 -8.24 (-17.17; 0.68) 0.070 -14.05 (-23.67; -4.43) 0.005
Delta PDFF (%) (n = 56) -8.45 (-21.01; 4.11) 0.183 -6.77 (-15.28; 1.73) 0.116 -7.86 (-16.36; 0.65) 0.069
VAT (ml) (n = 53) 0.06 (-0.06; 0.18) 0.302 -0.01 (-0.01; 0.07) 0.749 – –

SAT (ml) (n = 53) -7.65E-3 (-0.03; 0.02) 0.534 -1.61E-4 (-0.02; 0.02) 0.983 – –

FM (kg) (n = 56) -11.24 (-20.32; -2.15) 0.016 4.94 (-3.07; 12.95) 0.221 – –

FFM (kg) (n = 56) 15.69 (12.29; 19.09) 9.88E-13 15.66 (8.52; 22.79) 5.50E-5 14.53 (7.19; 21.87) 2.25E-4
Unstandardized beta estimates and 95% confidence intervals for associations between RMR and MRI data, FFM and FM are shown. Model 1 is unadjusted; model 2 is adjusted for age,
sex, weight change, FFM (when appropriate); model 3 is adjusted for model 2 plus FM; BMI, body mass index; delta PDFF, difference between PDFF glut. and PDFF sup.; FFM, fat-free
mass; FM, fat mass; glut., gluteal; MRI, magnetic resonance imaging; n, number of participants; p, p-value; PDFF, protein-density fat-fraction; RMR, resting metabolic rate; SAT,
subcutaneous adipose tissue; sup., supraclavicular; VAT, visceral adipose tissue. Italic p values show a significant association between RMR and parameters of adipose tissue (p ≤ 0.05).
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detectable BAT (11). In this study, a significantly inverse
correlation between active BAT and BMI (11) suggested that
functional BAT is decreasing with increasing BMI. This
observation in patients with cancer might indicate lower BAT
volume and activity in obesity and is in line with our findings and
setting (without control of body temperature and without
activation of BAT by drugs). Therefore, we analyzed the
association between parameters of adipose tissue and RMR in
a sub-analysis in persons with normal weight. No significant
association could be found except for a negative association
between gluteal PDFF and RMR after adjusting for age, sex, FFM,
FM, and weight change. As mentioned before, this negative
finding suggests that the volume of BAT might not be
associated with RMR.

Associations Between Body
Composition and RMR
From previous studies, it is well known, that FFM is the major
determinant of RMR (1, 3, 26, 34), which was also observed in our
study. We also found a positive association between VAT and
RMR, while SAT and FM were not associated with RMR, both
after adjusting for FFM, age, sex and weight change. A recently
published MRI study described a significantly higher RMR in
persons in whom VAT was pronounced (“visceral obesity”) in
comparison to persons with a preferential fat deposition in SAT
(35). These associations support the present findings which might
be explained by an enhanced metabolic activity of VAT compared
to SAT (36). In contrast, Genske et al. identified an association
between SAT and RMR independent of VAT volume and
adipokines (37). Other studies identified an association between
FM and RMR (7, 27, 38) which could not be replicated in the
present cohort. However, VAT and SAT, respectively, were
significantly associated with FM after the adjustment for age,
sex, and FFM (data not shown). These results might be explained
that MRI data allows the delineation of specific fat depots,
whereas BIA gives an overall FM.

Associations Between the FTO SNP
rs1421085 and Fat Compartments
Based on the findings of Claussnitzer et al. (22), the investigation
of the relationship between PDFFs or delta PDFF and the C risk
allele of the FTO SNP rs1421085 was of interest. No association
was detected between the rs1421085 obesity C risk allele and
PDFFs. However, this negative finding should be dealt with
caution as the sample size was limited and, therefore, the
number of homozygous C risk allele carriers was rather small.
Another explanation might be that the effect of the FTO risk
genotype may only become apparent when BAT is metabolically
active, e.g. after activation by cold exposure. As MRI-derived
PDFFs do not reflect current BAT activity, an association
between the FTO genotype and BAT activity is not excluded
and may require further studies.

Strengths and Limitations
The present analysis investigated the relationship between PDFF
as a proxy of BAT and RMR in humans. However, PDFF is not
specific for the presence and the proportions of brown or beige
Frontiers in Endocrinology | www.frontiersin.org 6
adipose cells in a defined adipose tissue depot. A low PDFF in the
supraclavicular adipose tissue may suggest a large proportion of
less lipid-loaded brown fat cells, but suffers from partial volume
effects and cannot reflect the real volume of brown adipocytes in
the human supraclavicular fossa comprising a heterogeneous
mixture of brown and white adipocytes (16). In addition, PDFF
does not provide functional characteristics of the region, which
may be critical for local energy expenditure. Despite we have a
large sample size compared to other studies including MRI data,
the sample size of 92 participants is rather small for the genetic
analysis and the generalizability of the results. A strength of the
current analysis is the comprehensive phenotyping of
participants including body composition analysis, obtained
under standardized conditions. In this context, it is noteworthy
that the relevance of adjustment for FFM in analyses of fat
compartments like VAT or SAT or even for PDFF maps is
indistinct. Other studies on the association between BAT
volumes and RMR performed no adjustment for FFM (19, 39).
It has to be mentioned that BIA differentiates between FM and
FFM according to a two-compartment model (40). This
approach does not consider the discussion about functional
body composition analyses. BAT might be a mixture of FM
and FFM and it is rather unclear how to differentiate BAT
volumes (41).
CONCLUSION

In conclusion, our analysis is the first to investigate the
associations between PDFF, as a surrogate marker for BAT
and beige fat cells, and RMR and the FTO SNP rs1421085.
Our results did not provide evidence for a significant association
between supraclavicular PDFF and RMR. In addition, our
analysis did not reveal an association between supraclavicular
PDFF and the FTO genotype. Future studies on the association
between BAT and RMR should consider the activation of BAT.
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