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For patients with disorders of consciousness (DOC), such as vegetative state (VS)

and minimally conscious state (MCS), detecting and assessing the residual cognitive

functions of the brain remain challenging. Emotion-related cognitive functions are difficult

to detect in patients with DOC using motor response-based clinical assessment scales

such as the Coma Recovery Scale-Revised (CRS-R) because DOC patients have motor

impairments and are unable to provide sufficient motor responses for emotion-related

communication. In this study, we proposed an EEG-based brain-computer interface (BCI)

system for emotion recognition in patients with DOC. Eight patients with DOC (5 VS and

3 MCS) and eight healthy controls participated in the BCI-based experiment. During the

experiment, two movie clips flashed (appearing and disappearing) eight times with a

random interstimulus interval between flashes to evoke P300 potentials. The subjects

were instructed to focus on the crying or laughing movie clip and to count the flashes

of the corresponding movie clip cued by instruction. The BCI system performed online

P300 detection to determine which movie clip the patients responsed to and presented

the result as feedback. Three of the eight patients and all eight healthy controls achieved

online accuracies based on P300 detection that were significantly greater than chance

level. P300 potentials were observed in the EEG signals from the three patients. These

results indicated the three patients had abilities of emotion recognition and command

following. Through spectral analysis, common spatial pattern (CSP) and differential

entropy (DE) features in the delta, theta, alpha, beta, and gamma frequency bands were

employed to classify the EEG signals during the crying and laughing movie clips. Two

patients and all eight healthy controls achieved offline accuracies significantly greater

than chance levels in the spectral analysis. Furthermore, stable topographic distribution

patterns of CSP and DE features were observed in both the healthy subjects and these

two patients. Our results suggest that cognitive experiments may be conducted using

BCI systems in patients with DOC despite the inability of such patients to provide

sufficient behavioral responses.
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1. INTRODUCTION

Patients with severe brain injury may suffer from disorders
of consciousness (DOC), including coma, vegetative state (VS)
and minimally conscious state (MCS). Keystones in diagnosing
these disorders are the acquisition of voluntary responses, such

as command following and functional communication, which
indicate emergence from VS andMCS, respectively (Noirhomme
et al., 2013). Currently, the clinical diagnosis of DOC patients is
generally based on behavioral scales, such as the Coma Recovery
Scale-Revised (CRS-R), which rely on overt motor responses
to external stimuli at the time of observation (Seel et al.,
2010). However, motor responses may be difficult to discern or
inconsistent in this patient group, and it is becoming increasingly
clear that relying on an overt behavioral response may result
in misdiagnosis of a patients level of consciousness (Cruse and
Owen, 2010; Coyle et al., 2017). In recent years, researchers
have employed electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) techniques (Owen et al.,
2002; Laureys et al., 2004; Di et al., 2007; Monti et al., 2010;
Cruse et al., 2012a; Li et al., 2015b; Wang et al., 2017) to
detect residual brain functions and provide motor-independent
evidence of consciousness in certain patients with DOC (see
Noirhomme et al., 2013; Kotchoubey, 2017; Lancioni et al., 2017
for reviews).

Emotion recognition is an important brain function
associated with many cognitive functions, including selective
attention, working memory, language abilities, and decision
making (Kohler et al., 2000; Molina et al., 2009). Several
neuroimaging and electrophysiological studies have proposed
probing the neural machanism of emotion recognition. For
instance, fMRI findings have suggested that the amygdala and
the orbitofrontal cortex are key areas in the brains emotion
recognition system. Two important mechanisms for emotion

recognition are constructing a simulation of the emotion
observed in the perceiver and modulating sensory cortices
through top-down influences (Adolphs, 2002). Many studies
have also reported that injury sites in neurological patients
could result in deficits in emotion recognition. For instance,
some patients who suffer from stroke have shown difficulties
in emotion recognition, that are more frequently observed
in individuals with right brain damage than in those with
left brain damage (Yuvaraj et al., 2013). Several studies have
also reported emotion recognition deficits in patients with
schizophrenia (Kohler et al., 2000; Taylor and Iii, 2012; Kayser
et al., 2014; Corcoran et al., 2015; Bilgi et al., 2017), and the
results have suggested that impairments in auditory, olfactory,
or visual function may lead to deficits in emotion recognition.
Furthermore, emotion recognition tasks have been included
in the Functional Emotional Assessment Scale (FEAS), the
Development Neuropsychological Assessment-II (NEPSY-
II) and the Montreal Cognitive Assessment (MoCA), which
are commonly used to evaluate cognitive impairments in
patients with schizophrenia, attention deficit hyperactivity
disorder (ADHD), and Parkinsons disease (Solomon et al.,
2007; Marneweck and Hammond, 2014; Pitzianti et al., 2017).
However, emotion recognition tasks do not include in the clinical

behavioral scales such as the CRS-R for patients with DOC. Thus
far, whether patients with DOC can recognize emotion remains
unknown. One possible reason is that these DOC patients who
are severely lack of motor ability cannot provide sufficient
motor responses for emotion recognition-based behavioral
experiments. By exploring emotion recognition in patients with
DOC, we may be able to more thoroughly evaluate residual
cognitive functions and determine the extent to which the
multiple brain functions associated with emotion recognition are
impaired after severe brain injury.

