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A B S T R A C T   

Background: High-grade serous ovarian carcinoma (HGSOC) is the most prevalent and aggressive 
histological subtype of epithelial ovarian cancer. Around 80% of individuals will experience a 
recurrence within five years because of resistance to chemotherapy, despite initially responding 
well to platinum-based treatment. Biomarkers associated with chemoresistance are desperately 
needed in clinical practice. 
Methods: We jointly analyzed the transcriptomic profiles of single-cell and bulk datasets of HGSOC 
to identify cell types associated with chemoresistance. Copy number variation (CNV) inference 
was performed to identify malignant cells. We subsequently analyzed the expression of candidate 
biomarkers and their relationship with patients’ prognosis. The enrichment analysis and potential 
biological function of candidate biomarkers were explored. Then, we validated the candidate 
biomarker using in vitro experiments. 
Results: We identified 8871 malignant epithelial cells in a single-cell RNA sequencing dataset, of 
which 861 cells were associated with chemoresistance. Among these malignant epithelial cells, 
FBXO2 (F-box protein 2) is highly expressed in cells related to chemoresistance. Moreover, FBXO2 
expression was found to be higher in epithelial cells from chemoresistance samples compared to 
those from chemosensitivity samples in a separate single-cell RNA sequencing dataset. Patients 
exhibiting elevated levels of FBXO2 experienced poorer outcomes in terms of both overall survival 
(OS) and progression-free survival (PFS). FBXO2 could impact chemoresistance by influencing the 
PI3K-Akt signaling pathway, focal adhesion, and ECM-receptor interactions and regulating 
tumorigenesis. The 50% maximum inhibitory concentration (IC50) of cisplatin decreased in 
A2780 and SKOV3 ovarian carcinoma cell lines with silenced FBXO2 during an in vitro 
experiment. 
Conclusions: We determined that FBXO2 is a potential biomarker linked to chemoresistance in 
HGSOC by combining single-cell RNA-seq and bulk RNA-seq dataset. Our results suggest that 

* Corresponding author. 
E-mail address: xltangmail@163.com (X. Tang).   

1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e28490 
Received 19 November 2023; Received in revised form 19 March 2024; Accepted 20 March 2024   

mailto:xltangmail@163.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e28490
https://doi.org/10.1016/j.heliyon.2024.e28490
https://doi.org/10.1016/j.heliyon.2024.e28490
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e28490

2

FBXO2 could serve as a valuable prognostic marker and potential target for drug development in 
HGSOC.   

1. Background 

Epithelial ovarian cancer (EOC) is a deadly cancer that ranks eighth in causing cancer-related deaths globally, with around 207,252 
fatalities reported in 2020 [1]. High-grade serous ovarian carcinoma (HGSOC) is the predominant and most aggressive type, making up 
around 75% of all EOCs [2]. Due to inadequate screening methods, approximately 80% of patients receive a diagnosis in later stages, 
leading to unfavorable survival rates [3]. The 5 year cause specific survival rates for stage III and stage IV HGSOC patients are only 42% 
and 26%, respectively [3]. Surgical debulking followed by platinum-based chemotherapy is currently the primary treatment option for 
patients with HGSOC [4]. Regrettably, around 80% of individuals will experience a recurrence within five years because of chemo-
resistance, despite the fact that the majority of patients initially exhibit a positive reaction to platinum-based chemotherapy [5,6]. 
Extensive efforts have been made to overcome this pervasive problem, but chemoresistance in HGSOC is still an unsolved challenge. 

An increasing number of studies have focused on overcoming the chemoresistance of HGSOC throughout the past few years with 
high-throughput sequencing technology. Koti M et al. discovered a group of genes that play a role in the insulin like growth factor 1/ 
PI3K/nuclear factor kappa-B/extracellular regulated protein kinases signaling pathways, impacting the response to chemotherapy 
through bulk RNA sequencing (RNA-seq) [7]. Paola et al. reported that the microRNA 23a-3p/apoptotic peptidase activating factor 1 
axis may be a possible target to overcome platinum resistance [8]. However, the composition of the cell type in bulk tissues remains 
unclear. Liu et al. found that there exists a unique tumor microenvironment in HGSOC [9] and it has been proven to exert an important 
influence on chemoresistance and prognosis of HGSOC patients [10–12]. However, the tumor microenvironment is masked due to the 
drawback of bulk RNA-seq, which makes it impossible to understand the change in cell components and cell crosstalk during HGSOC 
chemoresistance. 

