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Food intake triggers extensive changes in the blood metabolome. The kinetics

of these changes depend on meal composition and on intrinsic, health-

related characteristics of each individual, making the assessment of changes in

the postprandial metabolome an opportunity to assess someone’s metabolic

status. To enable the usage of dietary challenges as diagnostic tools, profound

knowledge about changes that occur in the postprandial period in healthy

individuals is needed. In this study, we characterize the time-resolved changes

in plasma levels of 634metabolites in response to an oral glucose tolerance test

(OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy

young males (n = 15). Metabolite levels for samples taken at di�erent time

points (20 per individual) during the challenges were available from targeted

(132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost

half of the profiledmetabolites (n= 308) showed a significant change in at least

one challenge, thereof 111metabolites responded exclusively to one particular

challenge. Examples include azelate, which is linked to ω-oxidation and

increased only in OLTT, and a fibrinogen cleavage peptide that has been linked

to a higher risk of cardiovascular events in diabetes patients and increased

only in OGTT, making its postprandial dynamics a potential target for risk

management. A pool of 89 metabolites changed their plasma levels during all

three challenges and represents the core postprandial response to food intake

regardless of macronutrient composition. We used fuzzy c-means clustering
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to group these metabolites into eight clusters based on commonalities

of their dynamic response patterns, with each cluster following one of

four primary response patterns: (i) “decrease-increase” (valley-like) with fatty

acids and acylcarnitines indicating the suppression of lipolysis, (ii) “increase-

decrease” (mountain-like) including a cluster of conjugated bile acids and

the glucose/insulin cluster, (iii) “steady decrease” with metabolites reflecting

a carryover from meals prior to the study, and (iv) “mixed” decreasing after

the glucose challenge and increasing otherwise. Despite the small number of

subjects, the diversity of the challenges and the wealth of metabolomic data

make this study an important step toward the characterization of postprandial

responses and the identification of markers of metabolic processes regulated

by food intake.

KEYWORDS

postprandial metabolism, dietary challenge, time-series data, longitudinal

metabolomics, metabolic adaptation, response patterns, nutritional metabolomics

Introduction

People with safe access to food, who enjoy on average

three main meals per day, spend almost the total of their

wake time in a postprandial state, which is characterized by

complex physiological processes within a 4–6 h time frame

after food intake (1). In this phase, the excess of nutrients

challenges the homeostatic system with the demand for

adaptation. The adaptive processes are orchestrated across

multiple metabolic pathways (2) and across different organs

while ensuring the most appropriate usage of energy substrates.

Macronutrient partitioning with (i) uptake of glucose into

liver and muscle for glycogen production and (ii) fatty acid

uptake into adipose tissue for storage in triglycerides are the

main routes of clearing postprandial elevations in blood levels

(3). Amino acids delivered by dietary proteins are mainly

oxidized because of strictly controlled storage capacities and

their disappearance is thus driven by energy production (4).

The contribution of further metabolites (e.g., of metabolites that

originate from consumed food) to postprandial changes in the

human metabolome is well recognized. But the dynamics of

these changes and their integration into the overall metabolic

regulation in the postprandial phase still lack understanding (5).

In recent years, the interest in postprandial metabolism

has been rising, as the dynamic metabolic response during the

postprandial phase has been linked to health (6, 7). In particular,

the magnitude and timing of postprandial changes in glucose

and triglyceride levels, which depend on meal composition,

and are highly individual even after an identical meal (8,

9), have been shown to associate with the risk of metabolic

diseases, such as diabetes (8), cardiovascular disease (10–12),

and liver cirrhosis (13). In these studies, postprandial levels of

blood glucose or triglycerides allowed better and more sensitive

disease predictions than the fasting levels of these metabolites,

suggesting the assessment of individual dynamic postprandial

responses as a tool for early detection and personalization of

interventions in these diseases.

Each meal drives a complex dynamic switch from a fasting

to a postprandial phase with time-dependent changes in the

levels of numerous metabolites from different pathways in

addition to glucose and triglycerides. Through metabolite

profiling in blood using state-of-the-art metabolomics methods,

the complex, time-resolved metabolic responses to nutrient

intake in the central compartment can be measured (14). In

a standardized setting of dietary challenges, these profiles can

objectively describe the flexibility and robustness of a person’s

metabolism when exposed to a specific acute nutrient load.

Standardized challenge tests comprise defined proportions of

carbohydrates, proteins, lipids, and combinations of all three

macronutrients. The oral glucose tolerance test (OGTT) is the

most widely used standardized challenge (15, 16). Initially, the

OGTT was designed for the diagnosis of diabetes, but recently,

it has become the main tool in human nutritional studies to

assess individual systemic metabolic responses to glucose intake

through metabolomics (15–27). Within the OGTT, participants

are given an oral bolus of 75 g of glucose after overnight

fasting. The glucocentric response within the postprandial

phase is mainly characterized by insulin-dependent phenomena

including stimulation of glycolysis, inhibition of lipolysis,

ketogenesis, and proteolysis. Recent studies made efforts to also

standardize (i) mixed meal challenges for research (28), which

are designed to reflect macronutrient compositions of everyday

meals and thereby bring responses closer to real-life settings, as

well as (ii) oral lipid (fat) tolerance tests (OLTT), which contain

high amounts of lipids with a pre-defined lipid composition

and are used for assessing postprandial hyperlipidemia as a risk
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factor for cardiovascular disease (29). While the postprandial

response to glucose within an OGTT has been characterized

systemically using metabolomics approaches in many studies

already, recent studies on the responses to mixed meals (28,

30–36) and OLTTs (37–41) mainly focused on glucose and

triglyceride levels only (2, 28, 37, 42).

In this study, we aimed to dissect the complexity of healthy

systemic postprandial responses by characterizing similarities

and differences in the kinetic changes of plasma metabolites

across three different dietary challenges (OGTT, mixed meal,

and OLTT). We used time-resolved metabolomics in samples

of 15 healthy male individuals undergoing the same challenge

protocol to record metabolite levels before and during the

postprandial period. Out of 634 profiled metabolites, which

cover a broad range of biochemical pathways, we identified

those metabolites that were responsive to the intake of each

meal. The readout allows for the characterization of core

postprandial responses, identifying metabolite changing levels

regardless of the macronutrient composition of the test meal,

as well as the identification of metabolite changes that were

unique to a specific challenge. Using a statistical approach for

fuzzy clustering, we classify groups of metabolites into response

patterns with a detailed description of their typical kinetic

behavior in plasma, facilitating functional dissection of human

postprandial metabolism.

