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Abstract: Network-based assessments are important for disentangling complex microbial and
microbial–host interactions and can provide the basis for microbial engineering. There is a growing
recognition that chemical-mediated interactions are important for the coexistence of microbial species.
However, so far, the methods used to infer microbial interactions have been validated with models
assuming direct species-species interactions, such as generalized Lotka–Volterra models. Therefore, it
is unclear how effective existing approaches are in detecting chemical-mediated interactions. In this
paper, we used time series of simulated microbial dynamics to benchmark five major/state-of-the-art
methods. We found that only two methods (CCM and LIMITS) were capable of detecting interactions.
While LIMITS performed better than CCM, it was less robust to the presence of chemical-mediated
interactions, and the presence of trophic competition was essential for the interactions to be detectable.
We show that the existence of chemical-mediated interactions among microbial species poses a new
challenge to overcome for the development of a network-based understanding of microbiomes and
their interactions with hosts and the environment.

Keywords: chemical-mediated interactions; ecological interaction network; microbiome; exometabolome;
mediator-explicit model; interaction network inference; microbial time series

1. Introduction

There is a growing recognition that microbiome science needs to move beyond de-
scriptive studies to a more systematic understanding that would facilitate mechanical,
predictive, and manipulative approaches to rational microbial engineering [1]. Network-
based approaches will help disentangle complex microbial and microbe-host/environment
interactions, which could have applications universally applicable to medicine and health
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care, agriculture, and other environmental and industrial areas [2–4]. Current attempts
to understand interaction networks combine comprehensive quantification of microbiota
using next-generation sequencing technologies with various network inference methodolo-
gies based on statistical and machine learning approaches.

Recent studies revealed that the exchange of metabolites plays an essential role in
microbial interactions. All microorganisms exchange metabolites, such as vitamins, amino
acids, nucleotides, or growth factors, by releasing them into the surrounding environ-
ment [5–7]. This metabolite cross-feeding is common both among different bacterial species
and between bacteria and members of other kingdoms [6]. In consequence, a microbial
community forms a unique chemical environment known as the exometabolome, which
comprises hundreds of metabolites, the majority of which are derived from living cells [7,8].
Considering its prominent role in microbial interactions, the exometabolome and chemical-
mediated interactions would be tightly linked with the dynamics of microbial communities,
including composition, stability, and functionality.

However, most of the benchmarking of methods proposed for inferring microbial
interactions has been performed using generalized Lotka–Volterra (gLV) models, which as-
sumes direct (species-species) interactions [9–11]. Some methods were developed based on
the gLV equation itself [12–15]. Recent studies [16–18] revealed that the species-species in-
teraction models are insufficient to capture dynamics that occur through chemical-mediated
interactions, while such interactions would serve a prominent role in the coexistence of
diverse microbial species [19]. Therefore, benchmarking with the direct interaction model
alone would be insufficient. If the presence of chemical-mediated interactions reduces
the reliability of the network inference methods, it poses a new challenge for studies of
microbial interaction networks.

In this paper, we investigated how accurate existing time-series-based inferences of
ecological interactions would be when underlying interactions are mediated by chemicals.
For this purpose, we started with an in-silico mediator-explicit model of microbial pop-
ulation dynamics whose parameter values had been experimentally calibrated [19]. We
compared the performance of five major/state-of-the-art methods under different model as-
sumptions, including the process of direct or chemical-mediated interactions, the presence
or absence of competition for nutrients, as well as the effect of different sampling intervals
and magnitudes of stochasticity.

2. Materials and Methods
2.1. Models

Our model is based on the mediator-explicit model proposed and validated for actual
microbial systems by Niehaus et al. [19]. In this model, each species can produce multiple
chemicals, and each chemical can influence multiple species. Each influence is represented
by a coefficient defined for pairs of species and chemicals. The mediator-explicit model (M)
is defined as follows:

dxi/dt = FM(xi) = ri(1− xi/K)xi + Σk(ρik
+ ck

ck + κik
− ρik

− ck
ck + κik

)xi − δxi, (1)

dck/dt = GM(ck) = Σi(βkixi − αkixi
ck

ck + κik
)− δck. (2)

Here, variables xi and ck are the abundance of microbes and the amount of chemicals,
respectively, and i = 1, 2, . . . , n and k = 1, 2, . . . , m, i.e., we assume a system consisting
of n microbes and m chemicals. ri is the intrinsic growth rate, K is the carrying capacity,
κik is the half-saturation density of the effect of chemical k on species i, ρik

+ and ρik
−

represent the positive and negative effect of chemical k on species i, respectively, αki is the
maximum rate of consumption of chemical k by species i, βki is the rate of production of
chemical k by species i, and δ is the constant dilution rate (see Table 1 for the parameter
values). We also use the matrix representation of parameters as follows: n×m matrices
κ = {κik}, ρ+ = {ρik

+} and ρ− = {ρik
−}, and m× n matrices α = {αki} and β = {βki}.
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While Niehaus et al. [19] did not include the carrying capacity, we introduced it to avoid
overflow in numerical calculations. Moreover, it is reasonable to assume that population
growth is limited due to resource availability. Model M assumes that each species has an
independent bound for their population growth, i.e., there is no competition for resources
among species.

Table 1. Model parameters. Here, up(x, y) means that the numbers are randomly drawn from a
uniform distribution between x and y with probability p, and otherwise zero.