Lately, there has been a growing interest in using single-cell RNA sequencing (scRNA-seq) to investigate the chemoresistance of 
HGSOC. It has the ability to capture gene expression at the level of individual cells and distinguish between different types of cells. 
Research has uncovered the single-cell landscape of HGSOC and its diversity with the tumor microenvironment through scRNA-seq, 
offering important information for discovering novel molecular pathways and possible targets for chemoresistance [13–15]. On the 
other hand, Zhang et al. examined the transcriptomic data of individual cells from HGSOC patients both pre- and post-chemotherapy, 
revealing a steady rise in stress-related cell activity throughout the treatment process [16]. Furthermore, Hao et al. reported that a 
subset of epithelial cells may enhance proliferative potential and chemoresistance in HGSOC [17]. 

Researchers prefer the combined examination of single-cell RNA-seq and bulk RNA-seq as it allows them to leverage the strengths of 
each method. Previous research has shown the diversity of immune cells and created a predictive pattern in ovarian cancer using this 
method [18,19]. More than that, Wang et al. reported patients with ovarian cancer who were to be in the high-risk category showed 
reduced sensitivity to chemotherapy medications [20]. Herein, we aimed to identify the biomarker associated with chemoresistance 
that could provide guidance for clinical treatment by comprehensively analyzing the transcriptomic profiles of bulk RNA-seq datasets 
and scRNA-seq datasets from HGSOC samples. 

2. Materials and methods 

2.1. Acquisition of datasets 

Data on gene expression matrix and clinical information for patients with HGSOC were acquired from The Cancer Genome Atlas- 
ovarian serous cystadenocarcinoma (TCGA-OV) dataset. We performed data clean-up. Patient cases without a platinum-free interval 
(PFI) were excluded, along with those lacking RNA-seq data despite having a PFI. In addition, based on their PFI, HGSOC patients were 
divided into chemoresistance samples (PFI <6 months) and chemosensitivity samples (PFI ≥6 months) [21]. Finally, 188 HGSOC 
patients with PFI information and corresponding RNA-seq data were enrolled in this study, including 128 chemosensitivity patients 
and 60 chemoresistance patients. 

The two HGSOC scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database. The GSE158937 dataset 
consisted of three HGSOC samples collected before underwent therapy from high-grade serous ovarian primary tumors [22,23]. The 
GSE154600 dataset consisted of five human HGSOC samples collected after underwent therapy from the omentum metastasis of 
high-grade serous ovarian tumors [24]. Of these five samples, one sample had a chemotherapy response that was neither 

Table 1 
The key characteristics of the datasets in this study.  

Datasets Type Chemoresistance Chemosensitivity 

TCGA-OV Tissue 60 128 
GSE158937 Tissue 3 0 
GSE154600 Tissue 2 2 
GSE47856 Cell line – –  
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chemoresistance nor chemosensitivity, so we excluded it. Therefore, two chemoresistance samples and two chemosensitivity samples 
were included in our study. Furthermore, the genetic expression patterns of the A2780, OVCA429 and IGROV-1 human ovarian cancer 
cell lines in the GSE47856 dataset in the GEO repository were obtained [25]. Table 1 displayed the main features of the datasets 
analyzed in this research. 

2.2. Processing of single-cell RNA-seq datasets 

The scRNA-seq dataset was analyzed using Seurat in R 4.1.0 for quality control, statistical analysis, and exploration [26]. Data was 
processed based on specific quality control standards: 1) cells were screened for at least 100 genes detected, with genes expressed in 
less than 3 cells being excluded; 2) cells with nuclear gene counts below 200 or above 6000 and at least 50% mitochondrial genes were 
eliminated. 

The analysis involved identifying the most variable genes using the FindVariableGenes method, followed by dimensionality 
reduction through principal component analysis (PCA) [27]. Clusters were identified by applying the FindClusters function with a 
resolution of 0.8, using the 20 principal components (PCs) as input. The selection of PCs was based on visualizing the decrease in PC 
variance explained with the ElbowPlot function. Next, the RuntSNE function was used to create t-distributed stochastic neighbor 
embedding (t-SNE) visualizations [28]. 