Materials and methods

Study population

For the work presented here, we reused data from a

subsample of the Human Metabolome (HuMet) study, which

was conducted at the Human Study Center of the Else-Kröner-

Fresenius Center for Nutritional Medicine at the Technical

University Munich and has been published first in 2012 (43).

For HuMet, fifteen healthy male participants were recruited to

be as homogeneous as possible, with an average age of 27.8 ±

2.9 years and normal weight [body mass index (BMI) of 23.1

± 1.8 kg/m²]. Participants did not take any medication, and

none of the participants showed any metabolic abnormalities

according to standard clinical chemistry. More details about the

recruitment criteria and entrance examinations can be found

in Krug et al. (43). All participants gave their written informed

consent, and the ethical committee of the TechnischeUniversität

München approved the study protocol (#2087/08), which was in

accordance with the Declaration of Helsinki.

Dietary challenges

As part of the HuMet study, participants underwent six

different metabolic challenges performed in two blocks of 2

days with a wash-out period of 4 weeks in between. In total,

samples from 56 different time points were collected. For the

analyses presented here, we reused data from the second 2-

day block. Over the period of 2 days, participants underwent

three different nutritional challenges, with samples collected at

20 different time points: an oral glucose tolerance test (OGTT)

and a mixed meal challenge [by ingestion of a standard liquid

diet (SLD)] on day 1, and an oral lipid tolerance test (OLTT)

on day 2.

Here, we compared the postprandial response from the

three challenges from baseline (shortly before dietary intake)

up to 240min postprandially. All challenges were administered

under highly controlled conditions in the study center. Before

entering the study center for 2 days, participants had the same

meal (standard size chicken-based with vegetables) as dinner in

the evening.

The oral glucose tolerance test (OGTT) drink consisted of a

300-ml solution with mono- and oligosaccharides, equivalent to

75 g of glucose after enzymatic cleavage (Dextro O.G.T., Roche

Diagnostics, Mannheim, Germany). Participants were overnight

fasted at OGTT baseline. Plasma samples (EDTA) were taken at

nine time points (0, 15, 30, 45, 60, 90, 120, 180, and 240 min).

The standard liquid diet (SLD) consisted of a defined

fiber-free formula drink (Fresubin
R©

Energy Drink Chocolate,

Fresenius Kabi, Bad Homburg, Germany). The challenge drink

was adjusted for each participant providing one-third of the

daily energy requirement. The SLD challenge directly followed

after the OGTT (4 h OGTT = baseline SLD). Within the SLD

challenge, plasma samples were taken at five time points (0, 60,

120, 180, and 240 min).

The oral lipid tolerance test (OLTT) combined one part of

a fat emulsion containing predefined long-chain triglycerides

(Calogen
R©
, Nutricia, Zoetemeer, Netherlands) and two parts

of the SLD (see above). The volume of the OLTT challenge

drink was adjusted for each participant to provide 35 g fat/m2

body surface area. Participants were overnight fasted at OLTT

baseline. Plasma samples were taken at seven time points (0, 30,

60, 90, 120, 180, and 240 min).

The detailed drink compositions can be found in

Supplementary Table 1.

Non-targeted metabolomics

EDTA-plasma samples were kept at −80◦C until

the moment of analysis through the non-targeted mass

spectrometry (MS)-based HD4 platform at Metabolon, Inc.

(Durham, NC, USA), which has been described in detail

previously (44). Briefly, after thawing, recovery standards were

added to the samples for quality control purposes. Thereafter,

metabolites were extracted with methanol using an automated

liquid handling device [MicroLab STAR
R©

system from

Hamilton Company (Reno, NV, USA)]. After centrifugation,
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the resulting extracts were split into four portions for

analysis and one for reserve. Extracts were placed briefly

on a TurboVap
R©

(Zymark) to remove the organic solvent,

stored overnight under nitrogen, and reconstituted in solvents

compatible with the analytical methods before each analysis.

Metabolite detection and quantification were performed

using four different analytical methods: two separate reverse

phase (RP)/ultra-high-performance liquid chromatography

(UPLC)-MS/MS methods with electrospray ionization (ESI)

in positive mode, an RP/UPLC-MS/MS with ESI in negative

mode, and a hydrophilic interaction liquid chromatography

(HILIC)/UPLC-MS/MS with ESI in negative mode. All methods

utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer interfaced

with a heated electrospray ionization (HESI-II) source. The

Orbitrap mass analyzer operated at a mass resolution (m/1m)

of 35,000.

As the focus of the HuMet study was on the dynamic

changes in metabolite levels within individuals, samples from

the same individual and 2-day blocks were put on the same

plate. Within plates, the order of samples was randomized.

Additionally, aliquots of a reference plasma sample were

measured on each plate to monitor the overall performance

of the analytical methods and to assess the experimental

variation of measurements (in terms of the mean relative

standard deviation of abundances per metabolite determined in

the reference).

For compound identification, experimental spectra were

compared to Metabolon’s in-house library entries of purified

standards or recurrent entities based on retention time/index

(RI; calculated based on the recovery standards), mass to charge

ratio (m/z) (match to the library +/– 10 ppm), and MS/MS

spectral data (MS/MS forward and reverse scores between the

experimental data and authentic standards). The area-under-

the-curve was used to quantify peaks.

For this study, we only used data from peaks representing

identified metabolites. Thereby, the term “metabolite” refers to

all low-weight molecules captured by the analytical approaches

described, including exogenous molecules (xenobiotics) and

small peptides. In total, measurement of the HuMet plasma

samples yielded relative quantification for 595 identified

metabolites. These metabolites were assigned to eight chemical

classes termed super-pathways (Amino Acids, Carbohydrates,

Cofactors and Vitamins, Energy, Lipids, Peptides, Nucleotides,

Xenobiotics) and 78 sub-pathways (Supplementary Table 2).

The preprocessing of the metabolomics data was based on

the complete HuMet data set comprising samples of 56 time

points in total: Raw peak area-under-the-curve values of each

metabolite were normalized to account for instrument inter-day

tuning differences by dividing the values of each metabolite at

each run day by the median of values for the metabolite on this

day (i.e., setting the run day medians to one).

Targeted metabolomics and insulin

Plasma samples had also been analyzed using a

targeted, mass spectrometry-based metabolomics approach

[AbsoluteIDQ p150 kit from Biocrates Life sciences AG

(Innsbruck, Austria)] (45) as previously described in detail in

Krug et al. (43). In this study, we used the concentrations of the

132 quantified and quality-controlled metabolites as published

previously. The metabolites are listed in Supplementary Table 2

and were manually assigned to the metabolite classes “Amino

Acids” (n = 14), “Carbohydrates” (n = 1), and “Lipids”

(n= 117).