Description Value

n Number of microbes 10
m Number of chemicals 5
K Carrying capacity 1
δ Dilution rate 0.01
ri Growth rate u1(0.05, 0.5)
κik Half-saturation density u1(0.5, 1.5)× 10−3

ρik
+ Positive effect of chemicals on microbes u0.2(0.05, 0.5)

ρik
− Negative effect of chemicals on microbes u0.2(0.05, 0.5)

αki Maximum consumption rate of chemicals u0.2(0.5, 1.5)
βki Production rate of chemicals u0.2(0.05, 0.15)
ε Influx of microbes 10−7

In addition to model M, we introduce model M′ that includes the effect of competition
for nutrients:

dxi/dt = FM′(xi) = ri
(
1− Σjxj/nK

)
xi + Σk(ρik +

ck
ck + κik

− ρik −
ck

ck + κik
)xi − δxi, (3)

dck/dt = GM′(ck) = GM(ck). (4)

This model assumes that all species equally depend on all available nutrients, and
therefore the increase of any species reduces the growth rate of other species. To be
consistent with model M, we assumed that the total abundance Σjxj is bounded by nK.

As the third and fourth models, we considered models with direct interactions compa-
rable to the models M and M′. These models are introduced based on the following consid-
erations. Since the overall effect of chemicals on the species’ growth rate is ρ = ρ+ − ρ−

and the rate of production of chemicals by each species is β, ρβ represents the instantaneous
effects of a species on another, which is comparable to the direct interactions represented
by an interaction matrix A =

{
aij
}

. Therefore, we defined model D as

dxi/dt = FD(xi) = ri(1− xi/K)xi + Σjaijxi xj − δxi, (5)

and the model D′ as

dxi/dt = FD′(xi) = ri
(
1− Σj xj/nK

)
xi + Σjaijxi xj − δxi. (6)

These models are simpler than models M and M′ in that they do not include the effects
of the consumption of chemicals by microbes.

To obtain the time-series data, we introduced stochasticity and small influx to the
above models and obtained numerical solutions using the Euler–Maruyama Scheme:

xi(t + 1) = xi(t) + FΩ4 t + σ
√
4t4Wt + ε. (7)

Here, 4t is the step size of numerical simulation and is fixed as 4t = 0.025, 4Wt
is a normal distribution with s.d. of 1, σ represents the magnitude of noise, and Ω is
Ω ∈ {M, M′, D, D′}. During the numerical simulations, some species would approach
zero infinitely. Thus, to avoid underflow, we introduced a small influx ε. The param-
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eter values are scaled so that 4t = 1 corresponds to 1 day and K = 1 corresponds to
107 individuals/mL.

2.2. Effective Interaction Matrix

In models M and M′, it is necessary to interpret the microbial interactions that occur via
chemicals as direct interactions to evaluate the network inference methods. For this purpose,
we first combine Equations (1) and (2) and describe them as (dxi/dt, . . . , dck/dt, . . .) =
(FM(xi), . . . , GM(ck)). Under this expression, the Jacobi matrix can be written as

JM =


∂FM(x1)/∂x1 · · · ∂FM(x1)/∂c1 · · ·

...
. . .

...
. . .

∂GM(c1)/∂x1 · · · ∂GM(c1)/∂c1 · · ·
...

. . .
...

. . .

 =

(
JFM

(x) JFM
(c)

JGM
(x) JGM

(c)

)
(8)

Here, the m× n block, JFM
(c), contains the positive and negative effects of chemicals on

organisms, and the n×m block, JGM
(x), contains the effects of production and consumption

by microbes on chemicals. Then, we interpret A∗ = JFM
(c) JGM

(x) as a matrix representing
the effective microbial interactions (effective interaction matrix), which is the target of the
evaluation of the network inference methods. The above argument holds for M′ as well.
In models D and D′, the non-zero part of the Jacobi matrix is consistent with that of A.
Therefore, in D and D′, we identify A with A∗.

2.3. Data Preparation

For each model, we generated the time series for generating data sets using pairs of a
parameter set θ = (κ, ρ+, ρ−, α, β, σ) and an initial state X0 = (x1, . . . , xn, c1, . . . , cm). Since
it was difficult to obtain multispecies coexistence with the initial parameter set, these pairs
are obtained by several optimization steps as follows (see Figure 1 for a summary of the
procedure and Table 2 for the parameter values). At T = 0, we initialized Mp pairs of a
parameter set and an initial state. For the initial states, abundances of microbes were drawn
from a uniform distribution between 10ε and 100ε, and in models M and M′, the density
of chemicals was set to zero. Then, we numerically solved the differential equation with
each pair up to tmax steps (corresponding to time series of tmax∆t days). After discarding
the first t0 steps, we calculated the score of each pair according to the following evaluation
function:

zθ,X0 = S∗D
(

4c− 4c2
)

. (9)

Table 2. Simulation parameters.

