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ABSTRACT: Molecular mechanics force fields, which are
commonly used in biomolecular modeling and computer-aided
drug design, typically treat nonbonded interactions using a
limited library of empirical parameters that are developed for
small molecules. This approach does not account for
polarization in larger molecules or proteins, and the para-
metrization process is labor-intensive. Using linear-scaling
density functional theory and atoms-in-molecule electron
density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical
calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce
the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in
charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The
feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and
the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

1. INTRODUCTION

Molecular mechanics (MM) force fields for biomolecular
simulations are undergoing increased scrutiny as access to
improved algorithms and hardware allow for validation of, for
example, protein dynamics,1 protein−ligand binding free
energies,2 and liquid properties3 on an unprecedented scale.
Overall, force fields describe biomolecular interactions well.
Their success likely stems from a functional form that is based
on physical laws, and very meticulous parametrization by many
research groups on increasingly large databases of ab initio and
experimental data.4−7 Force fields that model the nonbonded
component of the total energy by Coulomb interactions
between fixed atom-centered point charges and Lennard-Jones
(LJ) interactions are, by far, the most widely used functional
form today, and form the basis of the OPLS, AMBER,
CHARMM, GROMOS, and many other force fields.
An underlying feature of these force fields is their

transferability. The force field parameters have undergone
extensive fitting against ab initio binding energies of complexes
and properties such as free energies of hydration and liquid
densities and heats of vaporization for small molecules.8−13

Furthermore, it has been shown that, when small molecules are
assembled into macromolecules such as proteins, the same
parameters perform reasonably well in the prediction of, for
example, temperature-dependent structural changes1 and
protein−ligand interactions.2 With the wealth of validation
tests available in the literature, a user can be confident that
dynamical simulations of simple proteins with a state-of-the-art
transferable force field will provide an ensemble of structures
that is representative of the experimental reality.

Given the widespread use of transferable force fields, it is
important to consider the long-term routes to their improve-
ment. As computational chemistry advances, one can continue
to fit parameters to more-accurate quantum mechanical
electrostatic potentials and energy surfaces within the confines
of a fixed functional form. One can even consider amending the
functional form, and important steps in this direction are being
taken in the development of polarizable force fields. However,
each advance comes at a cost. Each time that the method for
the derivation of point charges is updated, for example, the
library of parameters that describe the LJ interactions must be
refit to experimental data. For a typical force field, this library
may consist of many hundreds of parameters, although
automated parameter optimization programs, such as Force-
Balance,14 promise to bring down the cost of these fitting
efforts in the future.
Yet, even if force field functional forms and parameters are

found that perfectly reproduce the empirical and ab initio
properties of small molecules, the question of transferability
remains. It is well-established that adding electron-withdrawing
or electron-donating functional groups to a molecule can
significantly alter its chemistry through polarization effects. For
example, trends in hydrogen bond strength between a para-
substituted phenol and a water molecule were investigated
using two force fields: one nonpolarizable (OPLS-AA) and one
in which the charge distribution of the phenyl ring responds to
the presence of the substituents (OPLS/CM1A).15 The OPLS/
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CM1A variant reproduced ab initio binding energies more
accurately than the nonpolarizable version of the force field,
which was attributed to the ability of the charge derivation
scheme to respond to the chemical environment. In this regard,
it is common in small-molecule force field parametrization for
the user to assign atom-centered charges based on quantum
mechanical calculations. Care must be taken that the obtained
charges are compatible with both the LJ parameters and the
force field used to describe the surrounding environment,
which could contain water, protein, lipids, and so forth. Finally,
the effects of environmental polarization are not limited only to
the force field charges. It has been shown that the dispersion
(or van der Waals (vdW)) coefficients also are sensitively
dependent on both the local environment of the atom16 and
long-ranged electrodynamic screening.17,18 Hence, the accuracy
of the force field may also be improved if the LJ parameters, as
well as the charges, were able to respond to the chemical
environment.
Interestingly, a fundamentally different approach to force

field parametrization was used recently by Grimme in the
development of the quantum mechanically derived force field
(QMDFF).19 Here, instead of relying on a small number of
research groups to fit parameters and package them into a force
field with the implicit assumption that the parameters are
transferable and consistent with small molecule force fields, the
user derives all of the nonbonded parameters that are specific to
their system in an automated fashion from quantum mechanical
calculations.20,21 Such a scheme might be termed an environ-
ment-specific, rather than transferable, force field.
More generally, we envisage future environment-specific

force fields being derived in the same manner as today’s small
molecule force fields, except that it would be possible to also (i)
derive LJ parameters and (ii) derive parameters for both small
molecules and macromolecules such as proteins. Environment-
specific force fields have the potential to be more accurate than
their transferable counterparts, since they would be derived
explicitly for the system under study. However, of course, it
would be necessary to extensively benchmark their accuracy
against a wide range of biomolecular data, such as nuclear
magnetic resonance (NMR) structural data,1,7,22 protein−
ligand binding free energies,2 and so forth. A second advantage
is that there would be no need for the user to mix force fields.
Protein and small-molecule force fields would be computed by
the user simultaneously, thus ensuring their consistency.
Furthermore, charges and LJ parameters would be computed
from the same quantum mechanical data and so the parameters
would be inherently consistent. If the user wishes to use a more
advanced quantum chemistry method to perform the quantum
mechanics (QM) calculation, then both the charges and vdW
parameters would respond to the change in QM electron
density by construction. Thus, the user would be able to
experiment with more advanced chemistry or with alternative
functional forms of the force field without relying on another
research group to fit the library of force field parameters to
experimental data. A disadvantage of such a scheme is that the
user would require sufficient computational resources to
perform a QM calculation on their system of interest. However,
with ongoing advances in large-scale density functional theory
(LS-DFT) software23 and increasing access to improvements in
hardware, QM calculations in excess of 1000 atoms are
becoming routine.24−26 As an example, Ufimtsev et al. have
computed the electronic structure of a 2634-atom protein−
water complex at the B3LYP/6-31G level using the TeraChem