Plasma concentrations of insulin were measured by enzyme-

linked immunosorbent assay (ELISA, K219, Dako, Glostrup,

Denmark) and were also available and used in this study.

Data analysis

Data pre-processing

We applied semi-manual data curation to the complete

targeted and non-targeted HuMet data sets to identify outliers

while considering metabolite fluctuations over time. To this

end, we systematically filtered single data points according to

the two following criteria: (i) the value of the single data point

is beyond four times the standard deviation from the mean

of the metabolite, and (ii) the data point was not measured

within the first 30min of a study challenge, where largest fold

changes in metabolite levels were expected and observed. A total

of 163 data points fitted both criteria and were subsequently

inspected manually to find data points (metabolite at time point

x), where spikes were only seen for single subjects (compared

to all other subjects at time point x). After manual inspection,

a total of 92 data points were excluded (i.e., set to missing).

In the last step, metabolites with more than 30% missingness

were excluded from the analysis (n = 93). Missing values of

the resulting data frame were imputed per platform using the

machine learning algorithm missForest, which is implemented

in the missForest R package (version 1.4). The resulting dataset

was log2 transformed.

For further analysis in this study, we extracted the data

points corresponding to the 20 time points within the three

dietary challenges from the complete curated data set.

Hypothesis tests

For each challenge, we identified metabolites with a

significant time effect on their blood levels using the non-

parametric ANOVA-like test implemented in the ld.f1 function

of the nparLD R package (version 2.1) as proposed by

Noguchi et al. (46). This method allows for testing the null

hypothesis of “no time effect” in factorial longitudinal data
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with skewed distributions (or non-homogenous variances) and

a limited number of subjects as underlying our study. The

ld.f1 function provides ANOVA-type statistics for the time

effect in a homogeneous group of subjects that is observed

repeatedly at s = 1, . . . t time points, which is analogous to

a repeated measures ANOVA statistic with metabolite levels

as dependent and time as an independent categorical variable

while treating subjects as “random effect.” We performed the

test for time effects for each challenge separately and encoded

time as a categorical, not a continuous variable to reveal

whether or not a metabolite changes in response to the different

challenges; the relative quantification of metabolites and non-

equidistant sampling of time points in our data does not allow

for straightforward (quantitative) estimation of the amount of

concentration changes per time. Time effects were considered

significant for p< 7.9× 10−5 after adjusting for multiple testing

(0.05/634= 0.000079).

We additionally performed a paired t-test for each

metabolite to identify statistically significant changes between

overnight fasting status (OGTT baseline) and the SLD baseline

time point (240min after the OGTT) as a post-hoc test for

estimating potential carryover effects from the OGTT into

the SLD challenge. We applied the same multiple testing

corrected threshold as above to judge significance. Results

are provided in Supplementary Table 8 and visualized in

Supplementary Figure 4.

Correlation

Pairwise Pearson correlation analysis based on the log2
transformed dataset containing metabolites of the core

metabolic response was applied to assess the similarity of

temporal patterns of metabolite levels with those of insulin

across time points of all dietary challenges in all 15 participants.

For analysis, we used the cor.test function of the R package stats

(version 3.6.2).

Clustering of metabolite trajectories

To identify groups of metabolites that are related to each

other functionally in terms of their postprandial regulation,

we clustered metabolites of the core postprandial response

(n = 89) according to similarities in their temporal profiles

over all individuals and all challenges. To this end, we used

fuzzy c-means clustering [mfuzz function of the Mfuzz R

package (version 2.50.0)], which is commonly used in time-

resolved gene expression analysis and has been proven to be

robust against noisy time-resolved data. For the clustering,

each metabolite was represented by a 300-dimensional vector

corresponding to the z-scored data of the 20 time points

across the three dietary challenges measured in the 15 subjects

(Note that concatenation of the temporal profiles of subjects

facilitates grouping metabolites that are highly co-regulated

within each individual independent of differences in the baseline

abundances of metabolites between subjects or subject-specific

amplitudes of the temporal profiles). The clustering algorithm

starts by assigning random cluster centers and calculates the

Euclidean distance for each data point (= 300-dimensional

vector representing a metabolite) to the cluster centers, as well as

the so-called membership scores for each metabolite and cluster.

These scores range from 0 (low membership probability) to

1 (high membership probability) and describe the probability

of cluster membership per metabolite. Next, the algorithm

iteratively (in our case 69 iterations) updates cluster centers

and re-calculates distances, minimizing the overall distances of

data points to cluster centers weighted by their membership

scores. Clustering results are provided in Supplementary Table 4

for the 89 metabolites of the core postprandial response (and

Supplementary Table 7 for all metabolites with p < 0.05 in

all three challenges). For the definition and visualization of

temporal patterns of metabolites in Figure 5, we assigned each

metabolite to the cluster, for which it had the highest cluster

membership probability.

Optimal clustering parameters (i.e., fuzzifier m, number of

clusters k) for our data set (i.e., vectors of 89 metabolites with

significant postprandial responses) were estimated as proposed

by Schwämmle and Jensen (47) [as implemented in mestimate

and cselection functions of the Mfuzz R package (version

2.50.0)]. As a result, the fuzzifier was set to m =1.25, and the

optimal number of clusters was set to k= 8.

Results

In this study, we contrasted and compared the dynamic

metabolic responses to three standardized dietary challenges

with different macronutrient compositions in a homogenous

group of 15 healthy male participants. Specifically, participants

completed an oral glucose tolerance test (OGTT), a standard

liquid diet (SLD) challenge, and an oral lipid tolerance

test (OLTT) with up to eight blood samples drawn across

a span of 4 h following ingestion of the challenge drink

(Figure 1A). Time-resolved profiling of plasma samples yielded

the circulating levels of 634 metabolites measured on two

metabolomics platforms, including a non-targeted platform

with 502 metabolites and a targeted platform with 132

metabolites after quality control. The resulting data matrix

thus contained 634 metabolites × 20 sampling time points ×

15 participants.