Name Description Value

N Number of time series in a data set 288
Mp Number of pairs in each generation 32
mp Number of parents for next generation 4

tmax Length of time series generated by simulation 10,000
t0 Length of time series discarded as the initial transient 2000

Tmax Number of iterations of the optimization procedure 60 (for M and D)
120 (for M′ and D′)

η Criterion for major species 10−2

ω Threshold value for the evaluation function 5
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Here, denoting the time-averaged abundance of species i in the time series as x̂i, S∗ is
the number of “major” species (number of species whose x̂i is larger than η),
D = ∑n

i=1 (x̂i/ ∑n
j=1 x̂j)

1/2 is the Simpson’s diversity index, and c = L/n(n− 1) is the
connectance (L is the number of non-zero values for off-diagonal elements in an interaction
matrix). D and c were calculated for the major species. This function takes its maximum
value when the number of major species is n, their time-averaged abundance is equal,
and the connectance is 0.5. We adopted the evaluation function to obtain a state where
the number of coexisting species is as high as possible, their interactions are neither too
sparse nor too dense, and a small number of species are not dominant. Then, top mp pairs
(parents) are selected as members of the next generation in addition to Mp −mp pairs that
are generated by mutations, where one of the non-zero elements of a matrix in θ is selected
and switched with another element of the same matrix; this procedure is repeated one to
four times with equal probability. Then, Mp pairs are again evaluated as above. However,
at each numerical simulation, each xi in X0 are perturbed by multiplying a random value
drawn from a uniform distribution between 0.8 to 1.2. After repeating the same procedure
for Tmax steps, a pair with the highest zθ,X0 is accepted if zθ,X0 > ω. This procedure is
repeated until we obtain N accepted time series for each model.

We obtained the data sets for testing the network inference methods by generating
time series with various noise magnitude σ and resampling them at different intervals τ.
To evaluate the effect of the sampling interval, we first generated four data sets from a time
series of a fixed noise magnitude σ = 1 and sampled 100 of the last points with different
intervals τ ∈ {10, 20, 40, 80} (this corresponds to time series of 25, 50, 100 and 200 days
sampled every 0.25, 0.5, 1 and 2 days). Then, to evaluate the effect of noise magnitude,
we generated 4 data sets from time series of different noise magnitude σ ∈ {0.5, 1, 2, 4}
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and sampled 100 of the last points with a fixed interval τ = 40. Basic characteristics of the
communities obtained under different noise magnitude are described in Appendix B.

2.4. Network Inference Methods

We compared five methods (Pearson and Spearman rank correlation, LSA, CCM, and
LIMITS) in this paper. Taking multivariate time series as input values, these methods return
matrices of statistics indicating the presence/absence of interaction between species pairs,
represented by correlation coefficients in Pearson, Spearman, and LSA, predictive skills in
CCM, and interaction coefficients in LIMITS. These matrices are accompanied by matrices
of p-values, and these can also be used to detect interactions. Except for the statistics of
LIMITS, the matrices are dense such that every element has a non-zero value.

We refer to such a matrix as the inferred interaction matrix and consider the statistic
and p-value of each method as a classifier to predict the presence or absence of effect
from one species to another. Interactions are represented by non-zero values of the non-
diagonal elements of an actual/inferred interaction matrix. When considering the presence
or absence of an interaction, it is necessary to distinguish between the direction of the
interaction. In the following, in addition to the term “interaction”, we regard the presence
or absence of effect from species A to B and that of species B to A if strict consideration of
directionality is needed.

2.4.1. Pearson and Spearman Correlation Coefficient

Pearson correlation coefficient [20] is a measure of linear correlation between two
variables. It is a parametric measure that assumes Gaussian distributions of variables.
Spearman rank correlation coefficient [21] is a nonparametric measure of rank correlation.
It is relevant even if both or one of the variables is non-Gaussian and thus is more broadly
applicable than Pearson correlation. These correlation coefficients are frequently used for
the network-based analysis of biological systems [9]. Both methods provide correlation
coefficients between −1 and 1 for each pair of variables, accompanied by the p-values. The
correlation matrix and p-values are symmetric, i.e., they are inherently imprecise if the
actual ecological interactions involve asymmetric interactions.

2.4.2. Local Similarity Analysis (LSA)

LSA (see Ruan et al. [22] for detail; also refer to Beman et al., [23], Steele et al. [24],
Xia et al. [25]) also considers the association between time series but is optimized to detect
non-linear, time-sensitive relationships. It captures local and potentially time-delayed
association patterns that cannot be identified by ordinary correlation analysis [25]. A
previous study [9] showed that, for Lotka–Volterra sparse ecological relationships, it attains
greater performance than other correlation-based approaches. We performed LSA analysis
according to the implementation by the authors [22] and calculated the p-value with
2000 bootstrap samples. This method returns a correlation coefficient between −1 and 1 for
each pair of variables, accompanied by the p-values. The correlation matrix and p-values
are symmetric, i.e., it has the same problem as Pearson and Spearman rank correlation.

2.4.3. Convergent Cross Mapping (CCM)

CCM [26] is a statistical test for a causal relationship between two time series variables
and attempts to address the problem that correlation is often not an indicator of the presence
or absence of actual causal relationships. This method is based on Takens’ embedding
theorem [27], which states that the essential information of a multi-dimensional dynamical
system is retained in the time series of any single variable of that system. Based on this
theory, in a pair of time series (X, Y), if X has a high forecasting skill in predicting Y,
causality will be detected in the direction of Y → X . The predictive skill, denoted as
ρY→X , is quantified by the Pearson correlation coefficient between actual Y and Y predicted
by X. Different from the previous correlation-based methods, ρY→X is usually unequal to
ρX→Y. Its p-value is calculated by the bootstrapping procedure to account for the effects
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of the predictability inherent in the target time series (such as periodicity). To apply this
method to systematic network inference, we needed to extend the implementation by the
authors (Appendix A).