Brain-computer interfaces (BCIs) allow non-muscular
communication and control by directly translating brain
activities into computer control signals, thereby enabling users
with motor disabilities to convey their intent to the external
world (McFarland and Wolpaw, 2004). Therefore, BCIs may
allow the exploration of residual cognition functions, such as
emotion recognition, in patients with DOC. Recently, several
BCI paradigms have been proposed for patients with DOC
(Coyle et al., 2012; Lulé et al., 2012; Müller-Putz et al., 2012,
2013; Gibson et al., 2016; Wang et al., 2017). Lulé et al. (2012)
used a 4-choice auditory P300-based BCI system to detect
consciousness in 13 MCS, 3 VS and 2 locked-in syndrome (LIS)
patients. Among the 18 DOC patients, one LIS patient presented
significant accuracy 60%. Coyle and his colleagues (Coyle et al.,
2015) developed a motor imagery-based BCI with auditory or
visual feedback to detect consciousness in 4 MCS patients. The
results indicated that all four patients had the capacity to use
a simple BCI system with a peak mean classification accuracy
above 70%. In our previous study (Pan et al., 2014), a visual
hybrid P300 and steady-state visual evoked potentials (SSVEPs)
BCI was developed to detect consciousness in eight patients with
DOC (4 VS, 3 MCS, and 1 LIS), and three of them (1 VS, 1 MCS,
and 1 LIS) achieved BCI accuracies significantly higher than
the chance level. However, BCI-based consciousness detection
systems for use by patients with DOC remain in their infancy.
The performance of BCIs designed for DOC patients is generally
poor due to their limited cognitive levels. Furthermore, because
patients with DOC have suffered from severe brain injuries,
large differences in EEG signals exist between these patients and
healthy individuals. Thus, researchers strive to develop novel
BCIs to improve the performance of consciousness detection.

Recent studies have validated that the accuracy and speed
of BCIs can be improved by the emotion elicitation techniques
and emotion-related processing (see Molina et al., 2009 for
review). For instance, it has been shown that stimuli containing
an affective component elicit latency and amplitude differences
in the characteristic peaks of event-related potentials (ERPs),
which can enhance the electrophysiological sources of control
used in BCI systems (Kayser et al., 2000). To date, mirror neuron
system (MNS)-based emotion elicitation techniques have been
widely used. According to MNS mechanism, simple observation
of emotional facial expressions done by another individuals
might evoked the same brain activity as if they experienced
the corresponding emotion themselves (Petrantonakis and
Hadjileontiadis, 2011). Furthermore, many studies have focused
on the EEG-based emotion recognition in healthy individuals.
The power spectra of EEGs have also been assessed in different
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frequency bands to examine their relationships with emotional
states (Wang et al., 2014). Previous studies have reported several
spectral power changes in various brain regions that have
been associated with emotional responses; these changes have
included theta (4–7 Hz) power changes at the right parietal
lobe (Aftanas et al., 2004), alpha (8–13 Hz) power asymmetry
at anterior areas of the brain (Allen et al., 2004), beta (14–30
Hz) power asymmetry at the parietal region (Schutter et al.,
2001), and gamma (31–50 Hz) power changes at the right
parietal regions (Li and Lu, 2009). Lin et al. reported an
offline accuracy of 82.29% by using spectral power asymmetries
across multiple frequency bands as features and a support
vector machine (SVM) classifier to characterize EEG signals
into four emotional states during music listening (Lin et al.,
2010). Lv and colleagues investigated stable EEG patterns for
emotion recognition using a graph regularized extreme learning
machine (GELM) (Zheng et al., 2016). They found that the
GELM with differential entropy (DE) features obtained average
classification accuracies of 69.67% for the DEAP dataset and
91.07% for their SEED dataset based on 5-fold cross-validations.
In our previous study (Pan et al., 2016), we employed facial
expression pictures to develop an EEG-based BCI system
for emotion recognition of happiness and sadness, and we
achieved an average online accuracy of 87.5% using an SVM
with common spatial pattern (CSP) features. To the best of
our knowledge, emotion recognition, which is expected to be
impaired to a certain degree, has not been studied in patients with
DOC.

