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Glioma is the most common malignant intracranial tumor and exhibits diffuse

metastasis and a high recurrence rate. The invasive property of glioma results

from cell detachment. Anoikis is a special form of apoptosis that is activated

upon cell detachment. Resistance to anoikis has proven to be a protumor

factor. Therefore, it is suggested that anoikis resistance commonly occurs in

glioma and promotes diffuse invasion. Several factors, such as integrin, E-

cadherin, EGFR, IGFR, Trk, TGF-b, the Hippo pathway, NF-kB, eEF-2 kinase,

MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been

shown to induce anoikis resistance in glioma. In our present review, we aim

to summarize the underlying mechanism of resistance and the therapeutic

potential of these molecules.
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Introduction

Glioma is the most common central nervous system (CNS) tumor and has limited

therapeutic options and poor overall survival (OS) (1, 2). Glioma comprises

approximately 30% of all brain tumors and 80% of all malignant brain tumors in

adults (3). According to the 5th edition of theWHO classification of CNS tumors, gliomas

are divided into 4 different families (adult-type diffuse gliomas, pediatric-type diffuse low-

grade gliomas, pediatric-type diffuse high-grade gliomas, circumscribed astrocytic

gliomas) and 17 subfamilies (4). High-grade gliomas tend to infiltrate diffusely,

causing extensive areas of necrosis and hypoxia. Furthermore, the diffusive property

makes it almost impossible to remove gliomas completely through surgery, leading to

frequent recurrence and eventually death. Apart from surgery, radiotherapy (RT) and
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chemotherapy are also applied in clinical practice. However,

high-precision conformal RT, temozolomide (TMZ) and

bevacizumab fail to improve OS (5).

The diffusive property of glioma relates to aberrant changes

in cell adhesion (6). This suggestion links glioma with a type of

programmed cell death called anoikis. Anoikis is a special form

of apoptosis activated upon cell detachment. Normal cells live in

a microenvironment that is composed of extracellular matrix

and various supporting cells. This three-dimensional scaffold

provides adherent cells with necessary biochemical and

mechanical signals for survival, growth, differentiation and

other physiological processes (7). Remodeling of the

microenvironment or cell detachment can lead to the

activation of anoikis and eventually cell death.

Anoikis is regulated by many factors and pathways in wide

range of cancers (8–10). By utilizing these factors, we might

inhibit the diffuse infiltration of glioma, thus improving clinical

outcomes. Studies have revealed that several regulators take part

in anoikis resistance in glioma; these include integrin, E-

cadherin, EGFR, IGFR, Trk, TGF-b, the Hippo pathway, NF-

kB, eEF-2 kinase, MOB2, hypoxia, acidosis, reactive oxygen

species (ROS), heat shock proteins (Hsps) and protective

autophagy. Here, we review these regulators that have been

reported to induce anoikis resistance in diffuse glioma and their

possible utilization in future treatment.
Downstream mechanism of anoikis

In terms of downstream mechanisms, anoikis is similar to

apoptosis, which generally can be converted into the intrinsic

pathway and the extrinsic pathway and converges at the

activation of Caspases. The intrinsic pathway relies on

mitochondrial permeabilization, which can be triggered by

cellular signals such as DNA damage and unfolded protein

response, followed by Caspase activation (11, 12). Mitochondrial

permeabilization is a result of membrane pore formation or

mitochondrial swelling. The Bcl-2 protein family controls the

formation of pores in the outer mitochondrial membrane (13). In

other words, the relative ratio of prosurvival (Bcl-2, BCL-xL) and

proapoptotic (Bax, Bak and BH3-only subfamily) proteins of this

family determines whether permeabilization occurs. During this

process, Bax and Bak translocate to the outer mitochondrial

membrane and create pores through oligomerization. BH3-only

proteins act as activators and sensitizers. Activators promote the

formation of Bax-Bak oligomers, and sensitizers act as competitive

inhibitors of Bcl-2, thus neutralizing the inhibitory effect of Bcl-2 on

activators and oligomers (14, 15). Permeabilization of mitochondria

allows the leakage of several apoptotic proteins, such as cytochrome

c (Cyt c), endonuclease G (EndoG), apoptosis-inducing factors

(AIFs), second mitochondrial activator of Caspases (Smac) and

high temperature requirement protein A2 (HtrA2). Cyt c is the

main contributor to the intrinsic pathway, and its leakage leads to
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the formation of apoptosomes with apoptotic protease activating

factor-1 (Apaf-1), thereby activating Caspase-9. EndoG and AIF

participate in Caspase-independent DNA fragmentation. Smac and

HtrA2 activate Caspase by neutralizing the apoptosis inhibitor IAP.

These proteins eventually lead to anoikis via different

mechanisms (14).