2.4.4. LIMITS

LIMITS [12] is based on the generalized Lotka–Volterra difference equation. The
algorithm combines forward stepwise regression and bootstrap aggregation (bagging) to
determine, in a majority voting fashion, the pairs of interacting variables and the value of
their interaction coefficient. For each species, the logarithm of the change in abundance
per time step is used as the response variable. Then, this method selects variables to be
explanatory variables of linear regression step by step, as long as the predictive performance
is improved. The species selected as the explanatory variables are candidates for the
interaction partners. This process is repeated (here, 500 times) as bootstrap replicates,
and the species selected in more than half of all iterations are finally determined as the
interaction partners, i.e., variables that can affect the response variable. The interaction
is estimated asymmetrically and in a way that includes positive and negative values. For
each pair of species, the p-value was obtained as the number of bootstrap trials in which
the interaction coefficient was zero divided by the number of all trials. This method returns
a sparse matrix for the interaction matrix, but that of the p-values can be dense.

2.5. Evaluation

Since the number of major species varies from trial to trial, we evaluated only the
interaction network of the top five abundant species. Due to the condition for acceptance
(ω = 5 in z(θ, X0) > ω), every trial contains at least 5 major species (Appendix B).

We here focus on the performance of the above methods in detecting the interac-
tions because, in both real ecological communities and our model, interactions between
species are sparse (Appendix B). To evaluate the performance of network inference methods
through a classifier (correlation coefficient, predictive skill, or interaction coefficient), we
used ROC-AUC (the area under the curve of a receiver-operator characteristic curve; Sup-
porting Figure S1). An ROC curve is the plot of (1-specificity, sensitivity). Here, sensitivity is
the number of interacting species pairs that a method was able to find divided by the actual
number of them, and specificity is the number of non-interacting species pairs that a method
correctly omitted divided by the actual number (in both cases, the presence/absence of an
effect from species A to B and B to A must be distinguished). Given a matrix of statistics,
an ROC curve is obtained when we keep changing the threshold value by which we judge
that an interaction exists between species pairs. When the threshold value is too high, none
of the elements are accepted, and the value takes (0,0). When the threshold value is too
low, all of the elements are accepted, and the value takes (1,1). (This explanation is valid
for cases where larger values indicate a greater likelihood that an interaction exists, but
the opposite is true for cases such as p-values where smaller values suggest the presence
of an interaction.) When the threshold is varied over a range covering (0,0) to (1,1), the
more convex the ROC curve is to the upper left (in other words, the more sensitivity can be
increased without decreasing specificity), the better the statistic is at detecting interactions.
Here, the value of the ROC’s AUC varies from 0 to 1 and becomes 1 when a method
performs the best and 0.5 when it is indifferent to random selection.

The ROC-AUC can evaluate the overall performance even when the optimal threshold
is not known, but from a practical standpoint, it is useful to have evaluations obtained
under certain conditions. For this reason, we evaluated the precision for the interactions
when half of the matrix elements are selected according to the descending (ascending) order
(for simplicity, we refer to it as Precision (c = 0.5)), that is, how many correct interaction
pairs are contained in the top 50% of candidates.
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2.6. Software

We used Mathematica 10.2 and 11.0 for our analysis. The Mathematica notebook files
used for the analysis can be downloaded from: https://drive.google.com/file/d/11suHcj6
RCC2p6gQ6zjTvzbo-DeExzR-g/view?usp=sharing (accessed on 19 January 2022).

3. Results

To evaluate five network inference methods, we generated in silico time-series micro-
bial population datasets based on the mediator-explicit model (M) and direct interaction
model (D) as well as modified models by adding the effect of resource competition (M′

and D′) (Appendix B; Figure A1). For the four models M, D, M′, and D′, we obtained
network estimation results with five methods under different simulation conditions (see
Supporting Figures S2–S5 for representative results). Results from the ROC-AUC indicate
that in the presence of resource competition (M′ and D′), LIMITS and CCM, in this order,
performed better than other methods (Figure 2a,b). While LIMITS attained the highest
performance when p-values were used to detect interactions (Figure 2b), when the interac-
tion was chemical-mediated (M′), the performance tended to decrease in the case of direct
interaction (D′). The heatmap on the right side of each panel aids in the comparison be-
tween different conditions/methods. Both in Figure 2a,b, the value of row D′5 and column
M′5 is positive, which means that the median of LIMITS in D′ was higher than that of M′

(black dot indicates that the difference is significant (p < 0.05) in terms of Mann–Whitney
test). On the other hand, CCM was robust to the effect of direct or chemical-mediated
interactions compared to LIMITS. In Figure 2a,b, the value of row D’4 and column M’4
shows that the difference between the median of CCM was close to zero and not significant.
Relative to LIMITS and CCM, the correlation-based methods, Pearson and Spearman rank
correlation and LSA, were ineffective in detecting both types of interactions, with median
values always around 0.5. On the other hand, in the absence of nutrient competition (M
and D), it was difficult to detect interactions with any of the methods. None of the methods
significantly outperformed the others.

