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ABSTRACT 
It is now longer than half a century, humans, animals, and nature of the world are under the influence of exposure to many 
newly introduced noxious substances. These exposures are nowadays pushing the borders to be considered as the causative 
or exacerbating factors for many chronic disorders including allergic, autoimmune/inflammatory, and metabolic diseases. The 
epithelial linings serve as the outermost body’s primary physical, chemical, and immunological barriers against external stimuli. 
The “epithelial barrier theory” hypothesizes that these diseases are aggravated by an ongoing periepithelial inflammation triggered 
by exposure to a wide range of epithelial barrier–damaging insults that lead to “epithelitis” and the release of alarmins. A leaky 
epithelial barrier enables the microbiome’s translocation from the periphery to interepithelial and even deeper subepithelial areas 
together with allergens, toxins, and pollutants. Thereafter, microbial dysbiosis, characterized by colonization of opportunistic 
pathogen bacteria and loss of the number and biodiversity of commensal bacteria take place. Local inflammation, impaired tissue 
regeneration, and remodeling characterize the disease. The infiltration of inflammatory cells to affected tissues shows an effort to 
expulse the tissue invading bacteria, allergens, toxins, and pollutants away from the deep tissues to the surface, representing the 
“expulsion response.” Cells that migrate to other organs from the inflammatory foci may play roles in the exacerbation of various 
inflammatory diseases in distant organs. The purpose of this review is to highlight and appraise recent opinions and findings on 
epithelial physiology and its role in the pathogenesis of chronic diseases in view of the epithelial barrier theory.
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1. Introduction

The prevalence of allergic diseases has been rising since 1960s 
[1, 2]. Around the same time, a set of autoimmune/inflamma-
tory disorders was reported to be breaking out. Together with 
genetic background and environmental influences, epithelial 
barrier defect was highlighted to underlie the etiology of these 

disorders [3–5]. The discovery of the activated T-lymphocyte-
mediated keratinocyte apoptosis in atopic dermatitis (AD) was 
the initial evidence to focus the research on epithelial barrier [4, 
6], which was consequently followed by demonstration of the 
epithelial barrier disruption in asthma, chronic rhinosinusitis 
(CRS), and inflammatory bowel disease (IBD) [7–9]. The muco-
sal barrier’s “keep away, wash away and suppress” functions 
are delicately facilitated by the immune system and encompass 
tissue and cell-related mechanisms. By forming a physical bar-
rier against external stimuli with a dense lamina reticularis and 
secreted antimicrobial peptides and IgA antibodies, the “keep 
away” function prevents the entrance of external milieu includ-
ing microbes and allergens. The “wash away” function of the 
epithelium uses mediators, cells, and cytokines present in the 
inflammation site. Excessive mucus production, ciliary move-
ment, and also the opening of epithelial barriers eradicate medi-
ators and the inflammatory cells from the inflammation site 
[10]. The allergic inflammation is strictly regulated by means 
of immune cells with regulatory capacities such as T regulatory 
cells and B regulatory cells, suppressive cell surface molecules 
such as CTLA-4 and PD-1, and regulatory cytokines such as 
interleukin 10 (IL-10), TGF-β, and IL-35 [11].

The epithelial barrier theory defines the impact of urbaniza-
tion, industrialization, and Westernized lifestyle on skin, air-
ways, and gut mucosa [1, 12], integrating the previous notions; 
the “Hygiene,” “Biodiversity,” and “Old Friends” hypotheses 
[13]. After barrier damage, opportunistic pathogenic bacteria 
colonize the affected organs and skew the microbial burden 
toward a more proinflammatory state [14]. A series of mutual 
events lead to persistent barrier leakiness and periepithelial 
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inflammation. Translocation of pathogens, pollutants, and 
allergens to inter- and subepithelial spaces elicits an inflamma-
tory response termed as “epithelitis” followed by an “expul-
sion response” that both underlie the pathogenesis of many 
immune-related diseases. This review aims to summarize novel 
findings on skin and mucosal barrier dysfunction and their pos-
sible contribution in chronic inflammatory diseases.