Considering the abovementioned factors, we proposed an
EEG-based BCI system for the detection of consciousness
in patients with DOC. Eight patients with DOC (3 VS and
5 MCS patients) and eight healthy controls participated in
the BCI-based experiment. During the experiment, two movie
clips flashed (appearing and disappearing) eight times with
a random interstimulus interval to evoke P300 potentials.
As the movie clip flashed, the corresponding spoken sound
was simultaneously played. The subjects were instructed to
focus on the crying or laughing movie clip and to count the
flashes of the corresponding movie clip cued by the delivered
instruction. The BCI system performed online P300 detection
to determine which movie clip the patients attended to and
presented the result as feedback. Three of the eight patients
achieved online accuracies based on P300 detection that were
significantly greater than chance level. Emotion recognition and
the ability to follow commands were demonstrated in these
three patients. Through the spectral analysis, CSP and DE
features in the delta, theta, alpha, beta, and gamma frequency
bands were employed to classify the EEG signals during the
crying and laughing movie clips. Two patients and all eight
healthy controls achieved offline accuracies significantly greater
than chance level in the offline spectral analysis. Additionally,
stable topographic distribution patterns of CSP and DE features
were observed in both the healthy subjects and these two
patients. Our results suggest that cognitive experiments may
be conducted using BCI systems in patients with DOC despite
the inability of such patients to provide sufficient behavioral
responses.

2. METHODS

2.1. Subjects
Eight severely brain-damaged patients (four males; three with VS
and five with MCS; mean age ± SD, 33.3 ± 14.8 years old; see
Table 1) from a local hospital participated in this experiment.
All of the patients included in this study were recruited
according to predefined inclusion criteria. Inclusion criteria were
as follows: (a) no centrally acting drugs; (b) no sedation within
the prior 48 h; (c) periods of eye opening; (d) no history of
impaired visual or auditory acuity before brain injury; and (e)
diagnosis of VS or MCS after a traumatic brain injury (TBI),
anoxic brain injury, or cerebrovascular accident. This study was
approved by the Ethical Committee of the General Hospital of
Guangzhou Military Command of the Peoples Liberation Army
inGuangzhou, and complies with the Code of Ethics of theWorld
Medical Association (Declaration of Helsinki). These patients
or their legal surrogates provided written informed consent for
participation in the BCI experiments and publication of their
individual details in this manuscript.

The diagnoses of VS or MCS were based on the CRS-R, which
contains 23 items organized in 6 subscales addressing auditory,
visual, motor, oromotor, communication, and arousal processes.
Scoring on each subscale is based on the specific operational
criteria. The eight patients attended two CRS-R assessments: one
during the week before the experiment and another at 1 month
after the experiment. The CRS-R scores for each patient are
presented in Table 1. Additionally, eight healthy subjects (HC1,
HC2, HC3, HC4, HC5, HC6, HC7, and HC8) (seven males; mean
age± SD, 29.2± 3.3 years old) participated in the experiment as
a control group.

2.2. Stimuli and Graphic User Interface
(GUI)
Movie clips of emotional facial expression were used as stimuli.
Eighty movie clips including video and audio recordings of 1,400
ms in duration, which were used in our previous study (Li
et al., 2015a) , were selected as stimuli. These audiovisual stimuli
consisted of two sets of emotional movie clips: 40 laughing movie
clips and 40 crying movie clips, corresponding to happy and sad
emotional states, respectively. All the movie clips were edited
using Premiere Pro software, version CS6 (Adobe, San Jose, CA,
USA) to ensure identical overall luminance levels on a gray scale.
In addition, they were edited using Adobe Audition software,
version CS6 (Adobe, San Jose, CA, USA) to ensure that the
audio recordings had identical power levels. Note that after the
experiments, each healthy subject was asked to rate the emotional
content of each movie clip using the self-assessment manikin
(SAM, Bradley and Lang, 1994). The SAM evaluation rating of
the valence-arousal scales were (7.09 ± 0.91, 5.21 ± 1.67) and
(2.41 ± 0.81, 4.27 ± 1.21) for laughing and crying movie clips,
respectively.

The GUI used in this study is illustrated in Figure 1. Two
movie clips, a crying movie clip and a laughing movie clip,
were pseudorandomly chosen from the two sets of movie clips
and were displayed on the left and right sides of the GUI. The
size (area) of each movie clip was 9 cm × 7.2 cm, and the
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TABLE 1 | Summary of patients’ clinical status.

Patient Age Gender Clinical diagnosis Etiology Time since injury (months) CRS-R score (subscores)

Before experiment After 1 month

P1 33 F VS NTBI 2 7 (1-1-2-1-0-2) 7 (1-1-2-1-0-2)

P2 49 F MCS NTBI 6 9 (1-3-2-1-0-2) 11 (3-3-2-1-0-2)

P3 26 M VS TBI 2 5 (1-1-1-0-0-2) 13 (3-3-3-1-1-2)

P4 23 M MCS TBI 3 10 (2-3-2-1-0-2) 10 (2-3-2-1-0-2)

P5 37 M MCS TBI 2 9 (1-3-2-1-0-2) 9 (1-3-2-1-0-2)

P6 18 F MCS TBI 2 8 (1-1-3-1-0-2) 8 (1-1-3-1-0-2)

P7 60 F VS TBI 4 7 (1-1-2-1-0-2) 7 (1-1-2-1-0-2)

P8 20 M MCS TBI 2 8 (1-1-3-1-0-2) 8 (1-1-3-1-0-2)

CRS-R, coma recovery scale-revised; NTBI, non-traumatic brain injury; and TBI, traumatic brain injury; CRS-R subscales: Auditory, visual, motor, oromotor, communication, and arousal

functions.