The extrinsic pathway relies on the ligand binding of death

receptors on the cell membrane following the formation of the

death-inducing signaling complex (DISC). Tumor necrosis

factor receptor (TNFR) subfamily members, such as the first

apoptosis signal (Fas) receptor, TNFR1, TNFR2 and TNF-

related apoptosis inducing ligand (TRAIL) receptor-1 and -2,

are major initiators of this pathway (15, 16). The ligand binding

of FAS receptor results in the formation of the death-inducing

signaling complex (DISC). DISC recruits and activates Caspase-

8 through interaction with Fas-associated death domain protein

(FADD). Activated Caspase-8 in turn activates the effectors

Caspase-3, Caspase-6, and Caspase-7 (15, 17). TRAIL receptor

activates Caspase-8 in a similar way as Fas receptor—via the

formation of the Fas/TRAIL DISC (18). TNFR has a more

complex way of inducing anoikis. First, upon ligand binding,

TNFR1 binds to TNFR1-associated death domain protein

(TRADD), while TNFR2 binds to TNFR-associated factor 1

(TRAF1) and TRAF2. The TNFR1-TRADD oligomer then

recruits TRAF2 or TRAF5 and cellular inhibitor of apoptosis

protein 1 (cIAP1) or cIAP2 to form TNFR1 complex I. Complex

I further recruits the linear ubiquitin chain assembly complex

(LUBAC) and ubiquitylates receptor-interacting serine/

threonine-protein kinase 1 (RIPK1). Then, according to the

ubiquitylation status of RIPK1, TNFR1 complex IIa or IIb is

formed with RIPK1, FADD, pro-Caspase-8, the long isoform of

FLICE-like inhibitory protein (FLIPL) and TRADD (in IIa) or

RIPK3 (in IIb). Both TNFR1 complex IIa and IIb are capable of

Caspase-8 activation (19).

Despite the differences between the intrinsic and extrinsic

pathways, they merge at the point of Caspase activation and are

connected by several shared intermediates. For example,

Caspase-8, the key downstream molecule of the extrinsic

pathway, also activates Bid, which is a BH3-only protein,

therefore triggering the intrinsic pathway. Mitochondrial

permeabilization is often followed by death receptor activation

(15). Thus, anoikis is regulated by both pathways.
Adhesion molecules and
anoikis resistance

Adhesionmolecules are first-linemediators in anoikis signaling.

They are directly involved in the establishment of cell adhesion and

therefore can convey both mechanical and molecular signals of cell

detachment. Thus, anomalies in adhesion molecule expression or

signaling could result in anoikis resistance. Adhesion molecules
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such as integrins and E-cadherin have been proven to regulate

anoikis resistance in glioma. And their regulation of anoikis

resistance is demonstrated in Figure 1.
Integrins

Integrins are transmembrane receptors that facilitate cell–

cell and cell-extracellular matrix (ECM) adhesion. They bind

fibronectin, vitronectin, collagen, tenascin and laminin, which

are directly related to adhesion. Upon ligand binding, integrins

activate the receptor tyrosine kinase (RTK) signaling pathway

and thereby regulate cellular events such as growth, division,

survival, differentiation and programmed death (20, 21). Loss of

adhesion can trigger anoikis through this pathway. However,

aberrations in the expression of integrins and their ligands often

inhibit anoikis during cell detachment.

Integrins are obligate heterodimers composed of a and b
subunits. There are 24 integrins in total, and a single cell

generally has multiple types of integrins on its surface (21).

The a5b1, avb3 and avb5 integrins are overexpressed in glioma

(22). Their binding with the tripeptide sequence Arg-Gly-Asp

(RGD) motif in ECM proteins activates the cytosolic tyrosine

kinase Src. Src constitutively binds to the integrin b cytoplasmic
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tail and focal adhesion kinase (FAK) (23). In turn, FAK

activation induces anoikis inhibition by activating the

transcription factor NF-kB through the PI3K/AKT signaling

pathway (24). This inhibition can be reversed by applying the

RGD-integrin antagonist 1a-RGD, which downregulates the

phosphorylation of FAK (25, 26). The binding of a5b1
integrin with matrix metalloproteinase-2 (MMP-2), which

breaks down ECM and induces metastasis, promotes IL-6/

Stat3 survival signaling and upregulates NF-kB, leading to

anoikis resistance (27). The upregulated binding of a5b1
integrin also inhibits p53-induced apoptosis through the PI3K/

AKT pathway, which activates the antiapoptotic function of

astrocytic phosphoprotein PEA-15 (28). Moreover, increased

binding of MMP-2 with avb3, which is upregulated by p21-

activated kinase 4 (PAK4), activates the EGFR pathway and

induces anoikis resistance (29). aV integrin also participates in

TGF-b1 activation, which promotes anoikis resistance in

detached glioma cells (30–32). The binding of a6b1 integrin

with laminin also enhances glioma proliferation and anoikis

resistance, although the involved signaling pathway is not

known (33). Similarly, an in vivo study demonstrated the

promoting role of the binding of b1-integrin with tenascin-C-

derived peptide TNIIA2 in anoikis resistance in GBM without a

clear understanding of its subsequent signaling (34).
FIGURE 1

Adhesion molecules involved in anoikis resistance mechanism of glioma. Overexpression of Integrins and loss of E-cadherin in glioma disrupt
the initiating signal of anoikis. Upon cell detachment, overexpressed integrins still activate FAK, which in turn activates signalings such as TGFb,
EGFR, IGFR, PI3k/AKT pathway. Then through p53 inhibition, NF-kB activation or other mediators, these pathways lead to anoikis. a2 integrin
induced FAK activation also promotes the release of b-catenin from the E-cadherin/b-catenin complex. Along with the loss of E-cadherin and
the help of Wnt, this increased the cytoplasmic level of b-catenin. b-catenin thereby promote anoikis resistance through EMT, TRAIL resistance
and upregulation of invasion-related protein ALDH1A1 and peroxiredoxin 4. Aside from b-catenin, loss of E-cadherin also downregulates tumor
suppressor PTEN and therefore maintains NF-kB activation.
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E-cadherin