software and a single desktop workstation with eight GPUs
within <3 h.27

In recent years, we have started to develop the techniques
necessary to derive environment-specific force fields for large
systems. The force field is based on the concept of atoms-in-
molecule (AIM) electron density partitioning, whereby the
total QM electron density of the system under study is
computed and then partitioned into approximately spherical
atomic basins. Although there is no unique way to perform this
partitioning, it has been shown, by careful choice of the
weighting functions, that AIM densities can be optimized to
simultaneously produce chemically meaningful partial atomic
charges, yield an efficiently converging multipole expansion of
the electrostatic potential, and be insensitive to small
conformational changes or to buried atoms.28−30 Furthermore,
by combining AIM partitioning with LS-DFT calculations,
atomic partial charges may be computed for systems that are
comprised of many thousands of atoms, including proteins.30,31

Using this combination of AIM electron density partitioning
and LS-DFT, we have previously derived partial charges for
many small proteins and shown that they reproduce very well
the electrostatics of the underlying DFT calculation, as well as
experimental NMR order parameters when used in MM
molecular dynamics simulations.31 However, a more sensitive
test of intermolecular interactions is to compare hydration free
energies and liquid properties of small organic molecules with
the experiment. These properties are commonly used to
validate new force fields8,12,13,32 since there exists a wealth of
experimental data, which is directly comparable with simu-
lation. Furthermore, any difference between the experiment and
the theory may be unambiguously attributed to errors in the
force field, rather than finite sampling errors and so forth, which
may affect more-complex validation datasets. Initial tests
revealed that the AIM charges are not as accurate as we
would like when coupled with the LJ parameters of commonly
used force fields. For example, the combination of AIM charges
with OPLS LJ parameters gave a computed free energy of
hydration of −12.8 kcal/mol for acetamide, which may be
compared with the experimental result of −9.7 kcal/mol.
One solution might be to reparameterize libraries of LJ

parameters for compatibility with AIM charges in the
knowledge that this procedure would need to be repeated
periodically whenever an adjustment to the charge model is
made. Instead, we show here that the LJ parameters may be
obtained, in conjunction with the atomic partial charges,
directly from AIM electron densities. The LJ parameters are
thereby specific to the system under study and respond
automatically to the chemical environment of the atom. Similar
to that observed with the charges, they may be derived for both
small and large molecules, including proteins. The LJ
parameters are computed from the same QM electron density
as the partial charges and, hence, the entire parameter set is
consistent and there is no additional computational cost to the
user. Perhaps most importantly, there are a very small number
of fitting parameters in the model. As we will describe, our
nonbonded force field contains only seven fitting parameters,
which is sufficient to describe the chemistry of a wide range of
small organic molecules and proteins. In contrast, typical
transferable force fields require many tens or hundreds of fitting
parameters to model nonbonded interactions in the same
systems.
In what follows, the method for the derivation of charge and

LJ parameters is described. The possible applications of
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biomolecular force fields are extremely wide and varied, ranging
from protein−ligand binding free energies for drug discovery,
to pKa prediction, to dynamics for studying protein function, to
hybrid QM/MM simulations for enzymology. As such, it is not
possible to validate a new force field approach in all of these
contexts in a single study. Instead, following the example of
many other development efforts,8,12,13,32 we begin by validating
our proposed nonbonded force field against experimental free
energies of hydration, liquid densities, and heats of vaporization
of small organic molecules. As we will show, AIM techniques
are extremely competitive with existing transferable force fields
for this dataset, which will motivate future validation tests
beyond those presented in this study. Furthermore, since our
goal is to eventually derive force fields for large systems, such as
protein−ligand complexes, we present here a proof-of-principle
derivation of a force field for an ∼1600 atom model of the
L99A mutant of T4 lysozyme. We compare and contrast the
derived nonbonded parameters with a standard transferable
force field and compute the relative binding free energy of
indole and benzofuran to the protein.

2. METHODS
2.1. Theory. The quantum mechanical interaction energy is

typically decomposed into four components: (i) electrostatics,
(ii) induction, (iii) dispersion, and (iv) exchange-repulsion.33,34

Here, we shall discuss how each of these terms, in turn, is
incorporated into an effective force field, which, for two atoms i
and j separated by a distance rij, is typically written in the form
of eq 1:
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2.1.1. Electrostatics. The first term of the nonbonded
expression describes the classical electrostatic interactions
between the charge distributions of the two atoms. It is usually
described by fixed atom-centered point charges (qi), although
off-site charges to model, for example, lone-pairs35,36 and σ-
holes37 are relatively common. Typically, the charges are fit to
reproduce ab initio electrostatic properties of small molecules,
either by fitting to the electrostatic potential or by distributed
multipole analysis.38 However, neither of these methods has
been applied to very large systems, such as proteins, due to the
difficulties of fitting charges to buried atoms or the expense of
the QM calculation. Here, we instead use an AIM approach
whereby the total QM electron density (n(r)) is partitioned
into overlapping atomic densities (ni(r)):
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The atomic partial charges are then computed by integrating
the atomic electron densities over all space:

∫= − = −q z N z n r r( ) di i i i i
3

(3)

where Ni is the number of electrons assigned to atom i and zi is
its effective nuclear charge. Similarly, higher-order atomic
multipoles may be computed as first-order, second-order, ...
moments of the atomic electron densities. Various definitions
of the weighting factors wi(r) exist. For example, in Hirshfeld
partitioning, they are set equal to neutral gas-phase atomic

densities,39 although these weights are known to result in
atomic populations that are too close to zero.40 Instead, we
employ density-derived electrostatic and chemical (DDEC)
electron density partitioning.28,29 The form of the DDEC
weighting function is described in detail elsewhere,29,30 but in
brief the atomic weights are simultaneously optimized to
resemble the spherical average of ni(r) and the density of a
reference ion of the same element with the same atomic
population Ni. In this way, the assigned atomic densities yield a
rapidly converging multipole expansion of the QM electrostatic
potential and the computed populations are chemically
reasonable.