2. Risk factors of epithelial barrier dysfunction

2.1. Genetic predisposition

The epithelial barrier is the first line of defense to external 
milieu, whose dysfunction is closely linked with inflammatory 
disorders. Mutations in the genes of vital epithelial barrier pro-
teins are associated with allergic disorders [15, 16]. The poly-
morphisms in the genes of type 2 cytokines (IL-4 and IL-13), 
alarmins (IL-33 and thymic stromal lymphopoietin [TSLP]), 
inflammation-related proteins (ADAM33 and HLA), and also 
vitamin D receptor could either reduce or increase the risk and 
severity of asthma [16, 17]. In addition, CCL20, IL6, IRF4, 
MUC5AC, TBX21, FADS2, and RUNX1 were reported as asth-
ma-associated genes [18]. Food allergies and AD have T helper 
type 2 (Th2) inflammation and itch-scratch further impairs skin 
barrier function, which could further facilitate the entry of tox-
ins and microbes, leading to skin barrier damage [15].

The possible role of epigenetic alternations in epithelial integ-
rity was covered by several studies, revealing the contribution of 
silent information regulator genes, histone deacetylases, and CpG 
methylation on tight junction (TJ) barrier integrity in the asthmatic 
epithelium [19]. The inhibition of histone deacetylases improved 
epithelial barrier integrity by increased synthesis of TJ molecules. 
Next-generation sequencing of asthma candidate genes revealed 2 
single-nucleotide polymorphisms in the filaggrin (FLG) gene that 
were suggested to contribute to asthma pathogenesis [20].

2.2. Microbiota changes underlying epithelial functions

The host’s metabolism, epithelial barrier integrity and functions, 
and immune homeostasis show vital links with microbiota [21]. 
Close relation between microbial dysbiosis and epithelial bar-
rier dysfunction is also connected with several noncommuni-
cable inflammatory disorders such as allergic, cardiovascular, 
metabolic, and autoimmune diseases [1, 13, 22, 23]. Local 
inflammation and progressive damage to epithelial barriers are 
persuaded by the translocation of the microbes to subepithelial 
tissues together with environmental agents, and induction of a 
type 2 expulsion response [1, 24–27]. Besides, microbiota pre-
vents the colonization of the pathogenic microorganisms, regu-
lates, and improves epithelial barrier functions [28]. In barrier 
defective tissues, type 2 immune responses are initiated against 
commensal microbes as well as facultative pathogens [29]. 
Staphylococcus aureus (S. aureus) is the most abundant bacte-
rium colonizing damaged tissues of the respiratory system and 
the skin. Asthma exacerbations and severity are closely linked 
with antibody levels against S. aureus [30]. Staphylococcus epi-
dermidis supports the skin barrier by increasing ceramide pro-
duction in the stratum corneum by sphingomyelinase activity 
[31]. Beneficial microbiota provides the preservation and heal-
ing of the epithelial barrier [32]. On the contrary, resident micro-
biota could contribute to the strength of the epithelial barrier 
by mechanisms including the production of metabolites, such 
as short-chain fatty acids (SCFAs) [33–35]. Restoration of the 
microbial diversity could be a potential therapeutic approach to 

sustain the barrier integrity and avoid the onset of inflammato-
ry-driven diseases. Fecal microbiota transplantation represents 
a promising tool for microbial diversity restoration and preven-
tion of many inflammatory diseases [36]. Additionally, fungal 
communities known as mycobiota could contribute to the pro-
tection of the healthy state [37, 38].

The development of atopic diseases has links to gut dysbio-
sis. The abundance or low expression of certain bacteria may 
project about the risk for disease development or protection. 
Acinetobacter presence on the skin was attributed as “protec-
tive” against allergen sensitization [39]. Relatively low abun-
dance of Bacteriodetes have been reported in food-allergic 
children [40]. The metabolomics research identified microbial 
metabolites and provided insight into host–microbiota interac-
tions and disease onset [34, 41].