E-cadherin is a type of calcium-dependent cell adhesion

molecule that is important in the formation of adherens

junctions to allow cells to adhere to each other. E-cadherin is

also referred to as the “suppressor of invasion” because its

repression is the major event responsible for dysfunction in

cell–cell adhesion. Cell–cell adhesion is achieved through the

formation of homodimers in membranes and the binding of the

protein complex to the cytoplasmic portion of E-cadherin. E-

cadherin anchors to the cytoskeleton via a complex composed of

a-, b- and g-catenin (35). b-Catenin is released upon E-cadherin

tension relaxation due to Src-dependent FAK activation, which

is integrin related. Then, with the help of Wnt, cytoplasmic b-
catenin accumulates and translocates to the nucleus (36–38).

Therefore, E-cadherin activates b-catenin upon cell detachment.

A previous study showed that b-catenin can inhibit anoikis

resulting from the loss of cell-substrate contact (39, 40). It has

also been revealed that ALDH1A1 and peroxiredoxin 4 are direct

targets of b-catenin and contribute to glioma invasiveness (41–

43). Thus, the E-cadherin/b-catenin/ALDH1A1 and E-cadherin/

b-catenin/peroxiredoxin-4 pathways are likely direct promoters

of anoikis resistance in glioma.

Furthermore, loss of the E-cadherin/b-catenin complex

inhibits anoikis through epithelial-to-mesenchymal transition

(EMT). EMT is a process by which epithelial cells lose their cell

polarity and cell–cell adhesion and gain migratory and invasive

properties to become mesenchymal stem cells (44). Loss of cell–

cell contact or E-cadherin upregulates cytoplasmic b-catenin,
which, together with transforming growth factor-b (TGF-b),
triggers EMT. During EMT, adherens junctions are

downregulated, and anoikis is inhibited (38). TRAIL sensitivity

is downregulated in this process, which partially explains the

common occurrence of TRAIL resistance in glioblastoma

(GBM) (45, 46).

Another target protein of E-cadherin is PTEN, a tumor

suppressor antagonizing the PI3K-AKT signaling pathway (47).

E-cadherin upregulates PTEN expression, which inhibits NF-kB
activation through the PI3K/AKT pathway, thus promoting

anoikis. In contrast, PTEN mutation in GBM leads to

constitutive activation of AKT signaling and anoikis resistance

(48). Therefore, loss of E-cadherin promotes anoikis resistance

through the downregulation of PTEN.
Signaling and anoikis
resistance in glioma

Cell detachment also affects extracellular signaling molecules

and membrane receptors, thereby inducing anoikis through

various signaling pathways. On the other hand, aberration in
Frontiers in Oncology 04
signaling interrupts the anoikis process that normally occurs

after cell detachment. Among these signaling pathways,

epidermal growth factor receptor (EGFR), insulin-like growth

factor receptor (IGFR), tropomyosin receptor kinases (Trk),

transforming growth factor-b (TGF-b) and the Hippo pathway

have been shown to regulate anoikis resistance in glioma. And

these signaling are demonstrated in Figure 2.

EGFR

EGFR is a transmembrane receptor tyrosine kinase for the

epidermal growth factor (EGF) family (49). Known ligands of

EGFR include EGF, TGF, AREG, EPGN, BTC, EREG and

HBEGF. Numerous studies have shown that EGFR has an

important role in cancer progression. Its major downstream

signaling pathways include the PI3K/AKT pathway, MAPK

pathway, PLCg/PKC and JAK2/STAT3 pathway (50–52).

Through these pathways, EGFR can regulate anoikis resistance

in gliomas. Furthermore, amplified EGFR was found in 60% of

GBMs (53).

Under physiological conditions, Bim, one of the BH3-only

proteins, is upregulated via downregulation of EGFR signaling

upon cell detachment and then triggers the intrinsic pathway of

anoikis. In vitro experiments suggest that overexpression of

EGFR inhibits Bim through the MAPK pathway and thus

induces anoikis resistance in malignant tumors (54, 55). A

study also revealed NF-kB as the downstream target of EGFR

in the PI3K/AKT pathway and the inducer of anoikis resistance

(56). Similarly, STAT3 was found to maintain FAK activation

during detachment (57). Therefore, FAK might in turn promote

anoikis resistance through the PI3K/AKT pathway. Apart from

the above pathways, the amplification of EGFR also activates

NF-kB through TMEM43/LUMA and results in anoikis

resistance in glioma (58).
IGFR

IGFR is a family of transmembrane receptor tyrosine kinases

that includes IGF1R, IGF2R, insulin receptor (IR) and hybrid IR/

IGF1R. IGFRs bind to their cognate ligands, namely, IGF1, IGF2

and insulin. Six IGF-binding proteins (IGFBP1-6) bind to and

carry IGFs in serum. Then, they are cleaved by MMPs in focal

adhesions in the ECM, and IGFs are released (59). Activated

IGF1R is involved in cell growth and survival control and is

crucial for tumor transformation and survival (59). A study

showed that cell detachment enhances IGF1R signaling through

the collagen IV/a2 integrin/FAK pathway and thus promotes

anoikis resistance (60). IGF1R signaling is carried out through

the PI3K-Akt pathway and MAPK pathway (61, 62). However, a

further study noted that the protective effect of IGF1 against

anoikis is transduced via the PI3K-Akt pathway but not the

Grb2/Ras/MAPK pathway (63). Furthermore, IGF1R/PI3K/Akt
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signaling promotes anoikis resistance through activation of NF-

kB (64).