For M′ and D′, the superiority of LIMITS over other methods was also evident when
evaluated using precision (Figure 2c,d). In contrast to the case of ROC-AUC, there was
no significant decrease in the performance of LIMITS in ‘M’ relative to D′. This can be
considered superficial for two reasons. The first reason is that precision is a criterion for
identified interactions, but validity is not considered for non-identified interactions. The
second reason is that it is necessary to set a single threshold for a classifier to obtain a
precision value. Since the setting of the threshold is arbitrary, the same result may not
always be obtained. Therefore, it was suggested that the effects of mediators could be
overlooked in the evaluation by precision. Precision was higher in M relative to D and
M′ (Figure 2c,d), but this was due to the difference in connectance since connectance was
highest in M in all simulation conditions compared to other models (Appendix B; Figure A1)
and precision was highly correlated to connectance (Supporting Figure S6). Thus, it is
inappropriate to conclude that either the presence of mediators or nutrient competition
improved the performance of network inference.

Within the range of the sampling interval (τ) and the magnitude of noise (σ) we
studied, the above results were mostly robust, and there were no systematic dependencies
of performance of the methods on either of the parameters (see Supporting Figures S7–S13).

https://drive.google.com/file/d/11suHcj6RCC2p6gQ6zjTvzbo-DeExzR-g/view?usp=sharing
https://drive.google.com/file/d/11suHcj6RCC2p6gQ6zjTvzbo-DeExzR-g/view?usp=sharing
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of the different pairs of model and method (right) for τ = 1 and σ = 1. (a,b) ROC-AUC of networks
inferred by the statistics and p-values of each method, respectively, and (c,d) precision (c = 0.5) of
networks inferred by the statistics and p-values of each method, respectively. In the box plot, white
lines indicate the median, box edges indicate the first and third quartile value, and whiskers indicate
maximum and minimum values. The heatmap on the right side of each panel aids in comparison
between the different pairs of models/methods. The value of a cell is obtained by subtracting the
median of the pair of models/method in a column from the same value of the pair in a row. Black dots
indicate that the difference is significant (p < 0.05) based on Mann–Whitney test. We compared the
performance of the different methods applied to the same model, and we compared the performance
when the condition of competition was the same but the property of the interaction was different
(M and D or M′ and D′) and when the property of the interaction was the same but the condition of
competition was different (M and M′ or D and D′).
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4. Discussion

We compared the performance of five network inference methods in detecting interac-
tions based on time series when interactions are mediated by chemicals or occur through
direct interactions between species, as well as in different competitive contexts. Our results
suggest that: (1) the existence of mediators can make microbial interactions difficult to
detect, but the degree of difficulty may be method dependent, (2) nutrient competition can
play an essential role for the detectability of interactions, and (3) correlation-based methods
are not useful for detecting interactions from time series.

Among the methods evaluated in this study, LIMITS, which is derived from the
discrete version of the generalized Lotka–Volterra equation, was found to be the most
reliable. However, its performance will be reduced if chemical-mediated interactions are
dominant due to a mismatch between the processes that the method assumes and those
that actually occur. Although the performance of CCM was not as good as LIMITS, CCM
would be more robust to the presence of chemical-mediated interactions compared to
LIMITS. This may be due to the fact that CCM is not dependent on any specific equation
and is based on a nonlinear forecasting method that can flexibly capture the relationship
between variables. In summary, LIMITS is recommended as the network inference method
in general since it outperformed the other methods under any application conditions in
M′ and D′ and no method clearly outperformed the others in M and D. However, further
investigation around the tools of nonlinear forecasting, especially integration with the
machine learning framework used in LIMITS to improve its applicability to nonlinear
dynamics, will be a promising direction for time-series-based network inference targeting
microbial communities, where chemical-mediated interactions are thought to play a major
role.

In the models with resource competition (M′, D′), an increase in one species negatively
affects the growth rate of other species and can reduce the population size. Thus, nutrient
competition can facilitate coordinated variation in abundance and likely promote the
detection of interactions. In fact, the difference between M, D and M′, D′ was mostly
characterized by the coefficient of variation (Appendix B). In microbiota, there are a few
essential nutrients that are common to many species [28], as well as diverse chemicals
that mediate interactions. Space will also be an important resource if, for example, the
substrate for colonization can be a limiting factor. Thus, while we need to be careful about
its strength, the network inference would usually benefit from competitive processes.

Finally, although correlation-based methods are widely used to infer interaction net-
works from time series, it should be noted that their reliability can be very low, regardless
of whether the interactions are direct or chemical-mediated. This has been pointed out
repeatedly in previous studies [12,26,29] for direct interactions, but we feel it is important
to highlight again.

There are multiple levels of understanding of networks, from properties of the network
as a whole, such as degree distribution and average degree, to properties of individual
nodes, such as network centrality. The more attention we pay to finer scale properties, the
more accurate the network inference needs to be. Therefore, improving the accuracy of
the method used for network inference is essential for a network-based understanding of
biological systems.