FIGURE 1 | GUI of the BCI, in which a crying movie clip and a laughing movie

clip are arranged on the left and right sides, respectively. The two movie clips

flashed (appearing and disappearing) on the black background with a random

inter-stimulus interval.

horizontal distance between the two movie clips in the GUI was
6 cm. The ratio of the movie clip size to the GUI size was set
at 0.12:1. Two loudspeakers were placed behind the monitor
to present the auditory stimuli. The two videos clips flashed
(appearing and disappearing), with each clip appearing for 1,400
ms. When the video clip appeared, the corresponding audio clip
was simultaneously played from the speaker. Specifically, one
movie clip (e.g., the crying movie clip in Figure 1) was flashed
eight times, and then the other movie clip (e.g., the laughing
movie clip in Figure 1) was flashed eight times. The interval
between two consecutive movie clips was randomly chosen from
among 500, 600, 700, 800, 900, 1,000, 1,100, and 1,200 ms. The
patients were instructed to focus on one movie clip (e.g., the
crying or laughing movie clip) and to count the flashes of the
corresponding movie clip.

2.3. Data Acquisition
A NuAmps amplifier (Neuroscan Compumedics, USA) and an
EEG cap (LT 37) were used to record 30-electrode scalp EEG
signals for data acquisition. The EEG signals were amplified,
sampled at 250 Hz, bandpass filtered between 0.1 and 60 Hz,
and referenced to the right mastoid. The impedances of all
electrodes were kept below 5k�. In order to remove ocular
movement artifacts from the EEG signal, an electrooculogram
(EOG) was captured from two pairs of electrodes (“HEOR” and
“HEOL”;“VEOU” and “VEOL”).

2.4. Experimental Procedures
During the experiment, patients were seated on a comfortable
wheelchair and repeatedly instructed to avoid blinking or moving
their body. Before the experiment, preliminary screening was
conducted to explain the procedure to patients.

In this experiment, two experimental runs were conducted:
one for calibration and the other for online evaluation. Each
subject first performed a calibration run of 20 trials with the
GUI in Figure 1 to collect training data. In this study, we
collected a small training dataset for each subject, because the
BCI system was designed mainly for patients with DOC who
are easily fatigued during experiments. We trained the initial
SVM classifier using the EEG data from the calibration run.
Each subject subsequently performed an evaluation run of 50
trials.

The online evaluation run contained five blocks, each of
which was composed of 10 trials and was conducted on separate
days because the patients were easily fatigued. The experimental
procedure of one trial in this experiment is illustrated as follows.
Two pairs of audiovisual stimuli were first constructed, for which
one pair of audiovisual stimuli corresponded to a laughing movie
clip and the other pair corresponded to a cryingmovie clip. These
audiovisual stimuli were pseudorandomly chosen from two sets
of emotional movie clips, which consisted of 40 laughing movie
clips and 40 crying movie clips corresponding to happy and
sad emotional states, respectively. Each trial began by presenting
audiovisual instructions, which lasted 10 s. The subject was
instructed to “Pay attention to the happy/sad movie clips and to
count the flashes of the happy/sad movie clips.” Note that the
two emotional states appeared in a pseudo-random order, with
half the trials containing the happy movie clip and the other
half containing the sad movie clip. Following presentation of
the instructions, the two pairs of audiovisual stimuli, constructed
as described above, were presented. The two video clips flashed
(appearing and disappearing), with each appearing for 1,400 ms.
When the video clip appeared, the corresponding audio clip was
simultaneously played from the speakers. The interval between
two consecutive audiovisual stimuli was randomly chosen from
among 500, 600, 700, 800, 900, 1,000, 1,100, and 1,200 ms. After
the 36 s audiovisual presentation, the BCI algorithm determined
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the target movie clip. If the detection result was correct, positive
feedback consisting of the laughing or crying facial expression
in the given trial and auditory applause was delivered for 4 s;
otherwise, no feedback was given. Before the next trial beginning,
there was a break of at least 10 s depending on the patient’s level
of fatigue. If the patient showed continuous body movements
(e.g., coughing) or decreased arousal (i.e., closed eyes for a
period of 5 s) in a trial, the trial was rejected to reduce artifacts,
and the next trial began after the patient re-awakened and re-
stabilized.