IGFBP2 overexpression is common in high-grade glioma and is

related to glioma progression (65). Moreover, IR and IGF1R recruit

and activate STAT3 via RACK1 mediation and induce anoikis

resistance (66). Thus, a theoretic autocrine feed-forward loopmodel

is established in which STAT3 activation leads to the binding of

nuclear IGFBP2 to IGF1, resulting in IGF1 secretion that activates

IGF1R, which in turn activates STAT3 (67).
Trk

Trks are a family of tyrosine kinases that regulate synaptic

strength and plasticity in the nervous system (68). The Trk

family has three members, each of which binds to different types

of growth factors called neurotrophins (NTs). TrkA binds to

nerve growth factor (NGF) and is also called a high affinity nerve

growth factor receptor. TrkB binds to brain-derived

neurotrophic factor (BDNF) and NT-4. TrkC binds to NT-3

(69). Upon ligand binding, Trks can activate effectors, including

SHC1, FRS2, SH2B1, SH2B2 and PLCG1 (70). Through these

effectors, the PI3K/AKT pathway, MAPK pathway and NF-kB
are activated (71, 72).

Trks have been reported to affect tumor behavior. TrkA

inhibits tumor growth, invasion and angiogenesis, while TrkB
Frontiers in Oncology 05
promotes anoikis resistance and metastasis (73). Studies have

revealed that TrkB contributes to anoikis resistance through the

above signaling pathway and EMT (74, 75). TrkB expression is

upregulated in lower grade glioma, proneural GBM and

methylated phenotype GBM, and TrkB-induced anoikis

resistance has been confirmed in glioma (76, 77). Further study

showed the participation of Zeb1, an E-cadherin repressor, in

TrkB-induced anoikis resistance (78). Thus, TrkB promotes

anoikis resistance through the PI3K/AKT pathway, MAPK

pathway, NF-kB activation, EMT and E-cadherin inhibition.
TGF-b

TGF-b is a multifunctional cytokine produced by white

blood cells. Activated TGF-b forms a serine/threonine kinase

complex and binds to TGF-b receptors (TGFBR1 and TGFBR 2)

(79). Upon ligand binding, TGFRBR2 phosphorylates and

activates TGFRBR1, which initiates a signaling cascade (80). In

this way, TGF-b activates the SMAD pathway, which

translocates the Smad complex into the nucleus to induce the

transcription of different effectors. There are also non-Smad

signaling pathways, including the MAPK and PI3K-AKT

pathways, that are initiated in parallel and cooperate with the

SMAD pathway (81). Through these pathways, TGF-b exerts

both tumor-promoting effects and tumor-suppressing effects.
FIGURE 2

Signaling involved in anoikis resistance mechanism of glioma. EGFR, IGFR, TrkB, TGF-b and the hippo pathway are signaling pathways involved
in the anoikis resistance of glioma. NF-kB is a common mediator in these pathways, for it regulates the expression of several anoikis-related
proteins. Similarly, the hippo pathway promotes anoikis resistance through its transcription factor TAZ. Apart from transcription factors, EGFR
also represses Bim expression through Erk/MAPK pathway. Meanwhile TrkB upregulates Bcl-xl and downregulates FasL and Bim through PI3K/
AKT pathway. The signaling of TrkB and TGF-b triggers EMT as well, which promotes cell detachment and anoikis resistance. And there are also
EGFR signaling triggered by the hippo pathway, and b-catenin promoted by TGF-b, indicating the connection between adhesion molecules and
signaling pathways goes both way.
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TGF-b signaling is highly active in high-grade gliomas, which

exerts tumor-promoting effects on proliferation, angiogenesis and

invasion (82). An in vivo study also proved that TGF-b promotes

anoikis resistance upon glioma cell detachment (31). As the most

potent inducer of EMT, TGF-bmainly promotes anoikis resistance

through this transition and the subsequent loss of cell adhesion (83,

84). TGF-b also promotes anoikis resistance mediated by ROS and

b-catenin (85, 86).
The Hippo pathway

The Hippo pathway is a well-known signaling pathway that

controls organ size by regulating cell proliferation and apoptosis

(87). Large tumor suppressor (LATS) 1 and 2 are starting proteins

of the Hippo pathway. LATS1/2 negatively regulate the

transcriptional coactivator/corepressor YAP and TAZ. YAP/TAZ

then bind to the transcription factor family TEAD and direct gene

expression in the nucleus (88). The Hippo pathway is not directly

activated by the loss of cell adhesion but by the signaling of other

pathways (89). For example, YAP/TAZ are regulated by integrin-

SRC signaling, E-cadherin-JUB signaling, growth factor-PI3K-Akt

signaling and GPCR signaling (90). Thus, the Hippo pathway

induces anoikis by transducing upstream signals.