5. Conclusions

We found that the existence of mediators can make microbial interactions difficult
to detect. However, the degree of difficulty was different among the methods. CCM
and LIMITS were capable of detecting interactions from the time series. While LIMITS
performed better than CCM, it was less robust to the presence of chemical-mediated inter-
actions. Our result also suggests that the presence of nutrient competition can facilitate the
detection of interactions. The existence of chemical-mediated interactions among micro-
bial species poses a new challenge to overcome for the development of a network-based
understanding of microbiomes and their relationship to hosts and the environment. Our
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study would provide an in silico experimental system of microbial population dynamics,
including chemical-mediated interactions, to evaluate network inference methods that will
be developed in the future.
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Representative result of network inference with the 5 methods for model D’ (τ = 40 and σ = 1);
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σ = 1; Figure S10. Performance of network inference methods for different models (left) and the
comparison of the different pairs of model and method (right) for τ = 80 and σ = 1; Figure S11.
Performance of network inference methods for different models (left) and the comparison of the
different pairs of model and method (right) for τ = 40 and σ = 0.5; Figure S12. Performance of
network inference methods for different models (left) and the comparison of the different pairs of
model and method (right) for τ = 40 and σ = 2; Figure S13. Performance of network inference
methods for different models (left) and the comparison of the different pairs of model and method
(right) for τ = 40 and σ = 4.

Author Contributions: Conceptualization, K.S. (Kenta Suzuki); methodology, K.S. (Kenta Suzuki),
M.S.A., D.K., S.N., F.F., H.M. (Hirokuni Miyamoto), M.O. and K.S. (Kengo Sakurai); software, K.S.
(Kenta Suzuki), M.S.A., D.K., S.N., F.F., H.M. (Hirokuni Miyamoto), T.N., M.O. and K.S. (Kengo
Sakurai); validation, K.S. (Kenta Suzuki), M.S.A., D.K., S.N., F.F., H.M. (Hirokuni Miyamoto), T.N.,
M.O. and K.S. (Kengo Sakurai); formal analysis, K.S. (Kenta Suzuki); investigation, K.S. (Kenta
Suzuki); resources, K.S. (Kenta Suzuki); data curation, K.S. (Kenta Suzuki); writing—original draft
preparation, K.S. (Kenta Suzuki); writing—review & editing, all authors; visualization, K.S. (Kenta
Suzuki); supervision, S.N., S.S., H.I., H.M. (Hiroshi Masuya) and Y.I.; project administration, N.N.
and Y.I.; funding acquisition, N.N. and Y.I. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by funding from the Cross-ministerial Strategic Innovation
Promotion Program (SIP), “Technologies for Smart Bio-industry and Agriculture” (funding agency:
Bio-oriented Technology Research Advancement Institution, NARO) and the Cross-ministerial Moon-
shot Agriculture, Forestry and Fisheries Research and Development Program, “Technologies for
Smart Bio-industry and Agriculture” (funding agency: Bio-oriented Technology Research Advance-
ment Institution), the Cabinet Office, Government of Japan, the Management Expenses Grant for
RIKEN BioResource Research Center, MEXT, and in part by the Japan Society for the Promotion of
Science (JSPS) KAKENHI JP20K06820 and JP20H03010 (to Kenta Suzuki) and JST-Mirai Program
JPMJMI120C7 (to H.I. and Y.I.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and computer codes for this study are available as supple-
mentary information.

Acknowledgments: We would like to thank two anonymous reviewers and the members of the
RIKEN Information R&D Strategy Headquarters, particularly the Data Knowledge Organization Unit,
for organizing the RIKEN Hackathon 2020 for providing this research and development opportunity.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijerph19031228/s1
https://www.mdpi.com/article/10.3390/ijerph19031228/s1


Int. J. Environ. Res. Public Health 2022, 19, 1228 12 of 14

Appendix A Implementation of CCM for Network Inference

To perform CCM, it is necessary to determine the appropriate embedding dimension
for the state space reconstruction. We applied the pseudo-neighborhood method (Cao
1997) to each variable to determine the embedding dimension. Then, the strength of the
causal relationship between X and Y was obtained as follows. First, we prepared the state
space MY reconstructed by the Y’s embedding dimension εY. Then, we predict X from
MY using the simplex projection method (Sugihara et al. 2012), which is labeled as XY.
The cross-map prediction skill ρX→Y is the Pearson’s correlation coefficient between X
and XY. To calculate the p-value, we prepared MY where half of the points in MY were
sampled without replacement and repeated the same procedure as above to obtain the
predictive skill. We repeated this procedure N = 2000 times to obtain ρX→Y =

{
ρX→Y

(i)
}

,

where ρX→Y
(i) is the predictive skill obtained in the ith iteration. The p-value of ρX→Y is

obtained as the number of ρX→Y
(i) satisfying ρ

(i)
X→Y ≥ ρX→Y divided by N. To determine

the presence of a causal relationship, ρ must be greater than zero and increases with the
number of data points in the reconstructed state space. Here, we evaluated whether ρ is
increasing by limiting the number of data points when obtaining ρX→Y and compared it to
ρX→Y [30].