2.3. Environmental influence and pathogenic drivers

More than 350,000 new substances have been introduced to 
human lives with almost no control on their health effects after 
1960s. Many of them ended up as pollutants [42]. Changes in 
environmental exposure particularly after 1960s have been pro-
posed to be directly linked with development of autoimmune, 
allergic, and metabolic diseases [1, 26, 27]. TJs and epithelial 
barrier integrity could be damaged following encounter upon 
climate alternations, detergents, surfactants, household clean-
ers, food additives, particulate matter (PM), diesel exhaust par-
ticles, tobacco smoke, microplastics, ozone, and toothpaste, all 
of which account for the environmental insults (Fig. 1) [1, 12, 
13, 26, 27, 43–47].

Climate change is a global problem. As a result of defor-
estation and the greenhouse effect, the Earth’s CO

2 elimination 
capacity is crippled, which leads to climate change with harmful 
effects on human health along with animals, plants, agriculture, 
wildlife, forests, and oceans [12, 48, 49]. Pollutants including 
PM, CO2, CO, NO, ozone, and volatile organic compounds are 
among the main driving forces of allergic diseases [50]. The 
hazardous levels of environmental ozone, PM, and nanoma-
terials could impair epithelial barrier functions [51]. Wildfires 
and toxic fumes are hazardous to human health. Wildfire smoke 
induces oxidative damage and lung inflammation and asthma 
exacerbations [52]. Animal studies revealed that air pollution 
has detrimental effects on epithelia, immune cells, and immune 
responses [53]. Cigarette smoke upregulates inflammatory den-
dritic cells in the lungs and disrupts the epithelial barrier func-
tion by suppressing proinflammatory cytokine and chemokine 
responses (Fig. 1) [54].

Detergents and their surfactants sodium lauryl sulphate and 
sodium benzene sulphanate, which were introduced to our lifes 
in 1960 with a similar formulation as of today, are regarded 
as important epithelial barrier disruptors. Public daily exposure 
to detergents was enhanced as detergent usage was increased, 
together with additive surfactants and proteolytic enzymes [55]. 
A direct link between asthma and AD development and deter-
gent exposure, household cleaners and disinfectants has been 
repeatedly reported [56–58]. Laundry detergent exposure dis-
rupts the epithelial barrier function of skin and bronchial epi-
thelial cells, even at very high dilutions [59, 60]. Professional 
dishwashing became the state of the art worldwide for common 
food consuming areas, such as hospitals, armies, and schools 
after 2000 and their rinse aid containing alcohol ethoxylates 
show epithelial barrier opening, proinflammatory and cell toxic 
effects on gut epithelia in very low concentrations [61].
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Production and usage of plastics have increased markedly 
to the levels of 8 billion tons per year. Approximately 1 billion 
tons of micro- and nanoplastics have been produced each year 
that contaminate food and water and may trigger inflammation 
on epithelial cells, leading to microbiota dysbiosis and caus-
ing barrier dysfunction in the digestive tract [62, 63]. Again, 
during the last 20 years, the consumption of processed food has 
substantially increased and jointly ingestion of emulsifiers may 
apparently contribute to the development of diseases. Even low 
concentrations of food emulsifiers may increase intestinal per-
meability and lead to mucosal damage [64].

2.4. Allergens

The synergistic and additive effect of epithelial barrier–damag-
ing substances is still under investigation; however, it is clear 

that all of the pollutants are coexposed together with perennial 
allergens and depending on the time with seasonal allergens. 
For example, early in the year, birch pollen allergen exposure is 
always overlapping with air pollutants in March in the Northern 
Hemisphere [65]. Proteases released by several aeroallergens 
target transmembrane adhesion proteins such as E-cadherin and 
transmembrane receptors, damage barrier permeability, facili-
tate allergen absorption and sensitization, and initiate inflam-
matory responses (Table 1) [78, 79]. Protease inhibitors could 
maintain lung homeostasis to stabilize the action of allergens 
and control apoptosis. Allergen exposure could lead to differ-
ential expression of protease inhibitors, which could occur both 
in the presence or absence of Th2 cytokines, and could damage 
the lung epithelium [80]. Environmental factors such as climate 
change and thunderstorms could influence the severity and 
duration of allergic respiratory diseases directly and indirectly 