Under physiological conditions, the Hippo pathway

downregulates YAP and induces anoikis (91). However, it is

one of the 8 signaling pathways that is frequently dysregulated in

cancer (89). Evidence shows that YAP1 upregulation promotes

anoikis resistance and EGFR amplification in GBM (92). YAP1

also regulates the glioma phenotype by inhibiting proneural

marker OLIG2 expression (93). YAP knockdown increases

apoptosis and attenuates GBM metastasis (94, 95). The YAP

inhibitor verteporfin has been shown to have significant efficacy

in a preclinical GBM model, indicating that the Hippo pathway

is a promising therapeutic target for glioma (96).
Cytoplasmic proteins and
anoikis resistance

Cell detachment does not affect cytoplasmic proteins

directly. However, proteins such as transcription factors and

kinases can act as important mediators of anoikis resistance and

are usually regulated by multiple pathways. Nuclear factor-kB
(NF-kB), elongation factor-2 kinase (eEF-2 kinase) and Mps one

binder kinases 2 (MOB2) are known promotors of glioma.
NF-kB

NF-kB is a primary transcription factor that widely

participates in cell proliferation and survival control (97, 98).
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NF-kB is a dimeric complex formed by RelA, RelB, NF-kB1, NF-
kB2 and c-Rel. When bound to DNA, different dimer

combinations act as transcriptional activators or repressors

(99). NF-kB plays a key role in inducing anoikis resistance

and is the downstream effector of many signal-transducing

events. Inhibitors of kB (IkBs) block the nuclear entry of NF-

kB and keep it in an inactive state. Activation of NF-kB is

initiated by the signal-induced degradation of IkB proteins with

the help of IkB kinase (IKK) (100).

NF-kB is dysregulated in most malignant tumors and causes

aberrant expression of several anoikis-related proteins. The

anoikis suppressors Bcl-2, BCL-xL, OPG, IAP, c-FLIP, and

RIPK1 were upregulated by NF-kB in vivo (101–103). NF-kB
is also reported to counter reactive oxygen species (ROS)-

induced anoikis through manganese superoxide dismutase

(MnSOD) upregulation (104). High-grade and invasive

gliomas often exhibit NF-kB dysregulation. NF-kB promotes

the expression of ZEB-1 in glioma, which in turn represses E-

cadherin and results in anoikis resistance (105). On the other

hand, inhibition of the gene transactivation function of NF-kB
by cannabidiol induces cell death in GBM (106).
eEF-2 kinase

eEF-2 kinase is a calcium/calmodulin-dependent transferase.

eEF-2 kinase phosphorylates eEF-2 and decreases its affinity for

ribosomes, leading to retardation of protein elongation and

therefore inhibition of protein synthesis (107). It was also

discovered that eEF-2 kinase regulates dendritic mRNA

translation in neurons (108). eEF-2 kinase is often upregulated

in cancer cells and promotes proliferation, survival and

migration (109).

eEF-2 kinase is upregulated in glioma (110). Upon detachment,

the high expression of eEF-2 kinase induces anoikis resistance and

promotes invasion through downregulation of Bim and

upregulation of BCL-xL (111, 112). On the other hand, inhibition

of eEF-2 kinase promotes anoikis and sensitivity to TMZ (113).
MOB2

MOB2 regulates the activation of nuclear-Dbf2-related (NDR)

kinases, which are associated with apoptosis signaling. MOB2

inhibits FAS-induced NDR activation and consequently

suppresses apoptosis (114). In vivo and in vitro studies have

shown that MOB2 is downregulated in GBM and that

downregulation of MOB2 confers anoikis resistance (115).

Further experiments revealed that anoikis resistance is achieved

through the integrin/FAK/Akt pathway and the cAMP/PKA

pathway (114, 115). Few studies have focused on MOB2 as a

tumor suppressor, and its therapeutic value remains to be explored.
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The tumor microenvironment (TME)
and anoikis resistance

The TME is the abnormal environment surrounding tumor

cells. The TME has pathogenic properties such as hypoxia,

acidosis and lack of nutrition. These properties and factors

also regulate anoikis.

Hypoxia and acidosis

Hypoxia is a standard property of the TME. Hypoxia-

inducible factors (HIFs) are transcription factors that respond

to hypoxia and are commonly upregulated in tumor cells. HIF

promotes cell survival by upregulating several genes associated

with angiogenesis and metastasis (116, 117). Therefore, it is

natural for HIF to play a part in cancer cell survival. An in vivo

study showed that HIF-1-induced anoikis resistance can be

achieved by repression of the BH3-only proteins Bim and Bmf

through the EGFR–Mek–Erk and AKT pathways (118, 119).

HIF-1a also promotes anoikis resistance by upregulating

ANGPTL4, which activates the FAK/Src/PI3K-Akt/ERK

pathway and thereby suppresses Caspase activation (120).

HIF-1a functions similarly and promotes anoikis resistance in

glioma (121).

Acidosis is another property of the TME and is caused

partially by hypoxia. Acidosis has dual effects on tumors: mild

acidosis promotes survival, and severe acidosis suppresses

survival. A study revealed that acidic pH promotes autocrine

TGF-b2 signaling and in turn promotes anoikis resistance (122).