Using the FindMarkers function, marker genes were identified in each cluster based on the criteria of log2 [fold change (FC)] > 0.5 
and an adjusted P value < 0.05. The ‘SingleR’ package was used to annotate clusters using the marker gene [29]. 

Then, the GSE154600 dataset was analyzed as described before. However, cells were excluded if their nuclei gene counts below 200 
or above 5000, and if they had more than 25% mitochondria-expressed genes, as most cells in the dataset fell within these thresholds. 
Clusters were identified using the FindClusters function with resolution 0.8 with the 25 principal components were used as input, 
based on the assumption that the standard deviation remains relatively constant with 25 PCs. 

2.3. Copy number variation inference 

The estimation of large-scale chromosomal copy number variation (CNV) in somatic cells was performed using the “infercnv” R 
package [30]. Preparation of a raw count matrix for scRNA-seq, annotation files and gene/chromosome position files were done based 
on the data requirements (https://github.com/broadinstitute/inferCNV). We selected macrophages, monocytes, NK cells, T cells and B 
cells as reference normal cells. The CNV score was calculated as the quadratic sum of the CNV regions. 

2.4. Identification of cells associated with chemoresistance 

The “Scissor” R package was used to identify individual cells within subgroups that are correlated with chemoresistance [31]. 
Scissor requires a single-cell expression matrix, a bulk expression matrix and a phenotype of interest as inputs. Our research utilized the 
single-cell expression matrix obtained from GSE158937, along with the bulk expression matrix and associated PFI data from patients 
with HGSOC as the designated inputs. 

2.5. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways 

Based on whether the cells were associated with chemoresistance, differentially expressed genes (DEGs) in malignant epithelial 
cells of the GSE158937 dataset were identified by the FindMarkers function in Seurat. A gene at log2FC greater than 0.5 and an 
adjusted P value less than 0.05 was considered a DEG. In the GSE154600 dataset, DEGs in epithelial cells of different origin samples 
were obtained in the same way. We analyzed the possible biological effects of DEGs by conducting Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway using the “Clusterprofiler” R package [32]. A gene set at P less than 0.05 and false discovery rate less than 
0.05 was deemed to be significantly enriched. 

2.6. Identification of candidate biomarkers 

Candidate biomarkers linked to chemoresistance were identified by comparing the DEGs between chemoresistance patients and 
chemosensitivity patients in the TCGA-OV dataset were identified using the “limma” R package [33]. A gene was considered a DEG if it 
had an adjusted P value of less than 0.05. Then, we had an intersection of three DEGs. The expression of overlapping genes between 
tumor samples and normal samples was explored by GEPIA2 (http://gepia2.cancer-pku.cn/). Furthermore, we categorized HGSOC 
individuals into two cohorts based on the median expression level of overlapping genes and plotted a Kaplan‒Meier graph. Endpoints 
included both overall survival (OS) and progression-free survival (PFS). The prognostic value of shared genes for high-grade serous 
ovarian cancer was assessed with KM plotter (http://kmplot.com/analysis). Candidate biomarkers were identified as genes that 
exhibited high expression levels in the tumor samples and were linked to unfavorable prognosis. 

2.7. Protein‒protein interaction network of candidate biomarkers and enrichment analysis 

In order to investigate the functional significance of the potential biomarker, we gathered genes that interact with it from three 
protein‒protein interaction (PPI) network databases: STRING [34], BioGRID [35] and HPRD [36]. Furthermore, we gathered the 
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roster of genes associated with ovarian cancer from the CTD database [37] and the roster of immune-related genes from the IMPORT 
database [38]. We defined the candidate biomarker as node1 and other genes interacting with it as node2, then we visualized the gene 
interaction network by Cytoscape [39]. Additionally, the genes were subjected to GO analysis and KEGG pathway analysis using the 
“Clusterprofiler” R package to investigate the roles of this interaction network module dominated by the potential biomarker. 

2.8. Exploration of the relationship between the candidate biomarker and tumor stemness in HGSOC 

In order to investigate the connection between the potential biomarker and tumor stemness in HGSOC, we initially examined the 
expression of candidate biomarker in different cell types within the GSE158937 dataset. Based on the median expression level of the 
candidate biomarker, the epithelial cells were categorized into a high expression group and a low expression group. Then we con-
ducted differentially expressed analysis for epithelial cells in these two groups. Furthermore, the DEGs were subjected to KEGG 
pathway analysis and GO analysis using the “Clusterprofiler” R package. Gene set enrichment analysis (GSEA) was conducted with 
GSEA software, utilizing hallmark pathways gene sets obtained from the Molecular Signatures Database (http://www.gsea-msigdb. 
org/gsea/msigdb/index.jsp). A false discovery rate of less than 0.05 and a P value of less than 0.05 were considered the threshold 
for significance. Through reviewing the relevant literature, we obtained the marker gene of cancer stem-like cells in HGSOC and 
conducted correlation analysis for the marker gene and the candidate biomarker in the epithelial cells of high expression group. 