Figure 1. Epithelial barrier–damaging agents. A defective epithelial barrier is underlying a number of inflammatory disorders including allergy and autoimmune 
diseases. Epithelial barriers of the skin, respiratory, or gastrointestinal systems are disrupted upon synergistic or additive effects of a number of agents or factors. 
These include detergents, shampoos, toothpaste, diesel particles, cigarette smoke, food additives, allergens with protease activity, viruses, ozone, and also 
alterations in climate. Translocation of the microbiota occurs as the result of leaky epithelial barrier formation.

Table 1.

Allergens with protease activity

Allergen type Allergen source Allergen name References 

Cockroaches Periplaneta americana Per a 10 [66]
Fruits Actinidia deliciosa Act d 1 [67]

Ananas comonus Ana c 2
Carica papaya Papain

Fungi Aspergillus fumigatus Asp f 13 [68–71]
Aspergillus flavus Asp fl 13
Flavus oryzae Asp o 13
Penicillium chrysogenum Pen ch 13
Penicillium citrinum Pen c 13

House dust mites Dermatophagoides pteronyssinus Der p 1 [72–77]
Der p 3
Der p 9

Dermatophagoides farineae Der f 1
Der f 3
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[80, 81]. Increased atmospheric CO2 levels enhance photosyn-
thesis, which leads to prolonged pollination periods. As a result, 
allergic individuals are exposed to higher pollen concentrations 
for longer durations. Elevated CO2 concentrations also increase 
the allergenicity of ragweed pollen and could induce stronger 
inflammatory responses [82].

2.5. Cellular and molecular mechanisms of epithelial 
barrier impairment

Understanding the molecular mechanisms supporting barrier 
integrity under physiological circumstances is of great impor-
tance. The complex interplay between immunity and TJs is vital 
for immune homeostasis (Fig. 2). Most epithelial cell lineages 
express toll-like receptors, and they contribute to epithelial bar-
rier integrity and regulation of the immune responses. Mucus 
and antimicrobial peptides could avoid damage to epithelial 
cells and may strengthen the barrier [83]. The barrier integrity is 
mainly maintained by the regulation of epithelial TJs and their 
expression levels could be used as a biomarker to evaluate bar-
rier permeability [84]. Air pollutants are important environmen-
tal contributors to the epithelial barrier impairment [1]. Wildfire 
exposure upregulated CRP and IL-1β as inflammation markers 
[85]. Additionally, the inhalation of chorine-containing disinfec-
tants revealed a stronger immune response and increased fre-
quencies of Th2 cells and eosinophils, in an ovalbumin-induced 
mouse model [86].

The first step after the injury of epithelial cells is the release 
of alarmins that were secreted in response to pollutants. IL-33, 
IL-25, and TSLP secretion have been reported in exposure to epi-
thelial barrier–damaging agents such as PM, ozone, detergents, 
and dishwasher rinse aid. This step is called epithelitis (Fig. 2). 
The second step is the dysbiosis in the microbiome with coloniz-
ing opportunistic pathogens and decreased numbers and biodi-
versity of commensal bacteria. An immune response develops to 
opportunistic pathogens as observed for S. aureus [87, 88].

The third step is the development of an expulsion response 
(Fig. 3). IL-13, eosinophils, Th2 cells, and group 2 innate lym-
phoid cells are the main players of epithelial barrier leakiness. 
This is very similar to eosinophilic expulsion response of par-
asites such as the lung stage of the larvae of ascaris, schisto-
soma, and hookworms. Expulsion of every single one of the 
larvae prevents that an adult does not develop in the lungs and 
occludes the bronchial tree. In addition, skin parasites such as 
Sarcoptes scabiei (the itch mite) is expulsed by a type 2 immune 
response-related eosinophilic dermatitis that initiates an itch-
scratch axis. Opening of the epithelial barriers is an essential 
part of this type 2 immune response.