2.1.2. Induction. The induction term results from the
distortion of a molecule’s electron density in response to its
environment. For example, moving a molecule from the gas
phase into water enhances the molecule’s dipole moment. In
fixed-charge MM force fields for condensed-phase simulations,
which are the focus of this paper, induction is treated in an
effective manner by polarizing the atomic charges. This is
generally achieved either by using an empirical bond-order
correction,41 a scaling factor,13,42,43 or by computing the
charges using an artificially polarized quantum chemistry
method or an implicit solvent model.11 Here, the latter
approach is used whereby the QM electron density is computed
via direct solution of the inhomogeneous Poisson equation in a
medium with a dielectric constant ε.44,45 To determine which
value of ε should be used, let us consider the case of the
transfer of a molecule from the gas phase to water. Use of ε = 1
would neglect the attractive inductive interactions between the
polarized charge distribution of the molecule and water and
lead to computed free energies of hydration that are too
positive. On the other hand, the use of ε = 80 (to model the
dielectric constant of water) neglects the energetic cost of
distorting the electronic wave function, which has been shown
to amount to several kcal/mol,46 and would lead to computed
free energies of hydration that are too negative. In fact, the
magnitudes of both of these energetic contributions may be
estimated using the implicit solvent model,46 and it can be
shown that they approximately counterbalance each other for a
wide range of molecules if the electron density is computed in a
dielectric medium of ε = 4 (Section S2 in the Supporting
Information). This is also the dielectric constant that is
frequently used to model protein interiors,47 and, as we will
show, produces a net polarization effect that is consistent with
that recommended by Karamertzanis et al.48 and the developers
of the latest generation of AMBER force fields.49,50 Therefore, a
background dielectric constant value of ε = 4 is used to
compute all condensed-phase QM electron densities in this
study.

2.1.3. Dispersion. Dispersion (or vdW) interactions are
typically modeled in MM force fields by the attractive Bijrij

−6

term in eq 1. The Bij parameters are atom-dependent but are
almost always determined empirically and are assigned to new
molecules from outside the fitting set, using a library of atom
types. Despite their empirical treatment in MM force fields,
dispersion interactions are inherently a quantum mechanical
phenomenon, which arise even in nonpolar molecules, because
of interactions between spontaneous electron density fluctua-
tions. Standard DFT exchange-correlation functionals fail to
capture the correct long-ranged behavior of the dispersion
interaction, but much progress has been made in recent years in
computing the strength of the dipole−dipole pairwise
dispersion interactions (that is, the Bij parameters) from the
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ground-state electron density of a molecule.51,52 In this paper,
the Tkatchenko−Scheffler (TS) scheme is employed to
compute Bij coefficients by rescaling accurate free atom
reference data by the effective volume of the atom in the
molecule.16 Specifically, the ratio of the AIM volume to the
volume of the atom in free space is computed using the DDEC
atomic densities from eq 2:

∫
∫
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where r is the distance from the nucleus of atom i, and ni
free(r) is

the electron density of the free atom i in vacuum. Vi
free was

computed for each of the seven elements used in the current
study, using the MP4(SDQ)/aug-cc-pVQZ method in Gaussian
09,53 and the chargemol code54 and the data are provided in
Table S1 in the Supporting Information. The environment-
specific atomic dispersion coefficient is then computed by16
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The Bi
free parameters are obtained from time-dependent

density functional theory (TDDFT) calculations from the
literature55 and are tabulated in Table S1. The TS method
traditionally uses atomic volumes computed using Hirshfeld
electron density partioning. However, it has been shown that
computed dispersion coefficients of ionic systems are
substantially improved by allowing the weights in eq 2 to
update self-consistently with the AIM densities.56,57 Hence, in
what follows, we use DDEC electron density partitioning to
compute both the atomic charges and volumes. Finally, in the
OPLS force field, heteronuclear Bij parameters are computed
via a geometric combining rule, and the same approach is
adopted here:

=B B Bij i j (6)

Figure 1 demonstrates the potential utility of this approach
for classical force field design. For benzene, the DDEC AIM

population and dispersion coefficient are essentially identical to
those used in the OPLS/CM5 force field, which has been
extensively parametrized to reproduce the liquid properties of
the molecule.8,13 For a druglike molecule, with more-complex
bonding environments, greater differences exist between
OPLS/CM5 and the AIM approach. Both methods agree that
the N atom in the pyridine ring (blue) has a high electron
population, and therefore is expected to be more polarizable
and is assigned a high dispersion coefficient. In contrast, the N
atom highlighted in red on the triazole ring has a lower electron

population. The AIM approach responds to the local
environment of the N atom and correspondingly reduces the
dispersion coefficient to account for electron depletion. OPLS,
like most force fields, assigns identical dispersion parameters to
N atoms in pyridine and triazole rings and is thus expected to
overestimate the dispersion coefficient in the latter case.
Fundamentally, there should be coupling between the electron
density on an atom and its capacity for dispersion interactions.