2.9. Cell culture, transfection and chemosensitivity assay 

The A2780 and SKOV3 ovarian carcinoma cell lines were acquired from the American Type Culture Collection (Manassas, VA, USA) 
and the Chinese Academy of Sciences Cell Bank (Beijing, China). Cells were grown in 1640 medium with 10% fetal bovine serum in a 
humid incubator at 37 ◦C and 5% CO2, supplemented for the A2780 cell line or Dulbecco’s modified Eagle’s medium for the SKOV3 
cell line. The cells were placed in a 6-well plate and grown until they reached 50% confluenc. Cells were transiently transfected using 
SiTran 2.0 following the instructions provided by the manufacturer. The sequence of the siRNA was shown in Table 2. And the 
knockdown of the transcript was confirmed by Western blot experiment. The culture medium was changed after 24 h, and the cells 
were then cultured for another 24 h. 

96-well plates were filled with cells (10,000 cells per well) and exposed to varying concentrations of cisplatin in triplicate, ranging 
from 0 to 12 μg/ml. Cell viability was assessed using a CCK-8 assay after 48 h, with the optical density measured at 450 nm by an 
automated microplate reader. The 50% maximum inhibitory concentration (IC50), representing the concentration at which cell 
growth decreased by half compared to control cell growth, was determined using GraphPad Prism 5.0 software (GraphPad, Inc., San 
Diego, CA, USA). 

3. Results 

3.1. Malignant epithelial cells predominate in HGSOC 

The GSE158937 dataset contained a sum of 15,192 cells. Following quality control (Fig S1A-S1E), a total of 11,300 cells were 
retained for additional examination. Afterwards, we effectively categorized the cells into 20 distinct clusters (Fig. 1A). A combined 
14,463 marker genes were discovered across 20 clusters, with the heatmap showcasing the top 10 marker genes from each cluster 
(Fig. 1B–Table S1). In Fig. 1C, we identified that Clusters 0, 1, 2, 3, 4, 5, 7, 8, 9, 12 and 17, totaling 9206 cells, were epithelial cells; 
Clusters 6 and 18, totaling 735 cells, were macrophages; Clusters 11 and 16, totaling 443 cells, were fibroblasts; Cluster 10, totaling 
397 cells, was T cells; Cluster 13, totaling 278 cells, was endothelial cells; Cluster 14, totaling 138 cells, was monocytes; Cluster 15, 
containing 61 cells, was NK cells; and Cluster 19, totaling 42 cells, was B cells. In Fig. 1D, the figure displays the quantities of different 
cell types, with epithelial cells being the most abundant. In addition, the CNV inference results showed that almost all epithelial cells 
had abnormal CNV levels and higher CNV scores than reference cells, which confirmed that epithelial cells were malignant cells 
(Fig. 1E–F). 

3.2. Most cells associated with chemoresistance are malignant epithelial cells 

In the GSE158937 dataset, 1401 cells associated with chemoresistance were identified (Fig. 2A), consisting of 861 epithelial cells, 
265 macrophages, 161 fibroblasts, 67 T cells, 20 monocytes, 17 endothelial cells, 9 NK cells, and 1 B cell (Fig. 2B). Among 861 
epithelial cells associated with chemoresistance and 8345 epithelial cells not associated with chemoresistance in the GSE158937 
dataset, 164 DEGs were identified, including 125 upregulated genes and 39 downregulated genes (Fig. 2C). The analysis of these DEGs 

Table 2 
The sequence of the siRNA in the study.  

Number Sequence 

stB0001215A CACTGGCAGCAGTTCTACT 
stB0001215B ACGAGCTCACCGTTAAGCT 
stB0001215C GATGAGAGCGTCAAGAAGT  
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using KEGG indicated that they were mainly enriched in ribosome, protein processing in endoplasmic reticulum, and chemical 
carcinogenesis – reactive oxygen species (Fig. 2D). 