All of these mechanisms are followed up with a continuum of 
epigenetic regulation. The epithelial stem cells that are isolated 
from barrier leaky areas cannot make strong TJ barriers, which 
can be corrected by histone deacetylase inhibition [89]. In addi-
tion, histone acetylase activation has been reported in asthmatic 
bronchial epithelial cells [19]. Epigenetic regulation of epithelial 

Figure 2. Immune mechanisms underlying epithelial barrier disruption. The epithelial barrier–damaging exposome disrupts epithelial barrier integrity, which is 
followed by development of epithelitis and release of alarmins. TSLP, IL-25, and IL-33 are secreted from the epithelial cells, and immune responses are triggered. 
At the same time, because of disruption of the epithelial barrier, microbial translocation is initiated. Following the differentiation of Th2 cells, type 2 cytokines 
including IL-4, IL-5, IL-13, and GM-CSF are produced, and B cells isotype-switch to IgE. Eosinophils and mast cells bind IgE, become potentiated thanks to the 
rich cytokine milieu and start producing their mediators such as LTs, MBP, and histamine, LTC4, PGD2, and tryptase, respectively. Th9 cells produce IL-9, which 
further potentiates the activity of mast cells. ILC2s produce type 2 cytokines and contribute to the cytokine milieu. The cytokines and mediators collectively 
initiate the development of a chronic expulsion response including IL-4, IL-13, IFN-γ, TNF-α, and TRAIL, and leads to further epithelial damage. DC, dendritic 
cell; EOS, eosinophil; GM-CSF, granulocyte colony-stimulating factor; IL, interleukin; ILC, innate lymphoid cell; LTs, leukotrienes; MBP, major basic protein; MC, 
mast cell; PGD, prostaglandin; TRAIL, TNF-related apoptosis inducing ligand; TSLP, thymic stromal lymphopoietin.
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barriers is the reason for chronicity and continuous epithelial 
barrier defects (Fig. 4).

3. Diseases related to barrier dysfunction

3.1. Allergic diseases

Allergic diseases have established links with epithelial barrier 
dysfunction [1, 12, 13, 26, 89–92]. Epithelial barrier integrity is 
important in sensitization to nonprotease allergens. The complex 
interaction between the skin epithelial barrier, the exposome, 
and immune cells is vital for understanding the AD pathogenesis 
[26, 27, 93, 94]. AD pathogenesis is related to TSLP activation of 
epithelium, dendritic cells, and macrophages that mainly induces 
Th2 cell differentiation. TSLP impairs epidermal barrier integrity 
by induced formation of nuclear IL-33/phosphorylated STAT3 
complex in human keratinocytes [95]. RNA sequencing of tape-
stripped skin samples from patients with AD demonstrated type 
2 skewing and the downregulation of proteins related to barrier 
function, lipid biosynthesis, and metabolism [96]. Blocking IL-4 
and IL-13 could be effective therapeutics for AD [97]. Following 
IL-4Rα blockade, barrier molecules were upregulated [98].

In asthma, defective epithelial barrier eases the entry of envi-
ronmental toxins and aggravates exacerbations. Several studies 
demonstrate the role of exposure to environmental agents and 
the involvement of the immune system, and, therefore, the expo-
some paradigm can deliver a more ample risk profile in com-
parison with single predictors [1, 26, 27, 56, 82, 99]. Epithelial 
damage-initiated tissue environmental exposure leads to the 
production of IL-33; an alarmin of asthma [100]. IL-5 is an 
indispensable cytokine of allergic inflammation, whose receptor 

(IL-5R) expression was recently demonstrated on human air-
way epithelial cells [101]. IL-5 pathway-interfering biologicals 
could support barrier integrity by downregulation of eosino-
phils and their related epithelial barrier–damaging effects [102]. 
IL-13, a potent biomarker and key cytokine in the pathogene-
sis of asthma and CRS, alters claudin (CLDN) expression and 
induces TJ protein aggregation, leading to barrier leakiness [19, 
92, 103–105].