2.1.4. Exchange-Repulsion. Exchange-repulsion is primarily
intended to account for repulsion between overlapping electron
clouds due to the Pauli exclusion principle, but it also effectively
describes other terms that are dependent on electron density
overlap, such as electrostatic penetration energies.20,33 It is
typically modeled in MM force fields by a repulsive LJ term of
the form Aijrij

−12. This term is problematic because there is no
clear method to parametrize the atomic Ai values directly from
QM calculations.34 Here, one approach to derive the strength
of the LJ repulsion is hypothesized and justified a posteriori by
comparison between computed and empirical condensed-phase
properties of small molecules. In the OPLS force field, in order
to ensure that the LJ potential has a minimum that is coincident
with the van der Waals (vdW) radii of the atoms (Ri

AIM), the
repulsive parameters of the Lennard-Jones expression are
related to the dispersion coefficients via59

=A B R
1
2

(2 )i i i
AIM 6

(7)

Here, the scaling relationship suggested by Tkatchenko and
Scheffler16 is used to estimate the vdW radius of the atom in
the molecule from the radius of the free atom in a vacuum:
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Thus, by substituting eq 8 into eq 7, environment-specific Ai
terms are estimated from free atom reference data and the
AIM-partitioned volume of the atom in the molecule (eq 4).
Heteronuclear Aij parameters are derived via the geometric
combining rule:

=A A Aij i j (9)

The atomic radius of an atom in a vacuum cannot be
measured directly, and so the Ri

free are treated as variable fitting
parameters. Since computed liquid densities are very sensitive
to the Ai coefficients used in MM force fields, we have fit the
Ri
free parameters by hand to reproduce empirical liquid densities.

The parameters for H, C, N, O, S, F, and Cl are provided in
Table S1. These seven radii are the only fitting parameters used
in the construction of our nonbonded force field. This may be
contrasted with typical transferable force fields which require
many tens, or even hundreds, of fitting parameters to describe
charge and LJ interactions in biomolecular systems.
To summarize, Figure 2 shows the suggested workflow for

derivation of nonbonded force field parameters from QM
calculations. We use the ONETEP linear-scaling DFT code to
perform the ground-state electronic structure calculations,60

and the DDEC atomic population analysis and atomic volume
calculations have been implemented here as post-processing
routines.30,31 Apart from the QM calculation, the only input
data required is summarized in the green box in the figure (and
Table S1). These are the atomic volumes and dispersion
coefficients of free atoms in vacuo, and they have been

Figure 1. Comparison between the DDEC AIM parametrization
approach used in this work and the OPLS/CM5 force field for (left)
benzene and (right) a larger druglike aryl-1,2,3-triazole molecule.58
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computed using QM calculations as described earlier. The free
atom radii (Ri

free) have been fit to reproduce experimental liquid
densities. These parameters are optimized for the QM method
described below and they do not need to be refit by the force
field user. A simple script is used to rescale the free-atom
parameters according to eqs 5, 7, and 8 to provide
environment-specific force field parameters that are unique to
each atom in the system.
2.2. Computational Methods. For the testing on liquid-

state properties, 41 small molecules (listed in Table S4 in the
Supporting Information) were optimized under vacuum at the
MP2/cc-pVTZ level using the Gaussian 09 package.53 The
ground-state electron density was computed using the
ONETEP linear-scaling DFT code60 with the PBE exchange-
correlation functional.61 ONETEP combines computational
efficiency with accuracy equivalent to traditional plane-wave
DFT codes by optimizing a minimal set of spatially truncated
nonorthogonal generalized Wannier functions (NGWFs) on
each atom.62 One NGWF was used for hydrogen and four for
all other elements used in the current study. The NGWFs were
expanded in a periodic sinc (psinc) basis with an equivalent
plane-wave cutoff energy of 1020 eV, and were localized in real
space with 10 Bohr radii. PBE OPIUM63 norm-conserving
pseudopotentials were used for all DFT calculations. Figure S3
in the Supporting Information shows good agreement between
the gas-phase dipole moments of the set of small molecules
computed with ONETEP as described here and those
computed at the MP2/cc-pVTZ level in Gaussian 09,53

although the DFT approach overestimates the dipole moment
of more polar molecules by up to 0.4 D in some cases.
To account for induction in an effective manner, DFT

calculations were performed using a smeared ion representation
under open-boundary conditions with a relative dielectric
constant of ε = 4.44,45 The dielectric cavity is defined by an

isosurface of the electronic density under vacuum, with
parameters controlling the smoothness and density threshold
taken from the literature.44,64 Partitioning of the polarized
ground-state electron density was performed using the DDEC
scheme in ONETEP as described in detail elsewhere,30,31 with
the mixing parameter (γ) set to 0.02, which appeared in
preliminary tests to give reasonable agreement between DDEC
and OPLS force field charges for a wide range of functional
groups. LJ parameters were computed as described in Figure 2.
To avoid nonphysical asymmetries in force field simulations,

the DDEC charges and LJ parameters were symmetrized for
identical atoms.42 LJ parameters for polar H atoms (that is, H
atoms bonded to O, N, or S) were set to zero. However, this
neglects important dispersive interactions in the current format,
and so the Bi coefficient of the neighboring heavy atom is
correspondingly increased according to eq 10,

′ = +B B n BX X H H (10)

where BX and BX′ are the old and new dispersion parameters for
atom X (= O, N, or S), nH is the number of neighboring H
atoms, and BH represents their dispersion coefficients. Bonded
interactions were represented by the OPLS-AA force field and,
for simulations involving water, the rigid TIP4P model was
used.65

The environment-specific force field for a 1646-atom cluster
extracted from the L99A mutant of T4 lysozyme (PDB:
185L)66 was also derived in an identical manner from a single
point QM calculation, which is a routine computation using LS-
DFT.24−26 The cluster included the 105 amino acid residues
nearest to the ligand. For computational feasibility, the cluster
did not undergo prior structural optimization and the
nonbonded parameters were not symmetrized. Setup of the
protein complexes, liquid simulations, and free-energy calcu-
lations were performed using standard procedures67 with the

Figure 2. Workflow for environment-specific force field derivation. The operations in the purple box are performed using QM software. The force
field input parameters are tabulated in the green box (and Table S1 in the Supporting Information). In the yellow box, a script computes the LJ
parameters and exports them into a suitable format. The acetonitrile example shown is designed for BOSS input, in the standard OPLS format q (e),
σ (Å), ε (kcal/mol).
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BOSS and MCPRO codes,68 as detailed in the Supporting
Information (Section S1).