3.3. Epithelial cells are involved in chemoresistance 

A total of 35,442 cells from the GSE154600 dataset were included in our study, which consisted of 24,416 cells from chemo-
resistance samples and 11,026 cells from chemosensitivity samples. A total of 33,054 cells were screened for subsequent analysis after 
quality control (Fig S2A-S2E). We divided the cells into 30 separate clusters (Fig S2F) and identified 6748 marker genes from all 30 
clusters. The heatmap displayed the top 10 marker genes from every cluster (Fig S2G,Table S2). Clusters 2, 3, 8, 9, 10, 22 and 23, 
containing 10,003 cells, were epithelial cells. 

All the cells in the chemoresistance samples and chemosensitivity samples are separately shown in Fig. 3A. There were 8259 
epithelial cells from chemoresistance samples and 1744 epithelial cells from chemosensitivity samples in the GSE154600 dataset. A 
total of 799 DEGs were identified among these cells, including 445 upregulated genes and 354 downregulated genes (Fig. 3B). Notably, 
all the pathways related to chemoresistance identified in the GSE158937 dataset were contained in the results of KEGG analysis for 
these DEGs, which validated that epithelial cells were involved in HGSOC chemoresistance (Fig. 3C). 

Fig. 1. Cell annotation and identification of malignant cells in the GSE158937 dataset. (A) 11,300 cells were divided into 20 separate clusters with 
resolution 0.8. (B) Heatmap displaying the top 10 marker genes in each cluster. (C) The t-SNE plot demonstrated cell types. (D) Cell number of each 
cluster. (E) Heatmap showing large-scale CNV profile of each cluster of epithelial cells and reference cell subpopulation; the red and blue colors 
represented high and low CNV level, respectively. (F) The distribution of CNV score for epithelial cell and reference cell and the dashed line 
represents the mean of CNV score. 
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3.4. FBXO2 is identified as a candidate biomarker 

Among these chemoresistance patients and chemosensitivity patients in the TCGA-OV dataset, 1805 DEGs were identified, 
including 312 upregulated genes and 1493 downregulated genes. Following the comparison of three sets of DEGs, FBXO2, RPL6, RPL9, 
RPL10, RPL32, RGS10, and RPS23 were determined to be common genes (Fig. 3D). Fig. 4A–B displays the gene expression profiles in 
chemoresistance samples and chemosensitivity samples for the GSE154600 dataset and TCGA-OV dataset. Interestingly, RPL9 and 
RPS23 showed high expression levels in the normal samples, while FBXO2 and RGS10 exhibited high expression levels in the tumor 
samples (Fig. 4C, Fig S3A). Furthermore, individuals with elevated levels of FBXO2 showed poorer OS and PFS compared to others 
(Fig. 4D–E, Fig S3B-3C). Taken together, these results identified FBXO2 as a candidate biomarker associated with chemoresistance. 

3.5. PPI network of FBXO2 and enrichment analysis 

By integrating three protein‒protein interaction network databases, 405 genes were confirmed to interact with FBXO2. Purple 
genes are associated with ovarian cancer, blue genes are related to the immune, and green genes are linked to both ovarian cancer and 
the immune (Fig. 5A). The examination of the network module controlled by FBXO2 in the KEGG analysis indicated a strong presence 
of the PI3K-Akt signaling pathway, focal adhesion, and ECM-receptor interaction (Fig. 5B). In addition, the results of GO functions for 
these genes were shown in Fig. 5C. Biologically, they were mainly enriched in extracellular matrix organization and glycoprotein 
metabolic process; In terms of cellular component, they were mainly enriched in endoplasmic reticulum lumen and lysosomal lumen; 
Regarding molecular function, enrichment was mainly observed in glycosaminoglycan binding and growth factor binding. 