Responses of the plasma metabolome to
di�erent dietary challenges

First, we analyzed the fluctuations of metabolite blood levels

during the 4-h period in each of the three challenges separately.
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FIGURE 1

Metabolic responses to three dietary challenges. (A) Fifteen young healthy male participants completed three dietary challenges. Up to eight
blood plasma samples were taken from baseline to 4h postprandially in intervals from 15 to 60min. Each sample was analyzed using a
non-targeted and a targeted mass spectrometry-based metabolomics approach to identify metabolites increasing or decreasing in response to
a challenge in a time-resolved manner. (B) Out of 634 measured metabolites that survived data quality control, we identified those metabolites
in each challenge that displayed a significant change during the 4h after ingestion of the challenge drink (based on a repeated measure
ANOVA-type statistics; Bonferroni adjusted p < 0.05). The Venn diagram illustrates the number of overlapping and unique metabolites with
significant responses to the challenges with 89 metabolites that showed changes irrespective of the composition of the meal. (C) The 308
metabolites with significant postprandial responses are distributed over the 8 investigated metabolite classes (saturated color in the outer circle
indicates the portion of significant metabolites in the respective class in relation to the number of metabolites measured from this class, which is
shown in the inner circle).

To identify metabolites whose levels change in response to

a challenge, we used robust non-parametric ANOVA-type

statistics that allows testing for time effects in a small group of

homogeneous subjects that are observed repeatedly at 1, . . . t

time points [t = 9 (OGTT), 5 (SLD), 7 (OLTT)]. Metabolites

with a significant change (Bonferroni adjusted p < 0.05) across

the sampling time points were considered to have a postprandial

response. In total, 308 out of 634 metabolites showed a

postprandial response in at least one of the dietary challenges

(Supplementary Table 2). These metabolites are spread over all

eight investigated metabolite classes [Amino Acids (n = 98),

Carbohydrates (n = 12), Cofactors and Vitamins (n = 13),

Energy (n = 3), Lipids (n = 126), Nucleotides (n = 9), Peptides

(n = 15), and Xenobiotics (n = 32); Figure 1C]. Out of the

308 postprandially altered metabolites, 89 metabolites showed

significant changes in all three challenges (Figure 1B). Twenty-

four metabolites displayed changes only during the OGTT, 41

were specific to the SLD challenge, and 46 were specific to

the OLTT.

Increases or decreases of circulating metabolites following

dietary intake reflect the dynamics of postprandial metabolism

and the content of the ingestedmeal. Most of the 170metabolites
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FIGURE 2

Fold changes of metabolites at di�erent sampling time points after ingestion for results with largest e�ects/smallest p-values. (A) Volcano plot
showing the log2 fold change of each metabolite in each challenge after each sampled time point (time points are indicated by di�erent

(Continued)
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FIGURE 2 (Continued)

symbols) in relation to the p-value (ANOVA-type statistic) that the metabolite reached in the test for significant postprandial changes in a
challenge, i.e., each metabolite is displayed multiple times per challenge. For each challenge, only metabolites with any significant postprandial
change and large fold changes [abs(log2fc) > 1] or with very low p-values [–log10(p-value) > 40] are colored (red: OGTT; blue: SLD; yellow:
OLTT) in this plot. (B) Metabolites/time points meeting one of both coloring criteria in the volcano plot are integrated into the forest plot, which
displays the observed log2 fold changes. The gray plot band depicts the band of log2fc between −1 and 1, for which the fold changes are shown
only if the p-value of the metabolite was very low for a particular challenge (i.e., if the p-value of the metabolite meets the above threshold).
Otherwise, fold changes with abs(log2fc) < 1 are not displayed.

that changed in response to the glucose challenge in the OGTT

were decreased from the time of ingestion (baseline) to 1 h

postprandially and the further course of the test until 4 h

postprandially. In the OLTT and the SLD challenge, more

metabolites were increased during the course of the challenges.

Conjugated bile acids showed the largest postprandial

increases observed in our study with log2 fold changes

of 3.87, 3.78, and 3.68 after 90min in the OLTT for

glycocholate, taurocholate, and taurochenodeoxycholate,

respectively, and log2 fold changes of 3.45, 3.18, 3.11, and

2.75 for glycochenodeoxycholate, taurochenodeoxycholate,

glycocholate, and glycoursodeoxycholate after 180min in the

SLD challenge, respectively (Figure 2, Supplementary Table 3).

Glycocholate, glycochenodeoxycholate, and

taurochenodeoxycholate levels more than doubled (log2
fold change > 1) also in response to the glucose challenge after

30min in theOGTT. In contrast, for themeasured unconjugated

bile acids cholate, deoxycholate, and ursodeoxycholate and their

sum, we observed much smaller increases in the OLTT and SLD

challenge, and decreasing levels in the OGTT (Figure 3).

Metabolites with the strongest decreases involved

mainly lipids, including the ketone body 3-hydroxybutyrate

(log2fc = −2.41) after 120min in the OGTT, the oxylipin

hydroxyoctadecadienoic acids [13-HODE + 9 HODE; log2fc

= −2.15)], and the median-chain fatty acids 5-dodecaenoate

(12:1) (log2fc = −1.92) and laurate (12:0) (log2fc = −1.9)

after 120min in the OLTT, and decanoylcarnitine (log2fc

= −1.82) after 120min in the SLD challenge (Figure 2,

Supplementary Table 3). In response to the SLD, the xenobiotic

phytanate also showed a large decrease (log2fc=−1.61).

While we observed large average fold changes for the

metabolites mentioned above, we saw a high variance in

the postprandial responses across our 15 healthy male

participants for some of these metabolites. For example,

for the bile acids glycocholate, glycochenodeoxycholate, and

taurochenodeoxycholate, subject 11 showed log2 fold changes

of 6.39, 4.64, and 5.54 at 90min in the OLTT, respectively,

while these bile acids did not increase to the same extent in

subject 2 with log2 fold changes in these three bile acids being

only 1.72, 1.90, and 2.10, respectively (Supplementary Figure 1).

In contrast, in our analysis, we also found metabolites with

relatively small fold changes but very consistent postprandial

alterations across the participants (i.e., with low inter-individual

variance in fold changes) resulting in low p-values. Examples

include increases in 2,3-dihydroxyisovalerate (log2fcmax = 0.90,

p = 1.03 × 10−44 at 180min) and dopamine sulfate levels

(log2fcmax = 1.67, p = 2.77 × 10−80 at 240min) in the OLTT,

decreases in levels of the dipeptide prolyl-hydroxyproline (pro-

hydroxy-pro) in the OLTT (log2fcmin = −0.91, p = 1.32 ×

10−78 at 240min), increases in homocitrulline (log2fcmax =

0.79, p = 2.69 × 10−45 at 180min) and decreases in uridine

(log2fcmin = −1.05, p = 1.88 × 10−48 at 180min) levels in

the SLD challenge. Also, the glycerophospholipids 1-oleoyl-GPE

(18:1) and 2-linoleoyl-GPE (18:2) showed low inter-individual

variance in fold changes resulting in the smallest p-values for

postprandial changes in the SLD challenge.