3. RESULTS
3.1. Electrostatics. Figure 3a compares the computed QM

dipole moments in implicit solvent (ε = 4) with the same

quantity under vacuum (ε = 1) for the 41 neutral organic
molecules. As expected, the dielectric medium increases the
polarity of the molecules. Interestingly, the dipole moment is
increased by an approximately constant factor of 1.19,

independent of the chemical nature of the molecule. This
finding helps to justify the common use of scaled gas-phase
charges in condensed-phase modeling to account for polar-
ization effects.42,43 In fact, the scaling relationship between the
gas-phase and condensed-phase dipole moments found here is
very similar to the CM5 scaling factor (1.20), which was
optimized to reproduce a range of experimental data.13 We
have also plotted the line of best fit through the dipole
moments of the molecules computed with a dielectric constant
of ε = 80 to model water (dashed line in Figure 3a). The
polarity of the molecules is now increased further, by a factor of
1.41, relative to that under vacuum. It has been argued that
charges for condensed-phase simulation should be polarized
halfway between those charges computed under vacuum and
those computed in a condensed-phase reaction field potential
in order to account for induction in an effective manner.48−50

Figure 3a reveals that AIM charges computed in a dielectric
medium (ε = 4) should be fully consistent with this charge-
fitting philosophy.
An important measure of the likely success of AIM charges in

condensed-phase modeling is the ability of the point-charge
model to reproduce the electrostatic properties of the
underlying QM calculation. The DDEC atomic densities are
optimized to be close to spherically symmetric, and hence the
atomic multipole moments should be small and the electro-
static potential surrounding the molecule well-approximated
using an atom-centered point charge model. However, there are
certain well-documented cases, such as atoms that possess lone
pairs or σ-holes, in which the atomic electron density is
anisotropic and the AIM atom-centered charges are expected to
produce a poor approximation to the QM electrostatic
potential.69 In Section S3 in the Supporting Information, the
anisotropy in the atomic electron densities is analyzed up to
quadrupole order for every atom in the 41 molecule test set.
Fifteen (15) molecules were identified as containing at least
one atom with significant anisotropy. All amines (6) and
molecules containing sulfur (5) or chlorine (2) were identified

Figure 3. (a) Comparison between condensed phase (ε = 4) and
vacuum dipole moments of 41 small molecules (red crosses). Dashed
lines indicate the dipole moments of molecules computed using the
implicit solvent model with ε = 80 and ε = 1. (b) Comparison between
point-charge and QM dipole moments of the same database, after the
addition of extra point sites to 12 molecules.

Figure 4. Positions of extra point charge sites on 12 molecules from the benchmark set. Negative charges are displayed in magenta, positive in cyan.
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by this analysis. The remaining two molecules were dimethyl
ether and methanol, although these were borderline cases.
A common approach in the design of MM force fields is to

move charge from the atoms to off-center sites to model
anisotropic electron density,35−37 where the positions and
magnitudes of the charges are parameters that are fit to
empirical data. In keeping with our intentions in this work of
minimizing the number of fitting parameters, the positions and
charges of the extra sites are automatically optimized to
reproduce the dipole and quadrupole moments of the AIM
atomic electron densities. The optimization procedure is
described in Section S3 in the Supporting Information, and
the errors in the atomic dipole and quadrupole moments before
and after the addition of extra sites are given in Table S3 in the
Supporting Information. Figure 3b compares the dipole
moments of all 41 molecules, using the AIM point charge
model with the QM dipole moments, after the addition of extra
sites on 12 molecules. The mean unsigned error (MUE) across
the entire set (excluding two molecules whose dipole moment
is zero by symmetry) is 0.10 D, compared to that without the
extra sites (MUE = 0.17 D).
The positions and signs of the derived charges are for the

most part chemically intuitive (Figure 4). Chlorine carries an
off-site positive charge in the position of the σ-hole, which has
been shown to be important for the accurate description of
halogen bonding in MM force fields.37 The majority of the
other molecules carry off-site negative charges on lone-pair
sites. It is striking that the number of extra point sites required
to reproduce the QM multipole moments is larger than that
typically used in MM force fields. This is perhaps best
exemplified by chloromethane to which the optimization
procedure has assigned three extra sites, rather than one extra
site. The dipole moment of chloromethane in the AIM atom-
centered point charge model is 2.55 D, which is larger than the
QM dipole moment in implicit solvent (2.17 D). The σ-hole
extra point site has a charge of +0.20 e at 1.40 Å from the Cl
atom, which may be compared with the extra site used in the
OPLS-AAx force field of +0.075 e at 1.60 Å.37 However, with
this single extra site, the dipole moment of chloromethane
decreases to 1.19 D. By allowing a second site on the Cl atom
and one site on the neighboring C atom, the dipole and
quadrupole moments of the QM atomic electron densities are
reproduced by the extra sites, as is the net dipole moment of
the molecule (2.14 D). It should be emphasized that the fitting
procedure is automated and parameter-free, thus all of the
chemistry of the intermolecular interaction is derived directly
from the electron density, rather than relying on chemical
intuition.