3.6. FBXO2 may affect tumor stemness in HGSOC 

In the GSE158937 dataset, we found that FBXO2 was highly expressed in epithelial cells and barely expressed in immune and 
stromal populations (Fig. 6A). KEGG analysis revealed that the DEGs in epithelial cells from two groups were predominantly enriched 
in oxidative phosphorylation and chemical carcinogenesis – reactive oxygen species (Fig. 6B). And the results of GO analysis for the 
DEGs were shown in Fig. 6C. Notably, the results of GSEA analysis suggested hypoxia pathway and interferon gamma response 
pathway were upregulated in the low expression group (Fig S4A-4B). Furthermore, PEG10 was identified as the marker gene of cancer 

Fig. 2. Identification of cells associated with chemoresistance in the GSE158937 dataset and KEGG analysis. (A) The t-SNE visualization of the 
Scissor algorithm selected cells associated with chemoresistance. (B) The distribution of cells associated with chemoresistance in each cell type. (C) 
The differentially expressed genes (DEGs) between malignant epithelial cells associated with chemoresistance and those not associated with che-
moresistance. (D) KEGG analysis of DEGs. 
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stem-like cells in HGSOC by reviewing the relevant literature [40]. As presented in Fig. 6D, there is a significant correlation between 
FBXO2 expression level and PEG10 expression level (r = 0.25, P < 0.001). It suggested that FBXO2 may affect tumor stemness in 
HGSOC, which is worthy of further verification in subsequent studies. 

3.7. FBXO2 silencing reduces chemoresistance 

The results of Western blot experiment were shown in Fig. 7A and B and the uncropped image of Western Blot could be seen in Fig 
S5A-5D, which successfully confirmed the knockdown of the transcript. FBXO2 expression was significantly higher in three ovarian 
cancer cell lines (A2780, OVCA429, and IGROV-1) treated with cisplatin compared to those not receiving cisplatin (Fig. 8A). In the in 
vitro experiment, the IC50 of cisplatin in the control group was 3.786 μg/ml, but the IC50 of cisplatin in the silence FBXO2 group was 
2.002 μg/ml for the A2780 human ovarian carcinoma cell line (Fig. 8B). In addition, the IC50 of cisplatin in the control group was 
2.060 μg/ml; however, the IC50 of cisplatin in the silenced FBXO2 group was 1.256 μg/ml for the SKOV3 human ovarian carcinoma 
cell line (Fig. 8C). These results further validated that FBXO2 may be a potential biomarker associated with chemoresistance in 
HGSOC. 

4. Discussions 

Chemoresistance is the primary obstacle in treating patients with high-grade serous ovarian cancer [41]. Therefore, it is imperative 
to explore potential biomarkers that can predict the outcome of platinum chemotherapy. Fig. 9 displays the flow chart of our study. In 
the present study, the initial analysis of GSE158937, a single-cell RNA sequencing dataset of high-grade serous ovarian cancer, 
revealed that nearly all epithelial cells were cancerous Interestingly, the results of the “Scissor” algorithm showed that most cells 

Fig. 3. Cell annotation and KEGG analysis in the GSE154600 dataset. (A) The t-SNE plot demonstrated cell types of chemoresistance samples (left) 
and chemosensitivity samples (right). (B) The DEGs between epithelial cells originated from chemoresistance samples and those originated from 
chemosensitivity samples. (C) KEGG analysis of DEGs. (D) Intersection of upregulated genes (up) and downregulated genes (down) of the 
GSE158937 dataset, the GSE154600 dataset and TCGA-OV dataset. 
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Fig. 4. Identification of candidate biomarkers. (A) The expression of overlapping genes in the GSE154600 dataset. (B) The expression of over-
lapping genes in TCGA-OV dataset. (C) The expression of FBXO2, RGS10, RPL9, and RPS23 in tumor samples and normal samples. (D) The OS of 
HGSOC patients in the FBXO2 low- and high-expression groups. (E) The PFS of HGSOC patients in the FBXO2 low- and high-expression groups. 

Fig. 5. PPI network and enrichment analysis of genes dominated by FBXO2. (A) FBXO2-dominated interaction network. Purple represents ovarian 
cancer-related genes, blue represents immune-related genes and green represents both ovarian cancer-related genes and immune-related genes. (B) 
KEGG analysis. (C) GO analysis. 
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associated with chemoresistance were epithelial cells. In fact, it has been well established that epithelial cells are the targets of 
chemotherapy in HGSOC [42]. To our knowledge, the “Scissor” algorithm is the first bioinformatics tool that automatically identifies 
the most phenotype-relevant cell subpopulations from a single-cell dataset by leveraging a bulk dataset and phenotype information. 
Two benefits help to enhance the overall comprehension of chemoresistance in HGSOC. A benefit of using ‘Scissor’ is that it eliminates 
the need for unsupervised clustering in single-cell data, thus preventing subjective decisions regarding cell cluster numbers or clus-
tering resolution. Crucially, it offers a versatile structure for incorporating different external characteristics in large datasets to assist in 
the analysis of individual cells, allowing for the discovery of cell subgroups that are significant in both clinical and biological contexts 
without the need for specific hypotheses. And we believed that our results confirmed that the unique algorithm is reliable and effective 
again. 