Characterization of the core postprandial
response and related dynamic patterns

A total of 89 metabolites showed significant postprandial

changes in each dietary challenge in our study regardless of

the macronutrient composition of the corresponding challenge

drinks. We, therefore, refer to this set of metabolites as the

metabolite pool of the core postprandial response (Figures 1B,

4A, Supplementary Table 2). The responsive metabolites are

distributed across seven metabolite classes, namely, Amino

Acids (n = 31), Carbohydrates (n = 4), Cofactors and

Vitamins (n = 1), Lipids (n = 42), Nucleotides (n = 1),

Peptides (n = 2), and Xenobiotics (n = 8). While all of these

metabolites show significant changes after ingestion of any of

the challenge drinks, the responses were not necessarily in the

same direction across the three challenges (Figure 4). Focusing

on the peak changes, we observed consistent directions for

all carbohydrates, most of them increasing consistently (↑3,

↓1), and for the majority of lipids (↑3, ↓31, ↑↓ 8), most

of them decreasing consistently, in the postprandial phase. In

particular, acylcarnitines consistently decreased after ingestion

of the challenge drinks with the exception of propionylcarnitine

(C3) and octadecenoylcarnitine (C18:1), which increased in

the OLTT and the SLD challenge. As described already in the

previous section, bile acids are consistently increasing in all three

dietary challenges. In contrast, we observed postprandial blood

level changes in different directions for most amino acids and

their derivatives [Amino Acids (↓2, ↑↓ 29); Peptides (↑↓ 2)]:

while most of these metabolites increased in the OLTT and the
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FIGURE 3

Temporal plots of sums of conjugated and unconjugated bile acids. Bile acids that exhibited significant temporal changes in at least one of the
challenges were split into unconjugated (n = 6) and conjugated (n = 3) compounds. For each group, we calculated the total sum of abundances
(based on normalized ion counts). (A) Log2 fold changes in the sum of conjugated bile acids ± the standard error of the mean (SEM) after the
ingestion of the di�erent challenge drinks. (B) Log2 fold changes in the sum of unconjugated bile acids ± SEM.

SLD challenge, they significantly decreased in the OGTT. 3-

methylhistidine and pro-hydroxy-pro, which showed significant

decreases in all three challenges, were the only exceptions.

With insulin being one of the main driving hormones

in postprandial regulation, we analyzed the proportion of

metabolites that are presumably linked to insulin regulation

and follow a similar or mirror-like pattern of temporal

postprandial changes as insulin (Figure 4C). To this end,

we calculated the Pearson correlation between the time-

resolved levels of each measured metabolite and those of

insulin across the three challenges and all participants. After

adjusting for multiple testing of 89 metabolites, 45 metabolites

showed a significant Pearson correlation with insulin (Figure 4B,

Supplementary Table 6).

The majority of the 89 metabolites whose levels change

in each challenge display non-linear variations over the 4 h of

the observed postprandial phase, i.e., levels are not steadily

decreasing or increasing but show more complex temporal

patterns with, for example, a maximum or minimum before

concentrations return to levels similar to those before ingestion.

To characterize the observed patterns, and to group metabolites

showing similar patterns, we performed clustering of the

individual temporal profiles of metabolite levels (z-scores)

across all three challenges (20 time points in total) and all 15

participants using the fuzzy c-means algorithm. This approach

yielded eight metabolite clusters, which can be further grouped

into four general types of curve trajectories (Figures 5A–

D, Table 1):

Pattern A describes clusters of metabolites with decreases

in plasma levels following dietary intake and increases toward

baseline levels after 4 h in all dietary challenges (Clusters 1

& 2). Cluster 1 comprises mainly medium- and long-chain

acylcarnitines (n = 15) and hydroxylated fatty acids (n =

4), whose plasma levels all decrease until 2–3 h after meal

ingestion before they rise again until the end of observation time

after 4 h. Cluster 2 shows a similar pattern, but the decreases

in its metabolites are smaller (i.e., with lower amplitude)

(Figure 5A). The cluster also consists of acylcarnitines (n =

4), and further fatty acid (FA) derivatives [FA (n = 3),

hydroxylated FA (n = 2), methylated FA (n = 2), dicarboxylic

FA (n = 2), FA ethanolamides (n = 2)] as well as mannose,

glycerol, phosphoethanolamine, 1-methylnicotinamide, and

two xenobiotics.

Pattern B describes clusters of metabolites with increases

following dietary intake in all dietary challenges and decreases

toward baseline levels afterward (Figure 5B, Clusters 3

& 4). Cluster 3 consists of the three conjugated primary

bile acids glycocholate, glycochenodeoxycholate, and

taurochenodeoxycholate. The levels of these metabolites

reach their maximal concentration at ∼30min in the OGTT,

90–120min in the SLD challenge, and 90min in the OLTT.

Increases are largest in response to the lipid challenge and

smallest after glucose ingestion. Cluster 4 contains the

metabolites that clustered with insulin, namely, glucose (non-

targeted MS)/hexoses (targeted MS) and gluconate, showing

the largest increases after 30, 60, and 90min in the OGTT, SLD
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FIGURE 4

Metabolite pool of the core postprandial response to dietary intake. (A) Circular plot of the largest absolute log2 fold changes of the 89
metabolites that display significant concentration changes in all three challenges. Lollipop length represents the largest log2 fold change in a
metabolite within each challenge; colors represent the challenge and the size of the bubble represents the –log10(p-value); the gray circles
indicate log2 fold changes from −2 to 3; b indicates metabolites measured using targeted metabolomics (AbsoluteIDQ p150). (B) Pearson
correlation of the 89 core metabolites with insulin sorted by metabolite class and colored by significance after multiple testing (black: Bonferroni
adjusted p < 0.05). (C) Time-resolved log2 fold changes of insulin levels in relation to the time of ingestion (t = 0) for the three challenges (red:
OGTT; blue: SLD challenge; yellow: OLTT). Data are represented as mean over the 15 participants ± SEM.
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FIGURE 5

Temporal patterns of core postprandial responses identified by fuzzy c-means cluster analysis. Graphs show four general patterns of responses
(A–D). The black line depicts the mean z-score of trajectories over the 15 participants for each metabolite in a cluster. The colored donuts
depict the distribution of metabolites in a cluster over the eight metabolite classes. (A) Metabolic responses (Cluster 1, 2) with postprandial
decreases and increases from baseline until 4 h. (B) Responses with postprandial increases and decreases (Cluster 3, 4) from baseline until 4 h.
(C) Response with steady decreasing trajectories (Cluster 5) from OGTT to OLTT. (D) Dissimilar metabolic responses in OGTT compared to
SLD/OLTT (Cluster 6–8).

challenge, and OLTT, respectively. The highest amplitude was

observed in the OGTT.