3.2. Condensed-Phase Properties. It has been shown in
the previous section that, to a good approximation, AIM
charges are capable of reproducing the QM electrostatics of
small molecules, especially when off-center charges are used to
model anisotropy in the electron density. Our long-term goal is
to investigate the accuracy of AIM nonbonded interactions in
condensed-phase modeling, particularly in the context of
protein−ligand binding free energies where the ligand is
transferred from bulk solvent to the binding site. Pure liquid
and hydration properties are commonly used as a surrogate for
this process; liquid densities, heats of vaporization, and free
energies of hydration can be precisely measured experimentally
and the sampling requirements are low, so any discrepancies
between simulation and experiment can be directly attributed
to the force field. As such, these properties are widely used as a
starting point for the validation of new force fields. To
investigate the accuracy of AIM charges for pure liquid
simulations and free-energy calculations, they were combined
with the AIM LJ parameters described in section 2.1 and
OPLS-AA bonded parameters9 to form a complete MM force
field (eq 1). The extra charge sites do not have LJ parameters in
the current model. The full list of nonbonded parameters for
the 41 molecules studied here are provided in the Supporting
Information.
Figure 5 shows the liquid densities and heats of vaporization,

as well as the free energies of hydration, for the 41 organic
molecules computed using the derived force field for the cases
where experimental data are available. The complete results are
listed in Tables S4 and S5 in the Supporting Information. The
MUE values, compared with those of the experiment, were,
respectively, 0.014 g/cm3, 0.65, and 1.03 kcal/mol. Liquid
densities are particularly well-reproduced using the current
method, which supports the derivation of the Aij parameters
from the AIM vdW radii (eq 7). A modest outlier is acetic acid,
which is predicted to have a higher density (1.11 g/cm3) than
observed experimentally (1.04 g/cm3). A notable feature of the
computed energetics is that nonpolar molecules, particularly
those containing benzene rings, have a tendency to be more
weakly bound (lower heat of vaporization and less exoergic free
energy of hydration) than suggested by the experiment.
Possible reasons for this discrepancy include the neglect of
higher-order dispersion terms beyond the dipole−dipole
interaction,70 under-estimation of C−H···O hydrogen bonding
interactions,71 and a lack of explicit treatment of polarization,
which has been shown to induce the long-ranged hydrophobic
effect.72

Nevertheless, the accuracy of the AIM force field is extremely
competitive with existing force fields. For example, the MUE
values for a similar dataset computed using the OPLS/CM5

Figure 5. Properties of organic molecules: (a) liquid densities, (b) heats of vaporization, and (c) free energies of hydration. Mean unsigned error
(MUE) values, relative to the experiment, are also shown. The raw data and experimental references are provided in Tables S4 and S5 in the
Supporting Information.
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force field are, respectively, 0.024 g/cm3, 1.06, and 0.94 kcal/
mol.13 The MUE values for free energies of hydration for a
large database of 239 small molecules was reported to be 1.93
kcal/mol (CHARMM), 1.17 kcal/mol (GAFF), and 0.73 kcal/
mol (OPLS2.1).2 The reported root-mean-square deviations for
the densities and heats of vaporization are 0.083 g/cm3 and
2.53 kcal/mol for GAFF, and 0.026 g/cm3 and 1.12 kcal/mol
for CGENFF, which were computed for databases consisting of
more than 100 molecules.3 It should be emphasized that the
number of empirical fitting parameters in the current study
(seven in total) is substantially lower than in the generation of
these other force fields. All of the nonbonded parameters in the
present case arise directly from the DFT calculations.
3.3. Protein−Ligand Binding Free Energies. A notable

feature of our AIM-based nonbonded force field is that, in
principle, the methods scale to arbitrarily large system sizes,
potentially allowing the derivation of virtually parameter-free
environment-specific force fields for systems comprised of
many thousands of atoms. While our ultimate goal is to
benchmark the accuracy of this force field for the study of
protein−ligand binding free energies, this is beyond the scope
of the current study. Instead, here, we demonstrate the
feasibility and potential benefits of using the AIM approach
in computer-aided drug design efforts and compare the derived
parameters with a standard transferable force field.
For our proof-of-principle example, we have chosen to study

the binding of two small molecules, indole and benzofuran, to
the L99A mutant of T4 lysozyme. This target is an engineered
hydrophobic binding pocket for which extensive binding data
and X-ray crystal structures are available.66,73 Importantly, there
are no water molecules in the binding pocket, the protein
adopts an almost-identical conformation in the two crystal
structures, and the ligands are small, relatively rigid, and
isosteric. Thus, the transformation can be studied via a simple
one-step free-energy calculation, sampling requirements are
low, and any discrepancy between experiment and theory may
be attributed directly to force field error. Intriguingly, despite
the structural similarities between the two bound crystal
structures, free-energy methods are unable to reproduce the
experimental binding free energy of benzofuran, relative to
indole (−0.57 kcal/mol),73 with estimates of −2.3 kcal/mol
(AM1-BCC charges)74 and −1.9 kcal/mol (RESP charges).75