Specific gut microbial taxa were shown to be correlated 
with asthma development [106, 107]. A lower abundance of 
anti-inflammatory metabolite-producing bacteria together with 
increased abundance of specific fungi could induce a type 2 
immune response [106]. Certain pathogen-associated molecular 
patterns like lipopolysaccharide could protect against allergic 
diseases [108]. SCFA byproducts of bacterial fiber fermentation 
could weaken inflammatory responses. As an example, a mouse 
model revealed that vancomycin administration during preg-
nancy was related to the severity of asthma in offspring, which 
underlines the importance of SCFA in immune homeostasis 
[109]. On the contrary, respiratory syncytial virus infection can 
weaken the epithelial barrier integrity by alleviation of epithelial 
cell proliferation and wound-healing capacity [110, 111].

Functional disruption of the epithelial barrier was also found 
responsible in the pathogenesis of both allergic rhinitis (AR) and 
CRS [112]. Occludin, ZO-1, and several CLDNs were downreg-
ulated in patients with AR. Environmental and endogenous fac-
tors disrupt the integrity of TJs [113]. In addition, corticosteroid 
therapy upregulated expression of TJ proteins and improved 
barrier function in AR patients [114]. Inhibition of inflamma-
tory cytokines reestablishes TJ protein expression, which has the 
capacity as therapeutic approaches. Mucin-1 deficiency leads to 

Figure 3. The expulsion response against microbiome and opportunistic pathogens. Following epithelial damage, microbiome migrates inside and beneath the 
epithelium, which consequently triggers cell migration and stimulation of the immune system. Activated immune cells including macrophages, DCs, mast cells, 
T and B cells, and ILCs migrate to the area and initiate a type 2 expulsion response with Th2 cells, IgE-producing B cells, ILC2, IL-4, IL-5, and IL-13 against 
opportunistic pathogens, commensals, allergens, and pollutants. The opportunistic pathogens include Staphylococcus aureus, Pneumococcus, Haemophilus, 
and Moraxella. The inflammatory response together with translocated microbiome and microbial dysbiosis leads to defects in epithelium repair, and misclosure 
of the barrier, which instigate a vicious cycle of leaky barriers and chronic inflammatory responses as well as microbial dysbiosis. DC, dendritic cell; EOS, eosin-
ophil, IL, interleukin; ILC, innate lymphoid cell; M∅, macrophage; MC, mast cell.
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a decrease in CLDN-1 via RBFOX3 shortage, which acts to reg-
ulate the CLDN1 ubiquitin degradation. Nasal treatment with 
the inhibitor of ubiquitin-proteasome in mice limited the AR 
symptoms and restored nasal epithelial barrier function [115]. 
On the contrary, Pseudomonas aeruginosa exoproteins exerted 
damage to mucosal barriers in CRS and comorbid asthma 
patients [116]. The role of the local microbiome–host interac-
tions in the pathogenesis of CRS still requires more investigation 
to be covered.

Food allergy results from interaction of environmental fac-
tors, epithelium, and host-immune responses [117]. Abnormal 
immune system maturation is associated with intensive hygiene, 
increased antibiotic use, c-section births, and reduced outdoor 
encounters. As a consequence, dysbiosis in skin and gut is pro-
moted, all of which contribute to the development of atopy 
[118–120]. Food allergy could be initiated through the skin 
[118]. Viral infections, diet, vitamin supplementation, environ-
ment, and microbiome together with a damaged epithelial bar-
rier all take part in both the development and prevention of 
the food allergies [121, 122]. A strong gut mucosal immunity 
requires diversification of the gut microbiome in early child-
hood and could protect against food allergy [123]. Butyrate, a 
SCFA in breast milk, acts as an anti-inflammatory metabolite. 
It is shown to prevent asthma development in mouse models 
and its increase can mitigate the childhood food allergy devel-
opment risk [124–126]. In contrast, diminished levels of butyric 
acid-producing bacteria were reported in children with egg 
allergies [127]. Eosinophilic esophagitis (EoE) has a complicated 
pathology driven by genetic and intrinsic factors, environment, 
and antigen stimulation. Genes encoding the desmosome-asso-
ciated proteins and periplakin control cell motility and barrier 
integrity and could lead to epithelial cell degradation in EoE 
[128]. IL-13 induces TJ dysfunction in EoE, leading to loss of 
barrier function [129].