Pattern C represented by Cluster 5 comprises metabolites

with steady decreases in plasma levels from the first analyzed

time point until the last point without showing perturbation

by the dietary challenges (Figure 5C). All metabolites in this

cluster have previously been found associated with habitual food

intake or have even been suggested as dietary biomarkers for

the intake of meat (3-methylhistidine) (48), coffee (caffeine,

hippurate, 3-hydroxypyridine sulfate) (49–51), and garlic

(N-acetylalliin) (51), none of which was contained in the

challenge drinks.

Pattern D describes clusters of metabolites that show a

subtle increase followed by a more or less steady decrease

in levels during the OGTT, while plasma levels increase in

the SLD challenge and in the OLTT (Figure 5D, Clusters

6–8). The majority of metabolites in clusters of Pattern

D are amino acids and related metabolites [e.g., N-acetyl

amino acids, propionylcarnitine (C3), dipeptides, dopamine

sulfate], with some notable exceptions, including the lipid
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TABLE 1 Clusters of metabolites with similar dynamic patterns within the metabolite pool of the core postprandial response.

Cluster Pattern Classes Metabolites and insulin

1 A Lipids (17)

Amino acids (2)

Nucleotides (1)

2-hydroxy-3-methylvalerate

3-aminoisobutyrate

3-hydroxylaurate

3-hydroxyoctanoate

alpha-hydroxyisocaproate

C10:1 (decenoylcarnitine)a

C12 (dodecanoylcarnitine)a

C14:1 (tetradecenoylcarnitine)a

C14:2 (tetradecadienylcarnitine)a

C4:1-DC (fumarylcarnitine) and C6

(hexanoylcarnitine) a

C8 (octanoylcarnitine)a

C18:1 (octadecenoylcarnitine)a

cis-4-decenoyl carnitine,

Decanoylcarnitine

Hexanoylcarnitine

Laurylcarnitine

Myristoleoylcarnitine,

Myristoylcarnitine

Octanoylcarnitine

Oleoylcarnitine

2 A Lipids (17)

Xenobiotics (2)

Cofactors and Vitamins (2)

Carbohydrates (1)

1-methylnicotinamide

15-methylpalmitate

16-hydroxypalmitate

17-methylstearate

3-hydroxymyristate

5-dodecenoate (12:1n7), Acetylcarnitine, C14

(tetradecanoylcarnitine)a

C16 (hexadecanoylcarnitine)a

C2 (acetylcarnitine)a

Caprate (10:0)

Cinnamoylglycine

Glycerol

Hexadecanedioate

Laurate (12:0)

Mannose

Oleoyl ethanolamide

Palmitoyl ethanolamide,

Phosphoethanolamine

Phytanate

Tetradecanedioate

3 B Lipids (3) Glycochenodeoxycholate, Glycocholate Taurochenodeoxycholate

4 B Carbohydrates (2)

Xenobiotics (1)

+ Insulin

Gluconate

Glucose

H1 (hexose)a

Insulin

5 C Xenobiotics (4)

Amino acids (1)

3-hydroxypyridine sulfate

3-methylhistidine

Caffeine

Hippurate

N-acetylalliin

6 D Amino acids (10)

Lipids (2)

Xenobiotics (1)

Peptides (1)

1-linoleoyl-GPE (18:2)

2-hydroxydecanoate

3-methyl-2-oxovalerate

7-methylxanthine

Dopamine sulfate (2)

Gamma-glutamyltyrosine

Hydantoin-5-propionic acid

Isoleucine

Leucine

Methionine sulfoxide

N-acetylglutamate

N-acetylleucine, tyrosine

Valine

7 D Amino acids (10)

Peptides (1)

Carbohydrates (1)

Arginine

Asparagine

Cystathionine

Dimethylarginine (SDMA+ ADMA)

Gamma-glutamylmethionine

Methionine

Ornithine

Phenylalanine

Pro-hydroxy-pro

Pyruvate

Threonine

Tryptophan

8 D Amino acids (8)

Lipids (3)

Argininea

C3 (propionylcarnitine)a

Leucine or isoleucinea

lysoPC a C18:2a

Methioninea

Ornithine a

Phenylalaninea

Prolinea

Propionylcarnitine

Tyrosinea

Valine a

aindicates metabolites measured using targeted metabolomics.
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FIGURE 6

Challenge-specific postprandial responses. (A) Distribution of metabolites with significant challenge-specific postprandial responses (Bonferroni
adjusted p < 0.05) over metabolite classes. (B) Temporal profiles for selected examples of metabolites showing challenge-specific postprandial
responses. Data are represented as mean across all 15 participants ± SEM.

lysophosphatidylcholine C18:2 in Cluster 8, pyruvate in

Cluster 7, and the lipids 1-linoleoyl-GPE (18:2) and 2-

hydroxydecanoate, as well as the xenobiotics 7-methylxanthine

in Cluster 6.

Challenge-specific postprandial
responses

Next, we focus on metabolites with responses that are only

observed in one of the three challenges, i.e., metabolites that

are not part of the core metabolic response but depend on the

macronutrient composition (or on a specific context). We found

24 compounds responding solely to the glucose stimulus in the

OGTT, 41 solely to the SLD challenge, and 46 solely to the lipid-

rich drink in the OLTT (Figure 6, Supplementary Tables 2, 5).

For example, the fibrinogen cleavage peptide

DSGEGDFXAEGGGVR showed a significant postprandial

increase that is specific to the OGTT with a large fold change

(log2fc= 2.08) at 60min after glucose ingestion. Other examples

of metabolites with OGTT-specific changes in our study are two

xenobiotics paraxanthine and theophylline, which are typically
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associated with coffee consumption (52). While the blood levels

of these xenobiotics decreased significantly over the course of

the OGTT, which was the challenge test performed first in our

study, they were not changed significantly in the SLD challenge

or the OLTT, which were performed later, i.e., longer after any

prior exposure.