2.5. Data Processing and Algorithm
The P300 detection algorithms and spectral analysis methods
were designed separately. The former was used to detect whether
the subject responsed to the target movie clip in real-time,
and the latter was used to detect whether the EEG signals
during the crying and laughing movie clips could be classified
using emotion-related CSP and DE features. The algorithms and
analysis methods used in this study are described in the following
sections.

2.5.1. Online P300 Detection
First, the EEG signals were filtered between 0.1 and 10 Hz. Then,
we extracted a segment of the EEG signal from each channel
(0–600 ms from the start of the movie clip) for each flash of a
movie clip. This segment was down-sampled by a factor of 5 to
obtain a data vector (with a length of 30) from each channel.
Next, we concatenated the vectors from all channels to obtain
a new data vector (with a length of 900) corresponding to the
movie clip flashes. In order to improve signal-to-noise ratio,
we constructed a feature vector corresponding to each movie
clip by averaging the data vectors across the eight flashes in a
trial. Finally, we applied the SVM classifier to the two feature
vectors corresponding to the two types of movie clips, and two
SVM scores were obtained for each trial. Specifically, the SVM
classifier was first trained using the training data, in which
the feature vectors corresponding to the target and non-target
movie clips were labeled +1 and -1, respectively. For each test
trial, the trained SVM was applied to the two feature vectors
corresponding to the two movie clips, and the predicted target
movie clip was the movie clip corresponding to the higher
score.

2.5.2. Offline Spectral Analysis
In the offline analysis, we performed spectral analysis by
stimulating the online training and testing. The EEG data were
first bandpass filtered over the five frequency bands: delta (1–
3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and
gamma (31–50 Hz). After bandpass filtering, we extracted two
segments (one for the laughing movie clip and one for the crying
movie clip) of EEG data over an 18 s period (4,500 data points)
for each channel and each frequency band. For each segment, we
extracted the CSP feature and the DE feature, as described below.

First, a CSP spatial filter, W, was learned in a subject-
specific manner to enhance the separability between the two
emotion classes (i.e., happiness and sadness) in the training
data. Specifically, a training dataset was collected for each

subject during a calibration run, in which 20 trials of the
instructed emotion recognition task were performed. The spatial
filter matrix W was constructed by the well-known joint
diagonalization method (Blanchard and Blankertz, 2004). For
each trial, the CSP features were then extracted using the
following filter:

fm = log10(diag(WEETW
T
))

where fm denotes the CSP feature vector, W is a submatrix
composed of the first and last three rows of W , and E is
an EEG data matrix corresponding to one trial. In Eq. (1),

diag(WEETW
T
) is a vector composed of all entries on the

diagonal line of thematrixWEETW
T
, and the operator log10(.) is

used to calculate the logarithm of each entry of the vector. In this
study, we selected the top and bottom three components from
W that best separated the two emotion classes. Furthermore,
their logarithm variances were calculated, and a 6-D CSP feature
vector was constructed for each frequency band.

We then used the discrete Fourier transform to calculate the
power spectral density for each segment. The DE was defined as
the logarithmic power spectral density for a fixed-length EEG
sequence. For each frequency band, we constructed the DE
feature vector by concatenating the differential entropies from all
of the channels.

Two feature vectors of a trial corresponding to the two
segments (one for the laughing movie clip and one for the crying
movie clip) were then obtained by concatenating all of the CSP
and DE feature vectors of all frequency bands. An SVM classifier
was first trained using the training data, in which the feature
vectors corresponding to the laughing and crying movie clips
were labeled +1 and -1, respectively. For a test EEG trial, two
feature vectors were first obtained, as described above, and then
were fed into the SVM classifier to obtain two SVM scores.
If both the SVM score corresponding to the laughing movie
clip and the sum of the two SVM scores were positive, the
predicted emotional state is happiness. If both the SVM score
corresponding to the crying movie clip and the sum of the
two SVM scores are negative, the predicted emotional state was
sadness.

2.5.3. Performance Measures
For each subject, the ratio of trials with correct responses (hits)
to the total number of trials was calculated as the accuracy rate.
To obtain the significance level of the accuracy, the χ2 statistical
test was performed. Specifically, the χ2 statistic was calculated as
follows (Kübler and Birbaumer, 2008; Pan et al., 2014):

χ2
=

k
∑

i = 1

(

f oi − f ei
)2

f ei
(1)

where f oi and f ei were the observed and expected frequencies of
the ith class (i = 1, 2, ..., k) (degree of freedom: 1). In this study,
the observations fell into two classes (hit and miss). Therefore,
the chance level that the target was selected was 0.5, whereas the
chance level for selecting a non-target was 0.5. Considering that
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50 trials of the BCI evaluation were conducted for each subject,
the expected f o1 and f o2 were 25 and 25, respectively. Specifically,
f o1 and f o2 was the number of times that the target (i=1) or
a non-target (i=2) was determined in the BCI evaluation. We
obtained a value of 3.84 for χ2 test with a significance level of
p = 0.05, corresponding to 32 hits in 50 trials or an accuracy
of 64%.