In vivo studies also show that low pH induces anoikis resistance

in melanoma (pH=6.7) and enhances proliferation in GBM

(pH=6.2) (123, 124). However, a very low pH (pH=3.4)

immensely increases the surface rigidity of GBM cells by

altering the cholesterol and GM3 glycosphingolipid content

and causes anoikis instead (124).
ROS

ROS are highly reactive byproducts of cell metabolism (125).

ROS are present at low and stable levels in normal cells and have

roles in signaling and homeostasis (126, 127). However, under

cancerous conditions, redox homeostasis is dysregulated, and

ROS serve as a double-edged sword. Low levels of ROS facilitate

cancer cell survival, while high levels of ROS and therapeutic-

induced augmentation of ROS stress kill cancer cells (128, 129).

ROS play important roles in achieving anoikis resistance in

cancer. An increase in ROS leads to constitutive inactivation of

PTEN, which rescues PI3K-AKT signaling and integrin-

mediated anoikis resistance (130). Sustained ROS levels also
Frontiers in Oncology 07
promote the activation of Src kinases and redox-sensitive

transcription factors such as NF-kB and HIF-1a, thereby

regulating cell adhesion and anoikis through degradation of

Bim and upregulation of BCL-xL (130, 131). On the other hand,

high levels of ROS promote anoikis sensitivity upon cell

detachment, confirming the dual role of ROS in anoikis (132).

ROS function similarly in glioma. Prohibitin is upregulated

in glioma stem-like cells (GSCs) and facilitates therapeutic

resistance by regulating ROS (133). GBM cells with low Pax6

expression achieve anoikis resistance. Pax6-overexpressing cells

retain higher levels of ROS upon detachment, and their survival

is impaired (134). Treatments utilizing ROS stress as a

mechanism have been successful. Celastrol induces ROS

production and inhibits Akt and mTOR activity, thus

triggering cell death in glioma (135). Dihydroartemisinin

promotes ROS production, which activates p53 protein and in

turn downregulates b-catenin expression, thus inhibiting glioma

invasion and anoikis resistance (136).
HSPs

HSPs are a family of proteins that respond to stress events

and function as chaperones (137). HSPs are upregulated by heat

shock factors (HSFs) during environmental stress conditions

(138). The chaperone function of HSP helps stabilize partially

unfolded proteins, assisting protein conformation establishment

and preventing unwanted protein aggregation (139).

HSP upregulation is triggered in cancer by hypoxia,

starvation and cancer therapy. Therefore, HSPs participate in

cancer progression and therapy resistance. For example, HSP27

promotes astrocytoma migration through SPARC-MAPK

signaling and is suppressed by PTEN (140). HSP70 and its

cochaperone BAG3 induce anoikis resistance in GBM through

Bcl-2 overexpression (141).
Protective autophagy and anoikis
resistance

Autophagy is a cellular process that promotes cell adaptation

through the degradation of dysfunctional or unnecessary

components. Generally, autophagy is triggered upon stress events

such as starvation and infection, therefore promoting cell survival.

However, autophagy in cancer can be a double-edged sword. While

high-level autophagy has an antitumor effect, low-level autophagy

can relieve cancer cells of the pressure from hypoxia, acidosis and

lack of nutrients. It also facilitates the degradation of apoptotic

mediators, thus interfering with apoptosis or anoikis (142). In short,
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autophagy can play a protective role in cancer and induce anoikis

resistance upon cell detachment.

The mechanism of protective autophagy-induced anoikis

resistance is not clear, as various involved pathways have been

reported. One review concluded that protective autophagy is

induced via integrin-focal adhesion signaling (143). Another in

vivo study specified the ATF4/CEMIP/PKCa pathway as a trigger

of protective autophagy (144). A study in glioma, however, revealed

the MDA-9/Syntenin pathway as the key regulator in maintaining

protective autophagy (145). These inducers of protective autophagy

can be potential therapeutic targets. However, further investigation

is required to fully understand the balance between protective

autophagy and anoikis.
Anoikis resistance and current
glioma therapy

The common protocol for glioma contains surgery,

radiotherapy, conventional chemotherapy, and target therapy

(146). Part of these treatments involve anoikis mechanism and

their efficacy are affected by anoikis resistance.
Anoikis resistance and radiotherapy

Radiotherapy is a standard measure in glioma management,

although gliomas often show high radioresistance. A study in

prostate cancer shows that one of the reasons for radiotherapy

resistance is the acquirement of anoikis resistance in detached

tumor cells through Erk and PI3k-Akt signaling (147).