First, an AIM force field was derived for the two small
molecules, as in the previous section. It was found that no off-
center extra point sites were required. The relative free energy
of hydration of the two molecules was computed and is shown
in Table 1. No experimental data are available, to the best of
our knowledge, but the observation that indole has a much
lower free energy of hydration than benzofuran is consistent
with calculations performed using the OPLS/CM1A force field,
the QM dipole moments of the two molecules (2.19 D vs 0.67
D under vacuum), and their observed octanol/water partition
coefficients (2.14 and 2.67).76 Thus, it is not surprising that
benzofuran should be more strongly bound, inside the
hydrophobic lysozyme pocket, than the more polar, isosteric
indole.
To investigate whether the inclusion of native state

polarization in the force field derivation procedure affects the
description of protein−ligand binding, a protein-specific force
field was built for a significant portion of the T4 lysozyme
protein (1646 atoms). The entire AIM nonbonded parameter
set is provided in the Supporting Information. Figure 6a shows
the correlation between the atom-centered point charges

derived using the AIM approach, and OPLS-AA force field
charges for lysozyme. Generally, there is good correlation,
although, as expected, the AIM charges have a wider spread,
because they can respond to the macromolecular environment.
The contrast in the computed dispersion parameters is much
more pronounced (Figure 6b). Similar to all common force
fields, OPLS uses a library of atom types, while the AIM
dispersion coefficients are derived from the atomic electron
densities via eq 5. As an example, both OPLS and AIM assign
charges of −0.50 e and −0.14 e to the backbone N atoms of
residues Leu84 and Pro86, respectively. However, OPLS
assigns the same B parameter to the two atoms (58 a.u.),
while the AIM force field gives 51 a.u. on Leu84 and 19 a.u. on
Pro86. The cluster of atoms highlighted by an arrow in Figure
6b are carbonyl carbon atoms, which are electron-deficient and
thus intuitively expected to interact weakly through dispersive
effects. Interestingly, of the 1646 atoms in the protein cluster,
only five atoms required off-center point sites to model
anisotropy. Four sites occurred on S atoms of Met residues, and
one on a neutral Lys residue, which is used by MCPRO to
neutralize the system. This unexpectedly low number may, in
part, be a selection effect, since halogens and neutral amines are

Table 1. Free Energies of Hydration and Binding to the
L99A Mutant of T4 Lysozyme of Benzofuran (Relative to
Indole)a

free energy of hydration,
ΔΔGhyd (kcal/mol)

free energy of binding,
ΔΔGbind (kcal/mol)

AM1-BCCb −2.3
RESPc −1.9
OPLS/CM1A +5.11 ± 0.03 −2.35 ± 0.08
this work

no X-sites +4.48 ± 0.04 −1.20 ± 0.22
with X-sitesd −0.37 ± 0.12

experimente −0.57
aAll simulations have been run in triplicate, and the standard error in
the mean is shown. bData taken from ref 74. cData taken from ref 75.
dX-sites denotes the use of extra off-center point charges on residue
Met102. eData taken from ref 73.

Figure 6. Comparison between AIM and OPLS (a) charge and (b)
dispersion parameters for the L99A mutant of T4 lysozyme. The blue
arrow indicates a significant discrepancy for carbonyl C atoms.
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not found in the structure (there are no His residues in the
modeled cluster). However, Table S3 in the Supporting
Information shows that the anisotropy for Met102 is much
lower than on, for example, dimethyl sulfide. In what follows,
extra point sites were added to Met102, since it is the only
anisotropic site in contact with the ligands (Figure 7).
The relative free energy of binding of benzofuran and indole

to the L99A mutant of T4 lysozyme was computed with free-
energy perturbation theory, using the MCPRO software68 (see
Table 1). The standard OPLS-AA force field, with scaled
CM1A charges for the ligands, overestimates the binding free
energy of benzofuran, relative to indole, by ∼2 kcal/mol, in
agreement with previous force field studies.74,75 Replacing the
nonbonded parameters by AIM-derived charge and LJ
coefficients reduces the relative binding free energy by ∼1
kcal/mol, which may be attributed to the lower ΔΔGhyd in
Table 1, as well as the altered protein−ligand nonbonded
interactions. Finally, adding the extra point sites to Met102
(Figure 7) results in a relative binding free energy of −0.37
kcal/mol, which is in excellent agreement with the experiment
(−0.57 kcal/mol). Thus, it appears that the accurate treatment
of the electrostatic potential around the NH group of indole is
an important determinant of binding. In this regard, note that
several experimental and theoretical studies have highlighted
the importance of N−H···S hydrogen bonds in protein
biochemistry.77−79 While the studied substitution demonstrates
the feasibility and benefits of the developed methods, clearly
many more comparisons with benchmark data must be
performed to ascertain the accuracy for drug discovery
applications.

4. CONCLUSIONS

In this paper, the feasibility of deriving the nonbonded
parameters of molecular mechanics (MM) force fields from
large-scale density functional theory (DFT) calculations has
been demonstrated. Atomic charges and LJ coefficients are all
computed directly from partitioned atoms-in-molecule electron
densities, thus incorporating local and long-ranged polarization
that is specific to the environment under study, while requiring
only a minimal number of fitting parameters. This latter feature
is a key part of the new force field. In the current study, all of
the nonbonded interactions of 41 organic molecules and the
lysozyme protein were described using just seven fitting
parameters (the van der Waals (vdW) radii of the free atoms
in a vacuum (Rfree), presented in Table S1 in the Supporting

Information). Users of the force field will be able to derive
parameters for their own environment-specific force fields using
these simple input parameters and the procedure outlined in
Figure 2.
In contrast, typical transferable force fields require a large

number of fitting parameters to describe the wide ranging
chemistry of intermolecular interactions in organic molecules.
In these standard MM force fields, if one wishes to investigate
the effect of computing atomic charges with a method different
from that was used to parametrize the Lennard-Jones (LJ)
interactions (for example, using a larger quantum mechanics
(QM) basis set), then, for the sake of consistency, the entire
library of LJ parameters should be refit, which is a formidable
undertaking and one that discourages advances in force field
accuracy. In our proposed atoms-in-molecule (AIM) force field,
both charge and LJ parameters update consistently with
changes in the QM atomic electron densities. Since liquid
densities are extremely sensitive to the atomic size, the Rfree

parameters are straightforward to fit to the experiment and,
thus, a new force field could be developed within less than a
week. This simplicity of design will allow the straightforward
investigation of new QM methods and potentially even new
functional forms of the force field. In this regard, a goal of this
investigation has been to investigate the accuracy of AIM force
field parameters within the fixed functional form of eq 1, such
that the methods are consistent with the majority of widely
used MM codes. Future studies will investigate alternative
functional forms of the repulsive vdW potential, such as an
exponential Born-Mayer form,33 and the inclusion of explicit
atomic polarizability. In this regard, combinations of density-
derived electrostatic and chemical (DDEC) electron density
partitioning with standard Tkatchenko−Scheffler (TS) meth-
ods16,17 and also with a new self-consistent screening method
to compute atomic polarizabilities and dispersion coefficients
are currently under development.80