3. RESULTS

Table 2 summarizes the accuracy rates of the P300 detection
(online) and the spectral analysis (offline) for the experiment.
For the P300 detection, three of the eight patients (patients
P2, P3, and P6) achieved the significant accuracies (66–78%),
corresponding to a significance level of 0.05. For patients P1,
P4, P5, P7, and P8, the accuracies of the P300 detection were
not significant. For spectral analysis, two of the eight patients
(patients P2 and P3) achieved accuracies ranging from 66 to 68%,
whereas patients P1, P4, P5, P6, P7, and P8 achieved accuracies
lower than 64% (ranging from 48 to 60%). Furthermore, all eight
healthy subjects (HC1, HC2, HC3, HC4, HC5, HC6, HC7, and
HC8) achieved the significant accuracies (ranging from 78 to
100%) for both P300 detection and spectral analysis.

For the three patients (P2, P3, and P6) and two healthy
controls (HC1 and HC2) whose accuracies of the P300 detection
were significant, we calculated ERP waveforms from 0 to 800
ms after stimulus onset by averaging the EEG channel signals
across 50 trials in the online experiment. Figure 2 shows the
ERP waveforms of the “Fz,” “Cz,” and “Pz” electrodes for the

TABLE 2 | Accuracy rates of the P300 detection (online) and the spectral analysis

(offline) for the subjects.

Subjects Online accuracy

(P300 detection)

p-value Offline accuracy

(spectral

analysis)

p-value

P1 52 0.778 52 0.778

P2 78 <0.001 68 0.011

P3 68 0.011 66 0.047

P4 54 0.572 50 1.000

P5 56 0.396 48 0.778

P6 66 0.047 60 0.157

P7 50 1.000 54 0.572

P8 58 0.258 58 0.258

HC1 100 <0.001 90 <0.001

HC2 100 <0.001 76 <0.001

HC3 96 <0.001 90 <0.001

HC4 100 <0.001 76 <0.001

HC5 94 <0.001 70 0.005

HC6 78 <0.001 68 0.011

HC7 96 <0.001 76 <0.001

HC8 98 <0.001 82 <0.001

The accuracies significantly higher than the chance level 50% (accuracy≥64% or p≤0.05)

are highlighted in bold.

three patients and two healthy controls. A highly similar P300
component elicited in all of the target curves.

To illustrate the influence of happy and sad movie clips
on different brain regions, we projected the DE and CSP
features onto the scalp to obtain the brain patterns of the
five selected frequency bands across all trials with happy or
sad movie clips. Here, brain patterns are considered neural
activities in critical brain areas and frequency bands that share
commonalities across trials during the happy and sad movie
clips. Specifically, the DE features of each trial were calculated
as the logarithmic power spectral density using the 18-s EEG
signals of the target movie clip from each electrode. Figure 3
shows the topographical maps of the average DE features of
the happy and sad emotions for the two healthy controls (HC1
and HC2) and the two patients (P2 and P3) who achieved
accuracies higher than the significance level of 64% in spectral
analysis. As shown in Figure 3, patients P2 and P3 had neural
patterns that were similar to those of healthy controls HC1 and
HC2: (1) In the delta band, the prefrontal area exhibited greater
activation for sad emotions than happy emotions; (2) in the theta
and alpha bands, the parietal area exhibited enhanced energy
for sad emotions compared with happy emotions; and (3) in
the beta and gamma bands, the lateral temporal and occipital
areas exhibited greater activation for happy emotions than sad
emotions.

Furthermore, the CSP filters were trained using the 50 trials
obtained in the online experiment, which were used to project the
original signals represented the weights of the original signals for
achieving optimally discriminative projection (Yu et al., 2015).
For two healthy controls (HC1 and HC2) and two patients
(P2 and P3), we plotted the two spatial filters (the first and
the last rows of W) and the corresponding spatial patterns
(the first and the last rows of A, where A = (W−1)T in
Figure 4 as scalp maps for two frequency bands (alpha and
gamma bands). The spatial filters/patterns are scaled by their
maximum absolute values such that the values at each electrode
position are normalized to the range of [-1,1]. Temporal and
occipital asymmetries in the alpha and gamma bands can be
observed from the CSP spatial patterns shown in Figure 4

for happy and sad emotion recognition. Specifically, the first
filter/pattern was associated with more power over the right
sensory cortical areas, because it was obtained by maximizing
the variance of the first class (i.e., happy emotion). Accordingly,
the last filter/pattern, corresponding to the second class (sad
emotion), was associated with greater activation of the left
sensory cortical areas. Such associations were clearly observed in
both the healthy controls (HC1 and HC2) and the two patients
(P2 and P3).