For SLD-specific postprandial changes, examples include

several lysoglycerophospholipids, such as 1-linolenoyl-GPC

(18:3) and 1-arachidonoyl-GPE (20:4n6), whose blood levels

increased prominently in the SLD at some point after ingestion

of the drink until the end of the observation after 4 h [1-

linolenoyl-GPC (18:3), log2fc = 0.84 at SLD 240min]. Also, the

xenobiotic 3-methylxanthine increases exclusively in the course

of the SLD (log2fc= 2.19 at SLD 240 min).

Most metabolites uniquely significant in the OLTT belong

to the Lipids class, including the dicarboxylic acid azelate (non-

anedioate), showing OLTT-specific increases up to 90min after

the ingestion of the lipid-rich challenge drink (log2fc = 1.22

at OLTT 90min), and the hormone metabolite pregnenolone

sulfate, which steadily decreased over the course of the challenge

until 4 h after the ingestion of the lipid-rich challenge drink

(log2fc=−0.74 at OLTT 240 min).

Discussion

Our analysis compared the dynamic changes in the

metabolite profiles registered during an OGTT, a mixed meal

challenge using a standardized liquid diet (SLD), and an OLTT

in young healthy participants. The three meal challenges studied

here were part of the HuMet study, first presented by Krug

et al. (43), for which additional metabolomics data have become

available recently (53).

Within the set of 634 analyzed metabolites, we identified

a pool of 89 metabolites representing the core postprandial

response to food intake regardless of the macronutrient

composition of the corresponding challenge drinks. Grouping

these metabolites according to similarities in their dynamic

response patterns across the three challenges allowed us to

dissect the observable human postprandial metabolism into the

different insulin-regulated (and seemingly insulin-independent)

processes while pinpointing challenge-specific differences in

their kinetics.

In addition, we identified metabolites that showed strong

postprandial responses that were specific for a particular

challenge test, such as increases in the plasma levels of a

fibrinogen cleavage peptide observed only in the OGTT, and the

increase in the dicarboxylated compound azelate observed only

in the OLTT.

A complex meal not only provides macro- and

micronutrients that appear in blood but also elicits a hormone

response, dominated by insulin and glucagon. While glucagon

is considered a hormone released in periods of hunger, insulin

drives most of the postprandial changes in metabolite levels.

Insulin is thus the most important determinant in homeostatic

regulation, affecting the metabolism of sugars, amino acids,

and lipids (54). In case of the standardized OGTT, the effects

of glucose ingestion on the complete metabolome have been

well-studied (15–18, 20, 55, 56). An SLD as used in our study

representing a mixed diet has only seldomly been studied

(28, 34), and likewise also the OLTT represents a mixed

high-fat/high-energy meal (57–61).

While the plain administration of glucose in the OGTT

provides a robust insulin-driven change in the blood, the

complex mixture of nutrients provided via the SLD and OLTT

complicates the analysis of postprandial processes as metabolite

changes due to nutrients entering the circulation can overlay

metabolite changes due to postprandial regulatory processes.

Moreover, mixed diet challenge tests and lipid tolerance tests

used in studies so far are less standardized than OGTT, further

complicating the comparison of results.

What makes our approach novel is that we used extremely

well-defined enteral nutrition solutions that can be employed

as reference material without any variation in composition

by natural or seasonal variation of foods and ingredients.

Through the HuMet study, time-resolvedmetabolomics data are

available for the OGTT, and these standardized mixed meal and

lipid challenge tests were performed on the same participants.

Based on these data, we were able to directly compare the

metabolome-wide postprandial responses across these different

dietary challenges. We thereby complement recent insights

into the dynamic postprandial changes of single metabolites,

such as glucose or triglycerides, after challenges with different

macronutrient compositions (8, 9) (and the inter-individual

variation of these responses).

The core metabolite pool for the postprandial responses

across the three challenges is represented by 89 metabolites.

For a major fraction of these metabolites, the dynamic changes

in levels are insulin-dependent (confirmed by significant

correlations with the (temporal) profiles of insulin across the

15 study participants). Insulin dynamics in the OGTT shows

maximal levels at 30min, which is delayed to 60min in the SLD

and to 90min in the OLTT. This is likely an effect of the higher

caloric density provided by the SLD and OLTT and in particular

by the higher fat content that causes a reduced gastric emptying

to accommodate the nutrient load in the upper small intestine to

the capacity for digestion and absorption (62, 63).

Similar differences in shape and peak time of metabolite

response curves between challenges are also apparent for most of

the other metabolites in the core metabolite pool (Figure 5). For

example, the three conjugated primary bile acids glycocholate,

glycochenodeoxycholate, and taurochenodeoxycholate

significantly increased after ingestion of the lipid-containing

challenge drinks in the SLD and OLTT and also after glucose

ingestion in the OGTT, as reported in other OGTT challenge

studies (15, 16, 18, 56); they form Cluster 3, following an
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“increase-decrease” (mountain-like) pattern in all challenges

same as glucose and insulin (Pattern B); however, the response

curves, in particular, peak times and heights of these bile acids

largely differ between challenges, with levels reaching their

maximum at 30min in the OGTT and at 90min in the OLTT.

Bile acids enter the gut by stimulation of gallbladder contraction

induced by the peptide hormone cholecystokinin (CCK), which

is released by ingestion of lipids, mixed meals, and glucose

(56, 64) followed by a rapid uptake of bile acids in the upper

small intestine leading to an appearance in plasma as fast as

glucose in the OGTT. Interestingly, unconjugated bile acids

were not part of the core response in our study as they did not

change significantly in the OGTT.

Metabolite changes documenting the insulin-induced

inhibition of lipolysis and blockade of the release of free fatty

acids from stores involve mainly fatty acids and acylcarnitines

in our study. These metabolites form Clusters 1 and 2 follow a

“decrease-increase” (valley-like) pattern (Pattern A). Here, we

see less differences in shapes and peak times of the response

curves than for metabolites of Pattern B discussed above:

in all three challenges, most fatty acids and acylcarnitines

decrease for about 2 h with a return to baseline thereafter,

reflecting the switch from fatty acid β-oxidation to glycolysis

following the glucose load (15–17, 34, 55). In parallel to the

reversed utilization of fatty acids as substrates for oxidation,

reduced production of ketone bodies becomes visible by

β-hydroxybutyrate levels with a 2- to 4-fold decrease when

compared with levels after the overnight fast in the OGTT and

OLTT (Figure 2).