3.2. Autoimmune and metabolic diseases
Compromised barrier integrity was also observed in other 
inflammatory disorders (Table 2). Autoimmune and metabolic 
diseases have epithelial barrier damage, which is followed by 
microbial dysbiosis and consequently affects many organs. In 
recent years, the gastrointestinal track is facing many harmful 
agents such as nanoparticles, emulsifiers, enzymes, nanoplas-
tics, and many more, all of which account for intestinal bar-
rier defects and an increase in intestinal permeability. Following 
intestinal barrier disruption, commensal bacteria infiltrate into 
tissues and stimulate the immunity. The leaky gut-induced dys-
biosis triggers inflammation affecting the entire body and dam-
ages the intestinal mucosa [1, 26, 59–64].

TJ protein expressions such as occludin and CLDN in intes-
tinal epithelium were downregulated in rheumatoid arthritis 
patients, while zonulin family peptide levels were significantly 
increased [141]. These features are complemented by a leaky 
intestinal barrier, inflammation, and dysbiosis. Gut barrier leak-
iness associated with rheumatoid arthritis could facilitate the 
inflammatory cell migration from the gut to the joints [141].

In celiac disease, diminished levels of sealing CLDNs, ZO-1, 
and occludin displacement in the cell membrane, together with 
small intestine structural defects, were observed [142]. Patients 
with celiac disease have a compromised oral epithelial bar-
rier [143]. TJ integrity could be modulated by several micro-
bial products. Butyrate enhances the TJ barrier by the hypoxia 
response, can diminish TNF-α, and increase TJ-related proteins 
[144].

Many studies aimed to illuminate the underlying mechanism 
of IBD with a focus on epithelial barrier dysfunction. Decreased 
ZO-1 expression has been reported in biopsy samples of patients 
with IBD [145]. In colitis, metformin as a therapeutic agent 
improved intestinal mucosal epithelial damage by decreasing the 
apoptosis of intestinal epithelial cells and increasing TJ proteins 

Figure 4. The vicious circle of chronic epithelial barrier dysfunction. Disruption of epithelial barriers are induced by exposome and damaging agents, which is 
facilitated by genetic defects in barrier-related molecules. Chronic inflammation in the periepithelial area leads to chronic, defective epithelial barrier healing and 
aggravates the damage. Epigenetics play role in defective barrier healing capacity, which in turn leads to epithelial barrier damage, and is termed as epithelitis. 
Then, loss of biodiversity and microbial dysbiosis end up with translocation of microbiota to inter- and subepithelial areas. An expulsion response is initiated, 
leading to chronic inflammation in the periepithelial area.
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[146]. Investigation of quaking (QKI), an RNA-binding protein, 
in IBD and also in a mouse model of induced colitis revealed the 
binding of QKI to keap1 mRNA under physiological conditions, 
and deficiency of QKI was reported to result in diminished anti-
oxidative capacity, and together with increased reactive oxygen 
species production, this may end up with damage in intestinal 
epithelial barrier [147]. In relation to cytokine-induced changes 
in barrier permeability, the JAK-STAT signaling pathway has a 
vital role in IBD since JAK-STAT signaling pathways regulate 
the expression and localization of TJ proteins [148].

An important pathogenetic event in autoimmune diseases is the 
migration of inflammatory cells from barrier defective gut to dis-
tant organs [131–135]. Multiple sclerosis has been linked to air 
pollution in many studies [149]. In a recent study, it was reported 
in Stockholm that air pollution activates the immune cells in the 
lungs and that exacerbates multiple sclerosis, namely the brain 
migrating CCR6 expressing dendritic cells. In rheumatoid arthri-
tis, a link to gut barrier defect has been shown very clearly [141].