Among the three VS patients, one patient (P3) progressed
to MCS 1 month after the experiment. More interestingly, the
two patients (patients P2 and P3) with significant accuracies
in both online P300 detection and offline spectral analysis
improved their consciousness levels to a large degree 1 month
after the experiment, while the other patients remained clinically
unchanged. Specifically, their CRS-R scores improved from 9
and 5 (before the experiment) to 11 and 13 (1 month after the
experiment), respectively. The CRS-R scores for each patient
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FIGURE 2 | Grand-average P300 ERP waveforms from the “Fz” (left), “Cz” (middle), and “Pz” (right) electrodes in the online experiment for three patients (P2, P3, and

P6) and two healthy controls (HC1 and HC2). The solid red curves containing the P300 component correspond to the target movie clip, while the dashed blue curves

without the P300 component correspond to the non-target movie clip.

before and 1 month after the experiment were shown in
Table 1.

4. DISCUSSION

The detection of consciousness as well as residual cognitive
function in patients with DOC is highly challenging but crucial
for providing accurate diagnoses, selecting the optimal nursing
strategies and ensuring overall quality of life. In this study, we
used an EEG-based BCI to detect consciousness in patients with
DOC. In this novel BCI paradigm, two movie chips, a crying
movie clip and a laughing movie clip, were displayed on the left
and right sides of the GUI, respectively, and flashed (appearing
and disappearing) with a random interstimulus interval to
evoke P300 potentials. When the movie clip was displayed, the
corresponding audio clip was simultaneously played. Through
the online P300 detection, the BCI system determined which
movie clip the subjects attended to (i.e., responding to the

instructions). Eight patients and eight healthy controls were
involved in the experiment using our BCI system. They were
instructed to focus on the crying or laughing movie clip and
to count the flashes of the corresponding movie clip indicated
by the instruction. Three of these patients (patients P2, P3, and
P6) achieved online accuracies of greater than 64% (66–78%),
which were considered significant. Furthermore, P300 responses
(Figure 2) could be observed in these three patients. These three
patients thus demonstrated the abilities to recognize emotion and
follow commands.

It should be stressed that to perform the experimental
tasks, many cognitive functions are required, such as language
comprehension (i.e., understanding the task instructions),
emotion processing (i.e., recognizing the emotional stimuli),
and object selection (i.e., attending to the target movie clip).
The absence of any of these cognitive functions could lead to
failure of performing the task. Furthermore, negative results
could not be used as evidence for a lack of consciousness, because
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FIGURE 3 | Topographical maps of the average DE features across trials with happy or sad emotional states in the five bands (delta, theta, alpha, beta, and gamma

bands) for two healthy controls (HC1 and HC2) and two patients (P2 and P3). Note that the two healthy controls HC1 and HC2 and the two patients P2 and P3

achieved accuracies greater than 64% in offline spectral analysis. (A) Healthy subject HC1, (B) Healthy subject HC2, (C) Patient P2, (D) Patient P3.

false-negative findings in BCI studies are possible, even in healthy
subjects. However, our positive results did indicate that such
cognitive functions and residual consciousness existed in these
patients.

Through the offline analysis, CSP and DE features in the
delta, theta, alpha, beta, and gamma frequency bands were
employed to classify the EEG signals recorded while the subjects
watched the crying and laughing movie clips, corresponding to
sad and happy emotions, respectively. Two patients (patients
P2 and P3) achieved offline accuracies of the spectral analysis
(66–68%) that were significantly greater than chance level.
Furthermore, we projected the DE and CSP features of the
happy and sad emotions onto the scalp in different frequency
bands for two healthy controls (HC1 and HC2) and these
two patients. To further illustrate the influence of happy and
sad movie clips on different brain regions, we projected the
DE and CSP features onto the scalp to obtain the brain
patterns of the five selected frequency bands in Figures 3, 4.
For or the sad emotion, the neural patterns had significantly
higher delta responses at prefrontal sites and significantly higher
theta and alpha responses at parietal sites. For the happy
emotion, the neural patterns had stronger beta and gamma
responses at the lateral temporal and occipital sites. Our results
are partially consistent with the findings of previous works
(Mühi et al., 2014; Zheng et al., 2016). For instance, studies
(Onton and Makeig, 2009; Hadjidimitriou and Hadjileontiadis,
2012) have found that during positive emotion processing (e.g.,
emotion recognition of happy facial expressions), the energy of
beta and gamma responses is enhanced. Increased delta band

power was reported over parietal regions for negative stimuli
compared with positive stimuli (Zheng et al., 2016). In addition,
the experimental results in Figure 4 show that some of the
asymmetric spatial patterns extracted by CSP were consistent
with recent neurophysiological findings. For example, the event-
related desynchronization in the alpha band (decreased alpha
power) in response to stimulation is believed to represent
increased sensory processing and, hence, has been associated with
activation of task-relevant sensory cortical regions (Klimesch
et al., 2007). Increases of gamma band activity have been
observed over temporal regions in response to positive emotion,
compared to negative emotion (Onton and Makeig, 2009).
Taken together, stable brain patterns of the DE and CSP
features associated with happy and sad emotions were observed
in the two patients and the two healthy controls. Whether
the happy and sad emotional responses were evoked using
our BCI paradigm needs to be further confirmed in future
studies.