Insulin inhibits proteolysis and reverses the release of

amino acids to an uptake via insulin-dependent amino acid

transport systems in various tissues (16, 55). In our study,

this effect becomes visible in the OGTT with major reductions

in levels of branched-chain and aromatic amino acids. In the

SLD and OLTT, blood levels of amino acids increase as the

corresponding challenge drinks contain proteins. Metabolites of

Clusters 6–8 follow this pattern (Pattern D) and consist mainly

of amino acids.

One group of metabolites (Cluster 5) displayed a steady

subtle decrease over the 4 h postprandial period within each

challenge and also from the first challenge (OGTT) to the last

performed challenge (OLTT) defining Pattern C. Thus, these

changes are seemingly not affected by any of the challenges.

Cross-checking these metabolites against online resources,

including FooDB (65) and Exposome Explorer (66), identified

these metabolites as compounds derived from natural foods as

part of the standardized meal that the volunteers received at

7 p.m. the day before the challenge studies that started at 8

a.m. Volunteers received a ready-to-consume meal (originally

frozen) comprised of chicken with vegetables and spices, such

as onion and garlic. And, in essence, these ingredients could

all be identified in blood by characteristic metabolites either

absorbed from the meal or produced in metabolism from

corresponding precursors. Examples are 3-methylhistidine (48,

67) derived from carnosine or anserine of the chicken meat

and N-acetylalliin (68) derived from onion and garlic. Other

such entities are hippurate (49) linked to benzoate metabolism,

microbiota, and consumption of plant-based food. However,

hippurate in plasma may increase in postprandial plasma

when commercial OGTT solutions containing benzoate as a

preservative are used (69). Taken together, these observations

argue that there is a significant carryover of food-derived entities

into the fasting plasma metabolome from food consumed

the day before. In this respect, recording of food intake the

day before collecting fasting blood early morning as done

in most cohort studies may be recommended to be able to

define metabolites as food-derived and not as intrinsic or even

as disease-related.

In addition to the identification and characterization of

the core postprandial responses, the comparison of metabolite

changes across the three different challenges allowed us to

also highlight changes that are unique for a specific challenge.

For example, azelate (nonanedioate, a dicarboxylic acid) only

increased significantly in the OLTT. This metabolite is produced

by ω-oxidation but apparently only when all other pathways of

fatty acid utilization are saturated with the surplus of dietary fat

provided in the OLTT (70).

In the OGTT, we observed a large increase in the levels

of DSGEGDFXAEGGGVR, which is a derivative of fibrinogen

peptide A. This peptide is cleaved from fibrinogen during

conversion to fibrin (71) as part of the blood coagulation

process. While no change in DSGEGDFXAEGGGVR is seen

in the SLD or OLTT, the levels of this peptide are increased

4-fold at 60min after glucose ingestion. Interestingly, various

studies have reported an association of high fasting blood

levels of fibrinogen with type 2 diabetes and retinopathy

in epidemiological cohorts (72). Also, elevated fibrinogen

blood levels have been suggested as an important factor

for the increased risk of diabetic patients for cardiovascular

events, including stroke and thrombosis (73). Performing

different clamp experiments, Stegenga and colleagues could

show that hyperglycemia triggers fibrin synthesis and stimulates

coagulation irrespective of insulin levels; hyperinsulinemia, on

the other hand, impairs fibrinolysis (74). Notably, we saw

a huge variation in the log2 fold changes of fibrinogen in

response to glucose intake between our healthy participants

(similar to inter-individual variations observed for bile acid

changes). Taken together, this evidence hint at a link between

increasing fibrinogen levels in an OGTT and cardiovascular

outcomes. While our findings on fibrinogen in OGTT and its

relationship to cardiovascular health still need to be replicated

and confirmed in larger cohorts, our data suggest that testing

the fold change of fibrinogen of an individual during an

OGTT in addition to glucose levels might be valuable to better

estimate the risk of cardiovascular events in diabetic and non-

diabetic patients.
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While the reuse of existing data from the HuMet study

allowed for characterizing and comparing the dynamic

patterns of postprandial responses to different highly

standardized nutritional challenges, the specific design of

the experiments also comes with several limitations. First, the

three compared challenges were performed in sequential order.

As a consequence, carryover effects from one challenge to the

next cannot be fully excluded, in particular, the distinction

whether an observed effect in the SLD is caused by the mixed

meal, is a late response to the glucose challenge, or is coming

from chronobiological fluctuation is difficult to prove based

on the design as both challenges were performed on day

1. For the purpose of the comparison across challenges, a

crossover study design would have been more appropriate.

Nonetheless, it appears that only a relatively small number of

metabolites did not get back to overnight fasting levels 4 h after

OGTT (Supplementary Table 8, Supplementary Figure 4). Also,

despite the potential carryover, our results for the different

challenges resemble observations from previous studies

(Supplementary Table 9). Moreover, due to the sequential order

of challenges, we were also able to pinpoint carryover effects

from prior exposures that might be misinterpreted as challenge

responses in studies that only investigate one challenge. A

second issue related to the data reuse is that sampling time

points and number of sampled time points differ between the

investigated challenges as HuMet was not specifically designed

for the direct comparison of these three challenges. This leads to

restrictions in the type of statistical approach that can be used.

Moreover, we might have missed SLD effects that only occur in

the first 30min after meal ingestion.

Besides the study design, the small sample size (only 15

subjects) and lack of diversity (homogenous group of lean,

young, males of European ancestry) limit the reliability and

transferability of our results to females, as well as older age

groups and other ethnicities. While focusing on a homogenous

group might have enabled findings that would have been

masked by high variation in the postprandial dynamics in a

less homogenous group, our results clearly need replication in

larger and more diverse cohorts. Future larger studies would

also enable us to consider the influence of the gut microbial

composition on the postprandial response by sampling and

analyzing fecal samples, which was not possible in our study.

Finally, most metabolites analyzed in our study were measured

using a non-targeted metabolomics approach. This type of

analytical approach covers a broad range of metabolic pathways

but yields only relative quantifications for the metabolite

abundances, which puts limitations on the comparability of fold

changes derived in our study with those of future studies.

In summary, we here compared and characterized the

dynamic postprandial responses of highly standardized glucose,

mixed meal, and lipid challenges in healthy participants in

a metabolome-wide fashion. We identified a pool of 89

metabolites capturing the core postprandial response regardless

of the macronutrient compositions of challenge meals and

dissected this core response into groups with distinct kinetic

behaviors. Moreover, our comparison highlighted postprandial

responses that are unique for a particular challenge. We believe

that our results provide the research community with a valuable

reference of metabolites and metabolic pathways that show a

postprandial response to an oral glucose tolerance test, as well

as a standardizable mixed meal and an oral lipid tolerance test.
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