Appendix B Basic Characteristics of Communities

We generated 288 virtual microbial communities with 7 different parameter sets
((τ, σ) ∈ {(10, 1), (20, 1), (40, 1), (80, 1), (40, 0.5), (40, 2), (40, 4)}) for each model. The char-
acteristics of the communities were adjusted based on the evaluation function (Equation (8))
but differed according to the factors inherent in each model (Figure A1). In M, it is likely
that both the number of major species and Sympson’s D were easy to adjust because the
abundance of a species does not directly affect the abundance of other species. In other
cases, at least either the direct species interactions (together with the requirement on the
connectivity between major species) or nutrient competition can limit coexistence. Particu-
larly for direct species-species interaction, the higher the connectance, the more difficult
it is for a system to achieve multispecies coexistence (May 1973). Therefore, it is natural
for D and D′ to have a connectance smaller than 0.5. On the other hand, in M and M′, one
species can consume a chemical and reduce its impact on another species. This lowers the
strength of the interaction, and thus stable coexistence can be maintained even at relatively
high connectance. The coefficient of variation was higher in M′ and D′ than in M and D. In
M′ and D′, an increase in one species negatively affects the growth rate of the other species
and can reduce the population size; this facilitates the oscillation of abundance both as an
intrinsic dynamic of the system and as a noise response [31].
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Figure A1. Basic characteristics of the communities we used for the evaluation. The black line
indicates median, the box edges indicate first and third quartile values, and whiskers indicate
maximum and minimum values. (a) The number of major species, (b) Simpson’s diversity index,
(c) connectance of effective interaction matrix, and (d) coefficient of variation.



Int. J. Environ. Res. Public Health 2022, 19, 1228 13 of 14

References
1. Lawson, C.E.; Harcombe, W.R.; Hatzenpichler, R.; Lindemann, S.R.; Löffler, F.E.; O’Malley, M.A.; Martín, H.G.; Pfleger, B.F.;

Raskin, L.; Venturelli, O.S.; et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 2019,
17, 725–741. [CrossRef] [PubMed]

2. Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling interactions in the microbiome: A network perspective. Trends
Microbiol. 2017, 25, 217–228. [CrossRef] [PubMed]

3. Cagua, E.F.; Wootton, K.L.; Stouffer, D.B. Keystoneness, centrality, and the structural controllability of ecological networks. J. Ecol.
2019, 107, 1779–1790. [CrossRef]

4. Toju, H.; Abe, M.S.; Ishii, C.; Hori, Y.; Fujita, H.; Fukuda, S. Scoring species for synthetic community design: Network analyses of
functional core microbiomes. Front. Microbiol. 2020, 11, 1361. [CrossRef] [PubMed]

5. Kell, D.B.; Brown, M.; Davey, H.M.; Dunn, W.B.; Spasic, I.; Oliver, S.G. Metabolic footprinting and systems biology: The medium
is the message. Nat. Rev. Microbiol. 2005, 3, 557–565. [CrossRef] [PubMed]

6. D’Souza, G.; Shitut, S.; Preussger, D.; Yousif, G.; Waschina, S.; Kost, C. Ecology and evolution of metabolic cross-feeding
interactions in bacteria. Nat. Prod. Rep. 2018, 35, 455–488. [CrossRef]

7. Douglas, A.E. The microbial exometabolome: Ecological resource and architect of microbial communities. Philos. Trans. R. Soc. B
2020, 375, 20190250. [CrossRef]

8. Pinu, F.R.; Granucci, N.; Daniell, J.; Han, T.-L.; Carneiro, S.; Rocha, I.; Nielsen, J.; Villas-Boas, S.G. Metabolite secretion in
microorganisms: The theory of metabolic overflow put to the test. Metabolomics 2018, 14, 43. [CrossRef]

9. Weiss, S.; Van Treuren, W.; Lozupone, C.; Faust, K.; Friedman, J.; Deng, Y.; Xia, L.C.; Xu, Z.Z.; Ursell, L.; Alm, E.J.; et al. Correlation
detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016, 10, 1669–1681. [CrossRef]

10. Suzuki, K.; Yoshida, K.; Nakanishi, Y.; Fukuda, S. An equation-free method reveals the ecological interaction networks within
complex microbial ecosystems. Methods Ecol. Evol. 2017, 8, 1774–1785. [CrossRef]

11. Hirano, H.; Takemoto, K. Difficulty in inferring microbial community structure based on co-occurrence network approaches.
BMC Bioinform. 2019, 20, 1–14. [CrossRef] [PubMed]

12. Fisher, C.K.; Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse
linear regression. PLoS ONE 2014, 9, e102451. [CrossRef]

13. Bucci, V.; Tzen, B.; Li, N.; Simmons, M.; Tanoue, T.; Bogart, E.; Deng, L.; Yeliseyev, V.; Delaney, M.L.; Liu, Q.; et al. MDSINE:
Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016, 17, 1–17. [CrossRef]

14. Alshawaqfeh, M.; Serpedin, E.; Younes, A.B. Inferring microbial interaction networks from metagenomic data using SgLV-EKF
algorithm. BMC Genom. 2017, 18, 1–12. [CrossRef] [PubMed]

15. Xiao, Y.; Angulo, M.T.; Friedman, J.; Waldor, M.K.; Weiss, S.T.; Liu, Y.Y. Mapping the ecological networks of microbial communities.
Nat. Commun. 2017, 8, 1–12. [CrossRef] [PubMed]

16. Momeni, B.; Xie, L.; Shou, W. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. Elife 2017,
6, e25051. [CrossRef]