Consistently, AKT inhibitor MK2206 is able to enhance the

sensitivity of radiotherapy and inhibit invasion in glioma, which

could result from the inhibition of anoikis resistance (148). A

recent study identifies an adhesion molecule CD146 as a

mediator of radiotherapy resistance through suppression of

p53 expression and activation of NF-kB, which could induce

anoikis resistance (149). Thus, it is highly possible that anoikis

resistance takes part in the resistance of radiotherapy in glioma.
Anoikis resistance and chemotherapy

Conventional chemotherapy for glioma includes

procarbazine, lomustine, carmustine, vincristine, and

temozolomide (146). Among them, TMZ is the most common

adjuvant treatment. TMZ is an alkylating agent commonly used

in gliomas, especially in astrocytoma and GBM. A recent study

deliberately cultures anoikis-resistant astrocytes to form clones

and test their resistance to TMZ. After treatment with 0.72mM

TMZ, only one out of three of these astrocyte-derived clones
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halted colony formation. The unsatisfying response to TMZ of

these astrocytes is similar to that of the established GBM cell line

U87MG (150). Therefore, anoikis resistance is likely one of the

main reasons for TMZ resistance.
Anoikis resistance and target therapy

Target therapies exceed conventional chemotherapy in

preventing drug resistance and often generate a synergistic

response. Therefore, target therapies aiming at the anoikis

mechanism are an ideal adjuvant treatment for glioma. Target

drugs relating to anoikis are concluded in Table 1.

Cilengitide, an integrin inhibitor, is able to induce dose-

dependent cell detachment of pediatric glioma cells expressing

avb3 and trigger anoikis. However, the adult glioma cell line

U87MG is able to grow despite cilengitide-induced nonadherent

conditions. These results indicate that cilengitide cannot reduce

anoikis resistance (153). Consistent with this conclusion, only 1 out

of 24 subjects has a response in phase 2 clinical trials of cilengitide

treating high-grade pediatric gliomas (151). Despite the unsatisfying

effect of cilengitide as monotherapy, combined therapy trials with

radiation and TMZ, bevacizumab, or other agents have shown

promising outcomes (152, 154, 166). Therefore, integrin inhibitors

are still reliable adjuvant treatments for glioma treatment.

EGFR inhibitors such as erlotinib and gefitinib have been

developed and applied in the clinical treatment of many other

cancers. However, despite the common amplification of EGFR in

GBM, EGFR inhibitors have been disappointing in single drug

clinical trials (155, 156). Nevertheless, combined therapies have

shown promising results. Combined treatment of erlotinib with

bevacizumab and irinotecan has shown prolonged OS (Median OS

= 13.8months) in children with progressive diffuse intrinsic pontine

glioma (159). Adjuvant gefitinib treatment also improved

radiotherapy outcome in children (Median PFS =7.4 months) but

not in adult (Median PFS = 4.9 months; Median OS = 11.5 months)

(157, 158). Thus, EGFR inhibitors are recommended adjuvant

treatments in pediatric glioma.

IGF1R inhibitor based treatment has not been successful, and

multiple clinical trials of ganitumab have been halted due to lack of

benefit (167). However, it is reported that the frequent activation of

IR and IGF1R in GBM confers resistance to EGFR inhibitors, and

IGF1R has a compensatory effect during EGFR inhibition (160,

168). These finding indicate a promising future for combined

treatment with EGFR inhibitor and IGFR inhibitor.

TRK fusion leads to constitutive activation of Trk in all types of

gliomas (169). The Trk inhibitors entrectinib and larotrectinib have

been approved for the treatment of TRK-fusion glioma (170).While

both drugs are still in trial, larotrectinib has demonstrated favorable

efficacy in treating glioma (23 responses of 28 subjects; 12-month
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TABLE 1 Anoikis related.drugs.

Drug Mechanism Design Result Conclusion Reference

Cilengitide Integrin
inhibitor

Phase II clinical trial of cilengitide
monotherapy in refractory
pediatric glioma

One response out of
24 subjects
median OS = 172 days

Cilengitide is not effective as a single agent for refractory
pediatric high grade glioma

(151)

Randomized Phase II clinical trial
of cilengitide combined with
Chemoradiation in GBM

Median OS of all
groups = 19.7 months;
median OS of 500mg
cilengitide group =
17.4 months;
median OS of 2000mg
cilengitide group =
20.8 months

Cilengitide is well tolerated when combined with standard
chemoradiation and may improve survival for patients
newly diagnosed with GBM

(152)

In vivo study of cilengitide with
human pediatric glioma cell lines
and U87MG cell line

/ Cilengitide is able to induce cell detachment and anoikis
leading to critical growth inhibition in pediatric cells
expressing avb3

(153)

In vivo study of cilengitide and
bevacizumab combine therapy
with rat orthotopic glioma model

/ The combination of bevacizumab with cilengitide exert a
significant anti-invasive effect

(154)

Gefitinib EGFR
inhibitor

Phase II clinical trial of gefitinib in
recurrent GBM

Median OS = 39.4
weeks

Gefitinib is well tolerated and has activity in patients with
recurrent glioblastoma

(155)

Phase II clinical trial of gefitinib in
grade 4 astrocytoma

12-month rate for OS
of historical control
population = 48.9%;
12-month rate for OS
of gefitinib group =
54.2%;
12-month rate for PFS
of gefitinib group =
16.7%;
12-month rate for PFS
of historical control
population = 30.3%

Treatment with adjuvant gefitinib post radiation was not
associated with significant improvement in OS or PFS

(156)

Phase II clinical trial of gefitinib
and irradiation in pediatric
brainstem glioma

Median FPS = 7.4
months

Administration of gefitinib with irradiation in children with
brainstem glioma is well tolerated

(157)

Phase I/II clinical trial of radiation
therapy with concurrent gefitinib
for GBM

Median PFS = 4.9
months; Median OS =
11.5 months

The addition of gefitinib to RT is well tolerated but has no
significant improvement in Median OS