Note that only the nonbonded parameters of the force field
have been derived in this study, while the bonded parameters
have been taken directly from the OPLS-AA force field. We
have not tested these nonbonded parameters with other force
fields. The compatibility of the AIM nonbonded parameters
with the bonded parameters of standard force fieldsin
particular, the torsional parameterswill need to undergo
substantial benchmarking against experimental properties such
as nuclear magnetic resonance (NMR) measurements7,22 and
temperature-dependent structural propensities,1 which is

Figure 7. Final snapshots of (left) benzofuran and (right) indole bound to the hydrophobic pocket of the L99A mutant of T4 lysozyme from Monte
Carlo free-energy calculations. Extra point sites on Met102 are also shown. Negative charges are displayed in magenta; positive charges are displayed
in cyan.
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beyond the scope of the current study. The accuracy of our
results for the small molecule benchmark set implies that the
use of OPLS-bonded parameters is a reasonable approximation,
although these molecules are relatively rigid. Possible long-term
strategies for improving the compatibility between bonded and
nonbonded parameters involve on-the-fly parametrization of
torsional parameters for an AIM protein and small molecule
force field using existing7 and automatically generated2,19 QM
torsional scans, or machine learning of bonded force fields.81

The data presented in Figure 5 reveal that the free energies of
hydration appear to be difficult to predict computationally. Part
of the reason for this may be that we have used the standard
TIP4P water model for these calculations. While this model has
been extensively validated against experimental data, other
combinations of nonbonded parameters also accurately
describe many physical properties of water.32 In future research,
it would be interesting to develop a water model based on our
AIM force field parametrization strategy to investigate whether
it improves the correlation between computed free energies of
hydration and the experiment.
One of the advantages of the proposed methods, namely, the

specificity of the parameters to their environment, is also one of
the potential disadvantages. The derived force field is not
expected to be transferable between different systems, and,
hence, a new QM calculation is required to parametrize each
new molecule under investigation. However, this is not
expected to add a substantial time cost to the investigation.
To draw an example from our own interests in computer-aided
drug design, it is already commonplace to perform a series of
inexpensive QM calculations to parametrize a set of small
molecule drug candidates, while the only additional cost in the
new scheme would be a single large-scale DFT calculation to
parametrize the target protein.
In this investigation, we have used DDEC electron density

partitioning as implemented in the ONETEP linear-scaling
DFT code to compute the atomic electron densities, and a
variant of the Tkatchenko−Scheffler method to compute vdW
coefficients. DDEC partitioning has been shown to yield an
efficiently converging multipole expansion of the electrostatic
potential,28−31 which is important for minimizing anisotropies
in the atomic densities. Here, it has been shown that residual
anisotropy may be accurately represented by a small number of
off-center charges. A further advantage of DDEC partitioning
for flexible force field design is that the computed atomic
electron densities are relatively insensitive to small changes in
conformation,29,31 thus dynamical simulations of a protein
fluctuating about its native state are expected to be accurate,
while the applicability of the derived force fields to protein
folding may be questionable and will require extensive
validation. The use of the TS method for the computation of
environment-specific dispersion coefficients is, to the authors’
knowledge, its first use in MM force field design, although
Grimme has recently used the D3 dispersion scheme as part of
a quantum mechanically derived force field (QMDFF) with
extremely encouraging results.19 The agreement between
computed and experimental liquid properties and free energies
of hydration in the current study further supports the use of
nonempirical vdW parameters in force field design. In future
work, it will be interesting to investigate the effects of long-
ranged electrodynamic screening effects that are thought to
dampen dispersion interactions in the condensed phase.17,18

In this paper, we have benchmarked the accuracy of AIM
nonbonded parameters in the description of ∼120 experimental

liquid densities, heats of vaporization, and free energies of
hydration. The obtained results are extremely competitive with
existing transferable force fields that have been specifically
parametrized against similar datasets. Furthermore, all of the
methods described here scale linearly with system size and are
accurate even for buried atoms,28−31 thus allowing the
derivation of environment-specific force fields for systems of
unprecedented size. Recent advances in LS-DFT algorithms
and access to GPU computing will allow rapid and routine
electronic structure analysis of systems comprising tens of
thousands of atoms in the future.27,82,83 The largest molecule
studied in this paper is a substantial portion of the L99A
mutant of T4 lysozyme, consisting of 1646 atoms. The
computed relative free energies of binding of indole and
benzofuran to the protein are encouraging and demonstrate the
importance of accurately modeling anisotropic electron density.
While we would encourage users to experiment with deriving
their own environment-specific force fields by following the
scheme suggested in Figure 2, we emphasize that further
validation is required before their widespread adoption. Our
own priorities are (i) to test the compatibility between AIM
nonbonded parameters and standard bonded force fields, and
to develop alternative bonded force fields if necessary, and (ii)
to run hundreds of free-energy calculations across multiple
protein targets to extensively compare the accuracy of
environment-specific force fields with state-of-the-art trans-
ferable force fields in the description of protein−ligand
binding.2,84
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