Revealing the potential mechanism of chemoresistance could provide great guidance to overcome the problem of chemoresistance. 

Fig. 6. Exploration of FBXO2 expression in the GSE154600 dataset and the relationship between FBXO2 and tumor stemness in HGSOC. (A) The 
expression of FBXO2 in various cell types. (B) KEGG analysis. (C) GO analysis. (D) Correlation analysis between FBXO2 and PEG10. 

Fig. 7. Western Blot experiment. (A) The protein expression levels of FBXO2 after knockdown in A2780 cells. (B) The protein expression levels of 
FBXO2 after knockdown in SKOV3 cells. 
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KEGG analysis revealed that DEGs in epithelial cells related to chemoresistance were significantly enriched in ribosome, protein 
processing in the endoplasmic reticulum, and chemical carcinogenesis – reactive oxygen species. The significance of biosynthetic 
pathways in the development of chemoresistance is readily apparent. Among these pathways, FBXO2 was enriched in protein pro-
cessing in the endoplasmic reticulum. As an important organelle for protein processing, the endoplasmic reticulum is essential to 
maintain physiological activities. Yet, the buildup of improperly folded proteins in the endoplasmic reticulum leads to endoplasmic 
reticulum stress. It has been reported that endoplasmic reticulum stress has an important pathological influence on many diseases, 
including cancer, metabolic disorders, and neurological disorders [43–45]. Recent studies have shown a connection between endo-
plasmic reticulum stress and resistance to chemotherapy, with the suppression of this stress improving the efficacy of chemothera-
peutics in various cancer types [46–48]. Crucially, the findings from the enrichment analysis were supported by another scRNA-seq 
dataset GSE154600, demonstrating the participation of epithelial cells in chemoresistance of HGSOC. 

Within the GSE158937 dataset, it was observed that FBXO2 expression was elevated in malignant epithelial cells associated with 
chemoresistance, as opposed to those not related to chemoresistance. Furthermore, we also found that FBXO2 expression in epithelial 
cells originating from chemoresistance samples was higher than that in epithelial cells originating from chemosensitivity samples in 
the GSE154600 dataset. Conversely, FBXO2 exhibited higher expression levels in tumor samples than in normal samples in the TCGA- 
OV dataset. To confirm whether FBXO2 is a suitable biomarker associated with chemoresistance, the clinical value of FBXO2 was 
explored. We determined that patients with high FBXO2 expression had significantly worse OS and DFS and vice versa. 

In contrast to numerous prior research efforts, our study investigated potential biomarkers linked to chemoresistance in HGSOC 
combining single-cell RNA-seq and bulk RNA-seq data, taking into account their individual strengths. FBXO2, identified as a receptor 
specific to glycoproteins for substrates in the SKP1/CUL1/F-box protein ubiquitin ligase complex, has been documented by numerous 
scientists. Che et al. reported that FBXO2 acts as an E3 ligase that targets FBN1 for ubiquitin-dependent degradation, promoting 
endometrial cancer proliferation by regulating the cell cycle and the autophagy signaling pathway [49]. Sun et al. indicated that 
FBXO2 enhances the proliferation and migration of human gastric cancer cells and that the expression of FBXO2 is closely linked to 
lymph node metastasis [50]. Ji et al. revealed that FBXO2 enhances the advancement of ovarian cancer by preventing cell death, and 

Fig. 8. Validation of FBXO2 expression. (A) The expression level of FBXO2 among treated with cisplatin and untreated with cisplatin group in 
A2780 cell line, IGROV-1 cell line and OVCA429 cell line. (B) CCK-8 assays were performed to determine the survival rates of A2780 and A2780/ 
siFBXO2 cells after treatment with cisplatin for 48 h. (C) CCK-8 assays were performed to determine the survival rates of SKOV3 and SKOV3/ 
siFBXO2 cells after treatment with cisplatin for 48 h. 