(158)

Erlotinib EGFR
inhibitor

Phase I/II clinical trial of
bevacizumab, irinotecan and
erlotinib in pediatric diffusive
intrinsic pontine glioma

Median PFS = 7.3
months; Median OS =
13.8 months

Daily erlotinib is safe and well tolerated in doses up to 85
mg/m2 when combined with biweekly bevacizumab and
irinotecan in children with progressive DIPG

(159)

OSI-906 InsR/IGF1R
inhibitor

In vivo study of OSI-906 and
gefitinib combine therapy with
mice subcutaneous GBM model

/ OSI-906 synergistically improves GBM sensitivity to gefitini (160)

Larotrectinib Trk inhibitor Phase I/II clinical trial of
larotrectinib in TRK fusion-
positive glioma

12-month rate for PFS
= 56%; 12-month rate
for OS = 85%

Larotrectinib demonstrated rapid and durable responses,
high disease control rate, and a favorable safety profile in
patients with TRK fusion-positive glioma

(161)

Trabedersen TGF-b2
inhibitor

Phase IIb clinical trial of
trabedersen in GBM and
astrocytima

Median OS of GBM
with 10mM
trabedersen = 12.0
months;
Median OS of GBM
with chemotherapy =
10.1 months;
Median OS of
astrocytoma with
10mM trabedersen =
39.1 months;

10 mM trabedersen is the optimal dose for high-grade
glioma. The 6-month intratumoral convection-enhanced
delivery of trabedersen was found to be safe and well
tolerated

(162

(Continued)
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rate for PFS = 56%; 12-month rate for OS = 85%) (161). Therefore,

Trk inhibitors are expected in the future management of TRK-

fusion glioma.TGF-b pathway antagonist like trabedersen has been

proposed for glioma treatment for a long time (82). A clinical trial of

145 patients shows that trabedersen improves OS in GBM (Median

OS 12.0 months vs. 10.1 months) and astrocytoma (Median OS

39.1 months vs. 21.7 months) (162). Another antagonist

galunisertib is also trialed in glioma but shows insignificant

improvement (Median OS 18.2 months vs. 17.9 months) (Median

OS 8.0 months vs. 7.5 months) (163, 164). Many other novel

antagonists are developed for cancer treatment, and combined

therapies are also expected in the future (171).

HSP is a promising therapeutic target in terms of both

monotherapy and combined therapy. A clinical trial shows

that immunotherapy targeting HSP96 improves OS in

recurrent GBM (Median OS 47 weeks vs. 16 weeks) (172).

And an in vivo study shows that silencing HSP27 and HSP72

improves the efficacy of TMZ in glioma (173).

Apart from therapies that target the anoikis mechanism,

cediranib, a VEGF inhibitor also affects anoikis resistance in

GBM. Study shows that cediranib reduce the survival of anoikis-

resistant GBM cells, especially in the T98G cell line, while the

U87MG cell line shows intermediate resistance. The study also
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reveals the synergy effect of cediranib with radiotherapy and

TMZ in glioma treatment (165). There has been no clinical trial

for cediranib in glioma up till now. However, anti-VEGF drugs

like bevacizumab and regorafenib are already in the guideline for

glioma management (146).
Conclusion

Currently, anoikis resistance in glioma has not been

extensively studied. Nevertheless, the diffuseness of glioma

invasion and the high recurrence rate are closely linked to

anoikis resistance. Therefore, clarification of the regulation of

anoikis resistance at the molecular level could provide a new

angle for glioma therapy and prognosis evaluation. In

this article, we reviewed current publications on the role

of adhesion molecules, signaling pathways, cytoplasmic

molecules, the TME and protective autophagy in anoikis

resistance and their therapeutic value in glioma. Further

studies, however, are still needed to validate the function of

these molecules in anoikis resistance and glioma. More research

is necessary to explore new directions for targeting anoikis

resistance in the treatment of glioma.
TABLE 1 Continued

Drug Mechanism Design Result Conclusion Reference

Median OS of
astrocytoma with
80mM trabedersen =
35.2 months;
Median OS of GBM
with chemotherapy =
21.7 months;

TGF-b1
inhibitor

Phase Ib/IIa clinical trial of
galunisertib, temozolomide and
radiotherapy combined in glioma

Median OS of
galunisertib + TMZ +
radiotherapy group =
18.2 months;

No differences in efficacy, safety or pharmacokinetic
variables were observed

(163)

Phase II clinical trial of
galunisertib monotherapy and
lomustine monotherapy and
combine therapy in GBM

Median OS of TMZ +
radiotherapy group =
17.9 months
Median OS of
galunisertib group =
8.0 months;
Median OS of
galunisertib
+lomustine group =
6.7 months;
Median OS of placebo
+ lomustine group =
7.5 months

Galunisertib + lomustine failed to demonstrate improved
OS relative to placebo + lomustine. Efficacy outcomes were
similar in all 3 arms

(164)

Cediranib VEGF
inhibitor

In vivo study of cediranib with
U87MG, U251MG and T98G
GBM cell lines

/ Cediranib synergistically increased the anti-proliferative and
apoptotic effects of radiotherapy and bevacizumab and
augmented the sensitivity of GBM cells to temozolomide
chemotherapy

(165)
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