There is also a growing body of evidence proposing that epi-
thelial barrier dysfunction and permeability contribute to the 
pathogenesis of several chronic neurological and psychiatric dis-
orders including Parkinson disease, Alzheimer disease, chronic 
depression, stress-related psychiatric disorders, and autism spec-
trum disorders [1]. As an example, a transgenic mouse model of 
Parkinson disease evaluated the influence of α-synuclein accumu-
lation on the intestinal epithelial barrier in bowel inflammation. 
Increased caspase-1 activity and increased inflammatory markers 
were noted. These findings all together revealed increased intesti-
nal barrier permeability and dysbiosis [150].

3.3. COVID-19 and the epithelial barrier theory

Epithelial barriers are vital in defense against severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection, and 
solidification of this protection could be an important immuno-
modulatory strategy to prevent lung injury, systemic spread of 
the virus, and severe COVID-19 [151]. Epithelial cells express 
various SARS-CoV-2 receptors and related molecules, such as 
ACE2 [152]. SARS-CoV-2 infection compromises the barrier 
function of the nasal epithelium [153]. The barrier disruption 
in COVID-19 was attributed to the interaction between SARS-
CoV-2 protein E and human ZO-1 protein [154]. Allergic dis-
eases do not pose a predisposition to COVID-19 and could 
enhance the antiviral response, as lower number of severe cases 
were witnessed in atopic patients, with T lymphocytes less 
affected by SARS-CoV-2 [155, 156].

As a part of the epithelial barrier theory, air pollution, caus-
ing respiratory epithelial barrier dysfunction, may contrib-
ute to local chronic inflammation, microbiome dysbiosis, and 
impaired antiviral immune response against SARS-CoV-2, all 
of which contribute to the high incidence and excess mortality 
from COVID-19. This was observed at the beginning of the pan-
demic in Northern Italy. In addition, air pollution and epithelial 
barrier dysfunction contribute also to the higher prevalence of 
several comorbidities of COVID-19, such as diabetes, chronic 
obstructive pulmonary disease, and obesity, which can be iden-
tified as risk factors for severe diseases and mortality [157, 158].

4. Conclusions

Diseases related to the epithelial barrier theory have 5 common 
criteria: (1) they show increased prevalence in the last decades, 
which is not affected with the improved method of diagnosis; 
(2) they show epithelial barrier defect and epithelitis, which is 
characterized by the release of alarmins; (3) microbial dysbiosis 
with the loss of numbers and diversity of commensal bacteria 
and colonization of opportunistic pathogens is a common fea-
ture; (4) different and practically irrelevant diseases that fulfill 
these criteria appear in multimorbidities; and (5) they show 
increased inflammatory biomarkers in the circulation (circulat-
ing microinflammation).

Novel strategies for the prevention and treatment of aller-
gic, autoimmune, and metabolic diseases require a thorough 
understanding of the underlying processes involved in epithe-
lial barrier damage. Multiple immune regulatory mechanisms 
become dominant in leaky barrier areas to reduce the level of 
inflammation and avoid extensive tissue injury. Accordingly, the 
barrier hypothesis brings together several hypotheses that were 
proposed to explain the origins of allergic diseases. The biodi-
versity, hygiene, and old friends hypotheses are all associated 
with immune regulatory mechanisms, loss of biodiversity, and 
epithelial barrier leakiness.

The barrier hypothesis suggests a need for avoidance of the 
environmental cues and warrants further studies on safe levels 
of exposure to potentially harmful substances discussed here, 
such as inhaled and ingested detergents, ingestion of processed 
foods containing emulsifiers, exposure to PM, diesel exhaust, 
microplastics, and certain nanoparticles.

A comprehensive understanding of the barrier hypothesis is 
essential for the prevention, early intervention, and develop-
ment of novel therapeutic approaches. Indeed, many treatment 
plans target protecting or repairing the epithelial barrier, such 
as avoidance of barrier-disrupting substances, development of 
safer products, identification of leaky barrier biomarkers, inno-
vative treatments for reestablishing tissue-specific barrier ele-
ments, suppressing the colonization of opportunistic pathogens, 
dietary interventions, and microbiome-based therapies.
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