Fig. 9. The flow chart of this study.  
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elevated levels of FBXO2 expression are linked to a poorer outlook [51]. Nevertheless, limited research has shown the relevance of 
FBXO2 in chemoresistance in HGSOC, and our findings could offer fresh perspectives on the mechanism of chemoresistance and drug 
development. 

In order to examine the role of FBXO2, we gathered genes that directly interacting with FBXO2 and built a network module centered 
around FBXO2. From the interaction network module, we found that some genes were related to ovarian cancer and immune in-
teractions with FBXO2. Various studies have demonstrated a strong connection between these genes and HGSOC. A study found that 
reducing PLXNB2 levels can inhibit the proliferation and invasion of ovarian cancer cell [52]. The interaction network module sug-
gested that FBXO2 is crucial in the advancement and reaction to chemotherapy of HGSOC. Furthermore, the KEGG examination of the 
network module interaction indicated that they were mainly enriched in the PI3K-Akt signaling pathway, focal adhesion, and 
ECM-receptor interaction. Increasing evidence indicates that the PI3K-Akt signaling pathway plays a role in chemoresistance, with 
PI3K activation leading to heightened chemoresistance in cases of ovarian cancer [53–55]. Simultaneously, a clinical study showed 
that the combination of PI3K inhibitor alpelisib and the PARP inhibitor olaparib is viable without any unforeseen harmful impacts on 
individuals with epithelial ovarian cancer [56]. Additionally, a separate study demonstrated that combining the PI3K inhibitor 
BKM120 with olaparib can effectively treat high-grade serous ovarian carcinoma, although the dosage of BKM120 may need to be 
reduced [57]. Focal adhesion kinase is essential to ovarian cancer chemoresistance, and focal adhesion kinase siRNA has been 
demonstrated to be a novel therapeutic approach to overcome chemoresistance [58,59]. Gu et al. suggested that inhibition of the 
ECM-receptor interaction pathway can reduce the proliferation, migration, and invasion of ovarian cancer cells [60]. The results of our 
enrichment analysis indicated that FBXO2 may affect the chemoresistance of HGSOC patients through these pathways. 

Cancer stem cells, also known as CSCs, are a subset of cancer cells that have the ability to renew themselves and differentiate, 
supporting the growth of tumors and reproducing a diverse tumor population [61]. Accumulating evidence suggests that CSCs play a 
crucial role in chemoresistance in ovarian cancer. For example, Liao et al. stated that ovarian cancer stem cells have the ability to 
endure stressful situations, specifically low oxygen levels, and could play a role in chemoresistance [62]. In our study, we found that 
there is a significant correlation between FBXO2 expression level and PEG10 expression level. This result indicated that FBXO2 may 
affect tumor stemness in HGSOC, which is worthy of further verification in subsequent studies. 

Analysis of transcriptomic data of three cell lines confirmed upregulation of FBXO2 in the group treated with cisplatin. Addi-
tionally, a test for chemosensitivity was performed to determine if reducing FBXO2 levels would enhance the effectiveness of platinum 
in treating ovarian cancer. During an in vitro study, it was observed that the IC50 of cisplatin decreased in A2780 and SKOV3 human 
ovarian carcinoma cell lines when FBXO2 was silenced, as opposed to the control group. This finding illustrated that inhibiting the 
expression of FBXO2 may alleviate chemoresistance in HGSOC, which provides some guidance for clinical practice. Considering that 
the results of GSEA analysis suggested hypoxia pathway and interferon gamma response pathway were upregulated in the low 
expression group, we speculated these two pathways play a key role in alleviate chemoresistance in HGSOC when FBXO2 is inhibited. 

In conclusion, our analysis of single-cell RNA-seq and bulk RNA-seq revealed FBXO2 as a potential biomarker linked to chemo-
resistance in HGSOC. The results suggest that FBXO2 could serve as a valuable prognostic marker and potential target for drug 
development in the treatment of HGSOC. However, there are some limitations in our study. Firstly, tissue dissociation results in the loss 
of spatial information of cells, although the accuracy of identified biomarkers is enhanced by single-cell RNA sequencing; therefore, 
combining single-cell RNA sequencing with spatial transcriptomics may provide a more comprehensive approach. Furthermore, this 
study lacks experimental validation of the functional role of FBXO2 in chemoresistance, necessitating further research to uncover it. 
Additionally, since our study is retrospective, it is need for future prospective, large-scale trials to substantiate the clinical applicability 
of our findings. 
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