17. Butler, S.; O’Dwyer, J.P. Stability criteria for complex microbial communities. Nat. Commun. 2018, 9, 1–10. [CrossRef] [PubMed]
18. Brunner, J.D.; Chia, N. Metabolite-mediated modelling of microbial community dynamics captures emergent behaviour more

effectively than spe-cies–species modelling. J. R. Soc. Interface 2019, 16, 20190423. [CrossRef] [PubMed]
19. Niehaus, L.; Boland, I.; Liu, M.; Chen, K.; Fu, D.; Henckel, C.; Chaung, K.; Miranda, S.E.; Dyckman, S.; Crum, M.; et al. Microbial

coexistence through chemical-mediated interactions. Nat. Commun. 2019, 10, 2052. [CrossRef]
20. Pearson, K. Determination of the coefficient of correlation. Science 1909, 30, 23–25. [CrossRef]
21. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [CrossRef]
22. Ruan, Q.; Dutta, D.; Schwalbach, M.S.; Steele, J.A.; Fuhrman, J.A.; Sun, F. Local similarity analysis reveals unique associations

among marine bacterioplankton species and environmental factors. Bioinformatics 2006, 2, 2532–2538. [CrossRef] [PubMed]
23. Beman, J.M.; Steele, J.A.; Fuhrman, J.A. Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep

chlorophyll maximum of coastal Cal-ifornia. ISME J. 2011, 5, 1077–1085. [CrossRef] [PubMed]
24. Steele, J.A.; Countway, P.D.; Xia, L.; Vigil, P.D.; Beman, J.M.; Kim, D.Y.; Chow, C.-E.T.; Sachdeva, R.; Jones, A.C.; Schwalbach,

M.S.; et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 2011, 5, 1414–1425.
[CrossRef] [PubMed]

25. Xia, L.C.; Ai, D.; Cram, J.; Fuhrman, J.A.; Sun, F. Efficient statistical significance approximation for local similarity analysis of
high-throughput time series data. Bioinformatics 2013, 29, 230–237. [CrossRef] [PubMed]

26. Sugihara, G.; May, R.; Ye, H.; Hsieh, C.H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science
2012, 338, 496–500. [CrossRef]

27. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence; Warwick 1980; Springer:
Berlin/Heidelberg, Germany, 1981; pp. 366–381.

28. Kirchman, D.L. Processes in Microbial Ecology; Oxford University Press: Oxford, UK, 2018.
29. Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.;

Muñoz-Marí, J.; et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 1–13. [CrossRef]
[PubMed]

http://doi.org/10.1038/s41579-019-0255-9
http://www.ncbi.nlm.nih.gov/pubmed/31548653
http://doi.org/10.1016/j.tim.2016.11.008
http://www.ncbi.nlm.nih.gov/pubmed/27916383
http://doi.org/10.1111/1365-2745.13147
http://doi.org/10.3389/fmicb.2020.01361
http://www.ncbi.nlm.nih.gov/pubmed/32676061
http://doi.org/10.1038/nrmicro1177
http://www.ncbi.nlm.nih.gov/pubmed/15953932
http://doi.org/10.1039/C8NP00009C
http://doi.org/10.1098/rstb.2019.0250
http://doi.org/10.1007/s11306-018-1339-7
http://doi.org/10.1038/ismej.2015.235
http://doi.org/10.1111/2041-210X.12814
http://doi.org/10.1186/s12859-019-2915-1
http://www.ncbi.nlm.nih.gov/pubmed/31195956
http://doi.org/10.1371/journal.pone.0102451
http://doi.org/10.1186/s13059-016-0980-6
http://doi.org/10.1186/s12864-017-3605-x
http://www.ncbi.nlm.nih.gov/pubmed/28361680
http://doi.org/10.1038/s41467-017-02090-2
http://www.ncbi.nlm.nih.gov/pubmed/29229902
http://doi.org/10.7554/eLife.25051
http://doi.org/10.1038/s41467-018-05308-z
http://www.ncbi.nlm.nih.gov/pubmed/30061657
http://doi.org/10.1098/rsif.2019.0423
http://www.ncbi.nlm.nih.gov/pubmed/31640497
http://doi.org/10.1038/s41467-019-10062-x
http://doi.org/10.1126/science.30.757.23
http://doi.org/10.2307/1412159
http://doi.org/10.1093/bioinformatics/btl417
http://www.ncbi.nlm.nih.gov/pubmed/16882654
http://doi.org/10.1038/ismej.2010.204
http://www.ncbi.nlm.nih.gov/pubmed/21228895
http://doi.org/10.1038/ismej.2011.24
http://www.ncbi.nlm.nih.gov/pubmed/21430787
http://doi.org/10.1093/bioinformatics/bts668
http://www.ncbi.nlm.nih.gov/pubmed/23178636
http://doi.org/10.1126/science.1227079
http://doi.org/10.1038/s41467-019-10105-3
http://www.ncbi.nlm.nih.gov/pubmed/31201306


Int. J. Environ. Res. Public Health 2022, 19, 1228 14 of 14

30. Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom.
1997, 110, 43–50. [CrossRef]

31. May, R.M. Stability and Complexity in Model Ecosystems; Princeton University Press: Princeton, NJ, USA, 1973.

http://doi.org/10.1016/S0167-2789(97)00118-8

	Introduction 
	Materials and Methods 
	Models 
	Effective Interaction Matrix 
	Data Preparation 
	Network Inference Methods 
	Pearson and Spearman Correlation Coefficient 
	Local Similarity Analysis (LSA) 
	Convergent Cross Mapping (CCM) 
	LIMITS 

	Evaluation 
	Software 

	Results 
	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