For patients with brain damage, assessing emotion recognition
ability is of substantial importance. First, emotion recognition
is an important aspect of the cognition function of the human
brain. Studies of the neural basis of emotion recognition
(Adolphs, 2002) have suggested that somatosensory-related
cortices in the right hemisphere play a critical role in
emotion recognition. Areas of the amygdala, orbitofrontal and
insular cortices are activated when subjects are engaged in
emotion recognition (Adolphs, 2002). Second, basic emotional
ability is relevant to the level of consciousness. Emotion
and consciousness emerge as the result of neuronal activity
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FIGURE 4 | Scalp maps of two spatial filters (the first and the last rows of W) and the corresponding spatial patterns (the first and the last rows of A, where

A = (W−1)T ) for each of the alpha and gamma bands and for two healthy controls (HC1 and HC2) and two patients (P2 and P3). These CSP filters were trained using

50 trials gathered from the online evaluation. (A) Healthy subject HC1, (B) Healthy subject HC2, (C) Patient P2, (D) Patient P3.

in the brain (Damasio, 1999, 2003). Some studies have
suggested that emotion is a possible facet of consciousness
(Balconi and Lucchiari, 2007; Tsuchiya and Adolphs, 2007).
Third, assessing emotion recognition ability may help us
better understand other cognitive functions (e.g., language
comprehension, working memory, and executive function) in
patients with DOC. Several behavioral scales, including the
FEAS, NEPSY-II, and MoCA, contain emotion recognition-
based indices that are commonly used to evaluate the mental
states of patients with schizophrenia, ADHD and Parkinson‘s
diseases (Solomon et al., 2007; Marneweck and Hammond,
2014; Pitzianti et al., 2017). For patients with DOC, clinical
assessment scales such as the CRS-R do not contain emotion
recognition tasks. BCIs can provide both experimenters and
patients with real-time feedback independent ofmotor responses,
making detection and assessment of the emotion recognition
abilities of patients with DOC possible, as demonstrated in this
study. Using an EEG-based BCI, emotion recognition-related
cognitive functions were successfully detected in 3 of 8 patients
with DOC. Our results showed that the emotion recognition
systems (including somatosensory related cortices in the right
hemisphere) were at least partially effective for these three
patients.

As previously discussed, misdiagnoses can occur based on
behavioral observation scales such as the CRS-R. Therefore,
BCIs can be used as a supportive bedside tool to assess patients
residual cognitive ability. For instance, our experiment results

showed that one VS patient (P3) was able to perform the
BCI experimental task with an accuracy significantly higher
than chance level. This result is consistent with previous
fMRI (Monti et al., 2010) and EEG (Cruse et al., 2012b)
data showing that some VS patients who are diagnosed
based on the behavioral ceiteria might have residual cognitive
function and even some level of consciousness. In fact,
according to follow-up behavioral CRS-R assessments, this VS
patient progressed to MCS 1 month after the experiment,
thus supporting our BCI assessment result for this VS
patient.

Notably, in our experiment, several patients achieved online
accuracies (approximately 70%) that were significantly higher
than chance level but much lower than the performance
of the healthy subjects (which was generally higher than
90%). This discrepancy may be explained by two key factors.
First, because the patients became easily fatigued, we could
not collect sufficient training data before each online test
block. Therefore, the performance of the classifier may have
been affected by the insufficient amount of training data.
Second, the patients with DOC had much lower levels of
consciousness than the healthy subjects. Further studies are
required to determine how to improve BCI accuracies for
patients with DOC. A more elaborate preprocessing method
could be employed to reduce the artifacts of the EEG signals,
and the feature selection algorithms could be designed to
adapt to these patients. Furthermore, our present offline
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results suggest that EEG signals recorded while the subjects
watched the crying and laughing movie clips could be classified
using emotion-related features. In future work, we may
further integrate the P300 and emotion-related features to
improve the ability to identify consciousness in patients with
DOC.

5. CONCLUSION

In summary, BCIs can help patients with DOC who are very lack
of motor responses to show emotion recognition. BCIs were thus
verificated as an effective tool for the detection of related abilities.
Given our focus on consciousness detection, we did not consider
neutral stimuli in this study. Whether patients with DOC are able
to differentiate their happy and sad emotions fromneutral stimuli
still remains unknown. This needs to be further confirmed in a
future study.
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